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Abstract: We present a simple computational approach to assigning a measure of complexity and
information/entropy to families of natural languages, based on syntactic parameters and the theory
of error correcting codes. We associate to each language a binary string of syntactic parameters and
to a language family a binary code, with code words the binary string associated to each language.
We then evaluate the code parameters (rate and relative minimum distance) and the position of the
parameters with respect to the asymptotic bound of error correcting codes and the Gilbert–Varshamov
bound. These bounds are, respectively, related to the Kolmogorov complexity and the Shannon
entropy of the code and this gives us a computationally simple way to obtain estimates on the
complexity and information, not of individual languages but of language families. This notion
of complexity is related, from the linguistic point of view to the degree of variability of syntactic
parameter across languages belonging to the same (historical) family.

Keywords: syntax; principles and parameters; error-correcting codes; asymptotic bound; Kolmogorov
complexity; Gilbert–Varshamov bound; Shannon entropy

1. Introduction

We propose an approach, based on Longobardi’s parametric comparison method (PCM) and the
theory of error-correcting codes, to a quantitative evaluation of the “complexity” of a language family.
One associates to a collection of languages to be analyzed with the PCM a binary (or ternary) code
with one code word for each language in the family and each word consisting of the binary values of
the syntactic parameters of that language. The ternary case allows for an additional parameter state
that takes into account certain phenomena of entailment of parameters. We then consider a different
kind of parameters: the code parameters of the resulting code, which in coding theory account for
the efficiency of the coding and decoding procedures. These can be compared with some classical
bounds of coding theory: the asymptotic bound, the Gilbert–Varshamov (GV) bound, etc. The position
of the code parameters with respect to some of these bounds provides quantitative information on the
variability of syntactic parameters within and across historical-linguistic families. While computations
carried out for languages belonging to the same historical family yield codes below the GV curve,
comparisons across different historical families can give examples of isolated codes lying above the
asymptotic bound.

1.1. Principles and Parameters

The generative approach to linguistics relies on the notion of a Universal Grammar (UG) and a
related universal list of syntactic parameters. In the Principles and Parameters model, developed since
[1], these are thought of as binary valued parameters or “switches” that set the grammatical structure
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of a given language. Their universality makes it possible to obtain comparisons, at the syntactic level,
between arbitrary pairs of natural languages.

A PCM was introduced in [2] as a quantitative method in historical linguistics, for comparison of
languages within and across historical families at the syntactic instead of the lexical level. Evidence
was given in [3,4] that the PCM gives reliable information on the phylogenetic tree of the family of
Indo-European languages.

The PCM relies essentially on constructing a metric on a family of languages based on the relative
Hamming distance between the sets of parameters as a measure of relatedness. The phylogenetic tree
is then constructed on the basis of this datum of relative distances, see [3].

More work on syntactic phylogenetic reconstructions, involving a larger set of languages and
parameters is ongoing, [5]. Syntactic parameters of world languages have also been used recently for
investigations on the topology and geometry of syntactic structures and for statistical physics models
of language evolution, [6–8].

Publicly available data of syntactic parameters of world languages can be obtained from databases
such as Syntactic Structures of World Languages (SSWL) [9] or TerraLing [10] or World Atlas of
Language Structures (WALS) [11]. The data of syntactic parameters used in the present paper are taken
from Table A of [3].

1.2. Syntactic Parameters, Codes and Code Parameters

Our purpose in this paper is to connect the PCM approach to the mathematical theory of
error-correcting codes. We associate a code to any group of languages one wishes to analyze via
the PCM, which has one code word for each language. If one uses a number n of syntactic parameters,
then the code C sits in the space Fn

2 , where the elements of F2 = {0, 1} correspond to the two∓ possible
values of each parameter, and the code word of a language is the string of values of its n parameters.
We also consider a version with codes on an alphabet F3 of three letters which allows for the possibility
that some of the parameters may be made irrelevant by entailment from other parameters. In this case
we use the letter 0 ∈ F3 for the irrelevant parameters and the nonzero values ±1 for the parameters
that are set in the language.

In the theory of error-correcting codes, see [12], one assigns to a code C ⊂ Fn
q two code parameters:

R = logq(#C)/n, the transmission rate of the code, and δ = d/n the relative minimum distance of the
code, where d is the miminum Hamming distance between pairs of distinct code words. It is well
known in coding theory that “good codes” are those that maximize both parameters, compatibly with
several constraints relating R and δ. Consider the function f : Cq → [0, 1]2 from the space Cq of q-ary
codes to the unit square, that assigns to a code C its code parameters, f (C) = (δ(C), R(C)). A point
(δ, R) in the range of f has finite (respectively, infinite) multiplicity if the preimage f−1(δ, R) is a finite
set (respectively, an infinite set). It was proved in [13] that there is a curve R = αq(δ) in the space of
code parameters, the asymptotic bound, that separates code points that fill a dense region and that
have infinite multiplicity from isolated code points that only have finite multiplicity. These better but
more elusive codes are typically obtained through algebro-geometric constructions, see [13–15]. The
asymptotic bound was related to Kolmogorov complexity in [16].

1.3. Position with Respect to the Asymptotic Bound

Given a collection of languages one wants to compare through their syntactic parameters, one can
ask natural questions about the position of the resulting code in the space of code parameters and with
respect to the asymptotic bound. The theory of error correcting codes tells us that codes above the
asymptotic bound are very rare. Indeed, we considered various sets of languages, and for each choice
of a set of languages we considered an associated code, with a code word for each language in the set,
given by its list of syntactic parameters. When computing the code parameters of the resulting code,
one finds that, in a range of cases we looked at, when the languages in the chosen set belong to the
same historical-linguistic family the resulting code lies below the asymptotic bound (and in fact below
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the Gilbert–Varshamov curve). This provides a precise quantitative bound to the possible spread of
syntactic parameters compared to the size of the family, in terms of the number of different languages
belonging to the same historico-linguistic group.

However, we also show that, if one considers sets of languages that do not belong to the same
historical-linguistic family, then one can obtain codes that lie above the asymptotic bound, a fact that
reflects, in code theoretic terms, the much greater variability of syntactic parameters. The result is
in itself not surprising, but the point we wish to make is that the theory of error-correcting codes
provides a natural setting where quantitative statements of this sort can be made using methods
already developed for the different purposes of coding theory. We conclude by listing some new
linguistic questions that arise by considering the parametric comparison method under this coding
theory perspective.

1.4. Complexity of Languages and Language Families

The study of natural languages from the point of view of complexity theory has been of significant
interest to linguists in recent years. The approaches typically followed focus on assigning a reasonable
measure of complexity to individual languages and comparing complexities across different languages.
For example, a notion of morphological complexity was studied in [17]. An approach to defining
Kolmogorov complexity of languages on the basis of syntactic parameters was developed in [18]. A
notion of language complexity based on the production rules of a generative grammar was considered
in [19], in the setting of (finite) formal languages. For a more general computational perspective on
the complexity of natural languages, see [20]. The idea of distinguishing languages by complexity is
not without controversy in Linguistics. A very interesting general discussion of the problem and its
evolution in the field can be found in [21].

In the present paper, we argue in favor of a somewhat different perspective, where we assign
an estimate of complexity not to individual languages but to groups of languages, and in particular
(historical) language families. Our version of complexity is measuring how “spread out” the syntactic
parameters can be, across the languages that belong to the same family. As we outlined in the previous
subsections, this is measured by assigning to the language family a code, whose code words record the
syntactic parameters of the individual languages in the family, then computing its code parameters
and evaluating the position of the resulting code points with respect to curves like the asymptotic
bound or the Gilbert–Varshamov line. The reason why this position carries complexity information
lies in the subtle relation between the asymptotic bound and Kolmogorov complexity, recently derived
by Manin and the author in [16], which we will review briefly in this paper.

2. Language Families as Codes

The Principles and Parameters model of Linguistics assigns to every natural language L a set of
binary values parameters that describe properties of the syntactic structure of the language.

Let F be a language family, by which we mean a finite collection F = {L1, . . . , Lm} of languages.
This may coincide with a family in the historical sense, such as the Indo-European family, or a smaller
subset of languages related by historic origin and development (e.g., the Indo-Iranian, or Balto–Svalic
languages), or simply any collection of languages one is interested in comparing at the parametric
level, even if they are spread across different historical families.

We denote by n be the number of parameters used in the parametric comparison method. We do
not fix, a priori, a value for n, and we consider it a variable of the model. We will discuss below how
one views, in our perspective, the issue of the independence of parameters.

After fixing an enumeration of the parameters, that is, a bijection between the set of parameters
and the set {1, . . . , n}, we associate to a language family F a code C = C(F) in Fn

2 , with one code word
for each language L ∈ F, with the code word w = w(L) given by the list of parameters w = (x1, . . . , xn),
xi ∈ F2 of the language. For simplicity of notation, we just write L for the word w(L) in the following.
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In this model, we only consider binary parameters with values ±1 (here identified with letters 0
or 1 in F2) and we ignore parameters in a neutralized state following implications across parameters,
as in the datasets of [3,4]. The entailment of parameters, that is, the phenomenon by which a particular
value of one parameter (but not the complementary value) renders another parameter irrelevant, was
addressed in greater detail in [22]. We first discuss a version of our coding theory model that does not
incorporate entailment. We will then comment in Section 2.7 below on how the model can be modified
to incorporate this phenomenon.

The idea that natural languages can be described, at the level of their core grammatical structures,
in terms of a string of binary characters (code words) was already used extensively in [23].

2.1. Code Parameters

In the theory of error-correcting codes, one assigns two main parameters to a code C, the
transmission rate and the relative minimum distance. More precisely, a binary code C ⊂ Fn

2 is an
[n, k, d]2-code if the number of code words is #C = 2k, that is,

k = log2 #C, (1)

where k need not be an integer, and the minimal Hamming distance between code words is

d = min
L1 6=L2∈C

dH(L1, L2), (2)

where the Hamming distance is given by

dH(L1, L2) =
n

∑
i=1
|xi − yi|,

for L1 = (xi)
n
i=1 and L2 = (yi)

n
i=1 in C. The transmission rate of the code C is given by

R =
k
n

. (3)

One denotes by δH(L1, L2) the relative Hamming distance

δH(L1, L2) =
1
n

n

∑
i=1
|xi − yi|,

and one defines the relative minimum distance of the code C as

δ =
d
n
= min

L1 6=L2∈C
δH(L1, L2). (4)

In coding theory, one would like to construct codes that simultaneously optimize both parameters
(δ, R): a larger value of R represents a faster transmission rate (better encoding), and a larger value of
δ represents the fact that code words are sufficiently sparse in the ambient space Fn

2 (better decoding,
with better error-correcting capability). Constraints on this optimization problem are expressed in the
form of bounds in the space of (δ, R) parameters, see [12,13].

In our setting, the R parameter measures the ratio between the logarithmic size of the number of
languages encompassing the given family and the total number of parameters, or equivalently how
densely the given language family is in the ambient configuration space Fn

2 of parameter possibilities.
The parameter δ is the minimum, over all pairs of languages in the given family, of the relative
Hamming distance used in the PCM method of [3,4].
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2.2. Parameter Spoiling

In the theory of error-correcting codes, one considers spoiling operations on the code parameters.
Applied to an [n, k, d]2-code C, these produce, respectively, new codes with the following description
(see Section 1.1.1 of [24]):

• A code C1 = C ?i f in Fn+1
2 , for a map f : C → F2, whose code words are of the form

(x1, . . . , xi−1, f (x1, . . . , xn), xi, . . . , xn) for w = (x1, . . . , xn) ∈ C. If f is a constant function, C1

is an [n + 1, k, d]2-code. If all pairs w, w′ ∈ C with dH(w, w′) = d have f (w) 6= f (w′), then C1 is
an [n + 1, k, d + 1]2-code.

• A code C2 = C?i in Fn−1
2 , whose code words are given by the projections

(x1, . . . , xi−1, xi+1, . . . , xn)

of code words (x1, . . . , xi−1, xi, xi+1, . . . , xn) in C. This is an [n− 1, k, d− 1]2-code, except when all
pairs w, w′ ∈ C with dH(w, w′) = d have the same letter xi, in which case it is an [n− 1, k, d]2-code.

• A code C3 = C(a, i) ⊂ C ⊂ Fn
2 , given by the level set C(a, i) = {w = (xk)

n
k=1 ∈ C | xi = a}.

Taking C(a, i)?i gives an [n− 1, k′, d′]2-code with k− 1 ≤ k′ < k, and d′ ≥ d.

The same spoiling operations hold for q-ary codes C ⊂ Fn
q , for any fixed q.

In our setting, where C is the code obtained from a family of languages, according to the procedure
described above, the first spoiling operation can be seen as the effect of considering one more syntactic
parameter, which is dependent on the other parameters, hence describing a function F : Fn

2 → F2,
whose restriction to C gives the function f : C → F2. In particular, the case where f is constant
on C represents the situation in which the new parameter adds no useful comparison information
for the selected family of languages. The second spoiling operation consists in forgetting one of the
parameters, and the third corresponds to forming subfamilies of the given family of languages, by
grouping together those languages with a set value of one of the syntactic parameters. Thus, all these
spoiling operations have a clear meaning from the point of view of the linguistic PCM.

2.3. Examples

We consider the same list of 63 parameters used in [3] (see Section 5.3.1 and Table A). This
choice of parameters follows the modularized global parameterization method of [2], for the Determiner
Phrase module. They encompass parameters dealing with person, number, and gender (1–6 on
their list), parameters of definiteness (7–16 in their list), of countability (17–24), genitive structure
(25–31), adjectival and relative modification (32–14), position and movement of the head noun (42–50),
demonstratives and other determiners (51–50 and 60–63), possessive pronouns (56–59); see Section 5.3.1
and Section 5.3.2 of [3] for more details.

Our very simple examples here are just meant to clarify our notation: they consist of some
collections of languages selected from the list of 28, mostly Indo-European, languages considered in
[3]. In each group we consider we eliminate the parameters that are entailed from others, and we focus
on a shorter list, among the remaining parameters, that will suffice to illustrate our viewpoint.

Example 1. Consider a code C formed out of the languages `1 = Italian, `2 = Spanish, and `3 = French,
and let us consider only the first six syntactic parameters of Table A of [3], so that C ⊂ Fn

2 with n = 6.
The code words for the three languages are

`1 1 1 1 0 1 1
`2 1 1 1 1 1 1
`3 1 1 1 0 1 0

This has code parameters (R = log2(3)/6 = 0.2642, δ = 1/6), which satisfy R < 1− H2(δ), hence
they lie below the GV curve (see Equation (8) below). We use this code to illustrate the three spoiling
operations mentioned above.



Entropy 2016, 18, 110 6 of 17

• Throughout the entire set of 28 languages considered in [3], the first two parameters are set to the
same value 1, hence for the purpose of comparative analysis within this family, we can regard a
code like the above as a twice spoiled code C = C′ ?1 f1 = (C′′ ?2 f2) ?1 f1 where both f1 and f2

are constant equal to 1 and C′′ ⊂ F4
2 is the code obtained from the above by canceling the first two

letters in each code word.
• Conversely, we have C′′ = C′?2 and C′ = C?1, in terms of the second spoiling operation described

above.
• To illustrate the third spoiling operation, one can see, for instance, that C(0, 4) = {`1, `3}, while

C(1, 6) = {`2, `3}.

2.4. The Asymptotic Bound

The spoiling operations on codes were used in [13] to prove the existence of an asymptotic bound in
the space of code parameters (δ, R), see also [16,24,25] for more detailed properties of the asymptotic
bound.

Let Vq ⊂ [0, 1]2 ∩Q2 denote the space of code parameters (δ, R) of codes C ⊂ Fn
q and let Uq be the

set of all limit points of Vq. The set Uq is characterized in [13] as

Uq = {(δ, R) ∈ [0, 1]2 | R ≤ αq(δ)}

for a continuous, monotonically decreasing function αq(δ) (the asymptotic bound). Moreover, code
parameters lying in Uq are realized with infinite multiplicity, while code points in Vq \ (Vq ∩ Uq) have
finite multiplicity and correspond to the isolated codes, see [13,16].

Codes lying above the asymptotic bound are codes which have extremely good transmission rate
and relative minimum distance, hence very desirable from the coding theory perspective. The fact that
the corresponding code parameters are not limit points of other code parameters and only have finite
multiplicity reflect the fact that such codes are very difficult to reach or approximate. Isolated codes
are known to arise from algebro-geometric constructions, [14,15].

Relatively little is known about the asymptotic bound: the question of the computability of
the function αq(δ) was recently addressed in [25] and the relation to Kolmogorov complexity was
investigated in [16]. There are explicit upper and lower bounds for the function αq(δ), see [12],
including the Plotkin bound

αq(δ) = 0, for δ ≥ q− 1
q

; (5)

the singleton bound, which implies that R = αq(δ) lies below the line R + δ = 1; the Hamming bound

αq(δ) ≤ 1− Hq(
δ

2
), (6)

where Hq(x) is the q-ary Shannon entropy

x logq(q− 1)− x logq(x)− (1− x) logq(1− x)

which is the usual Shannon entropy for q = 2,

H2(x) = −x log2(x)− (1− x) log2(1− x). (7)

One also has a lower bound given by the Gilbert–Varshamov bound

αq(δ) ≥ 1− Hq(δ) (8)



Entropy 2016, 18, 110 7 of 17

The Gilbert–Varshamov curve can be characterized in terms of the behavior of sufficiently random
codes, in the sense of the Shannon Random Code Ensemble, see [26,27], while the asymptotic bound
can be characterized in terms of Kolmogorov complexity, see [16].

2.5. Code Parameters of Language Families

From the coding theory viewpoint, it is natural to ask whether there are codes C, formed out of a
choice of a collection of natural languages and their syntactic parameters, whose code parameters lie
above the asymptotic bound curve R = α2(δ).

For instance, a code C whose code parameters violate the Plotkin bound (5) must be an isolated
code above the asymptotic bound. This means constructing a code C with δ ≥ 1/2, that is, such that
any pair of code words w 6= w′ ∈ C differ by at least half of the parameters. A direct examination of
the list of parameters in Table A of [3] and Figure 7 of [4] shows that it is very difficult to find, within
the same historical linguistic family (e.g., the Indo-European family) pairs of languages L1, L2 with
δH(L1, L2) ≥ 1/2. For example, among the syntactic relative distances listed in Figure 7 of [4] one
finds only the pair (Farsi, Romanian) with a relative distance of 0.5. Other pairs come close to this
value, for example Farsi and French have a relative distance of 0.483, but French and Romanian only
differ by 0.162.

One has better chances of obtaining codes above the asymptotic bound if one compares languages
that are not so closely related at the historical level.

Example 2. Consider the set C = {L1, L2, L3} with languages L1 = Arabic, L2 = Wolof, and
L3 = Basque. We exclude from the list of Table A of [3] all those parameters that are entailed and made
irrelevant by some other parameter in at least one of these three chosen languages. This gives us a list
of 25 remaining parameters, which are those numbered as 1–5, 7, 10, 20–21, 25, 27–29, 31–32, 34, 37, 42,
50–53, 55–57 in [3], and the following three code words:

L1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0
L2 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1
L3 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0

This example, although very simple and quite artificial in the choice of languages, already
suffices to produce a code C that lies above the asymptotic bound. In fact, we have dH(L1, L2) = 16,
dH(L2, L3) = 13 and dH(L1, L3) = 13, so that δ = 0.52. Since R > 0, the code point (δ, R) violates the
Plotkin bound, hence it lies above the asymptotic bound.

It would be more interesting to find a code C consisting of languages belonging to the same
historical-linguistic family (outside of the Indo-European group), that lies above the asymptotic bound.
Such examples would correspond to linguistic families that exhibit a very strong variability of the
syntactic parameters, in a way that is quantifiable through the properties of C as a code.

If one considers the 22 Indo-European languages in [3] with their parameters, one obtains a code
C that is below the Gilbert–Varshamov line, hence below the asymptotic bound by Equation (8). A few
other examples, taken from other non Indo-European historical-linguistic families, computed using
those parameters reported in the SSWL database (for example the set of Malayo–Polynesian languages
currently recorded in SSWL) also give codes whose code parameters lie below the Gilbert–Varshamov
curve. One can conjecture that any code C constructed out of natural languages belonging to the same
historical-linguistic family will be below the asymptotic bound (or perhaps below the GV bound),
which would provide a quantitative bound on the possible spread of syntactic parameters within a
historical family, given the size of the family. Examples like the simple one constructed above, using
languages not belonging to the same historical family show that, to the contrary, across different
historical families one encounters a greater variability of syntactic parameters. To our knowledge, no
systematic study of parameter variability from this coding theory perspective has been implemented
so far.
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Ongoing work of the author is considering a systematic analysis of language families, based on
the SSWL database of syntactic parameters, using this coding theory technique. This will include an
analysis of how much the conclusions about the spreading of syntactic parameters across language
families obtained with this technique depends on data pre-processing like the removal of spoiling
features and what can be retained as an objective property of a set of languages. Moreover, a further
purpose of this ongoing study is to combine the coding theory approach and the measures of complexity
for groups of languages described in the present paper with the spin glass dynamical models of
language change considered in [8], which was aimed at studying dynamically the spreading of
syntactic parameters across groups of languages. The aim is to introduce complexity measures based
on coding theory as part of the energy landscape of the spin glass model, following the suggestion
of [28], on analogies between the roles of complexity in the theory of computation and energy in
physical theories. These results, along with a more detailed analysis of the codes and code parameters
of various language families, will appear in forthcoming work.

2.6. Comparison with Other Bounds

Another possible question one can consider in this setting is how the codes obtained from syntactic
parameters of a given set of natural languages compare with other known families of error correcting
codes and with other bounds in the space of code parameters.

For instance, it is known that an important improvement over the behavior of typical random
codes can be obtained by considering codes determined by algebro-geometric curves defined over
a finite field Fq. Let Nq(X) = #X(Fq) be the number of points over Fq of the curve X, and let
Nq(g) = max Nq(X), with the maximum taken over all genus g curves X over Fq. As shown in
Theorem 2.3.22 of [12], asymptotically the Nq(g) satisfy the Drinfeld–Vladut bound

A(q) := lim sup
q→∞

Nq(g)
g
≤ √q− 1,

and as shown in Section 3.4.1 of [12], this determines an algebro-geometric bound

αq(δ) ≥ RAG(δ) = 1− 1
A(q)

− δ

and the asymptotic Tsfasman–Vladut–Zink bound

αq(δ) ≥ RTVZ(δ) = 1− (
√

q− 1)−1 − δ.

The Tsfasman–Vladut–Zink line RTVZ(δ) = 1− (
√

q− 1)−1 − δ lies entirely below the GV line for
q < 49 (Theorem 3.4.4 of [12]).

A probabilistic argument given in Section 3.4.2 of [12] shows that highly non-random codes
coming from algebraic curves can be asymptotically better than random codes (for sufficiently large q)
as they cluster around the TVZ line. However, for q = 2 or q = 3, as in the case of codes from syntactic
parameters of groups of languages that we consider here, the TVZ line lies below the GV line, hence
any example that lies above the GV bound also behaves better than the the algebro-geometric bound.
Such examples, like the one given above, for the three languages Arabic, Wolof, Basque, are very rare
among codes obtained from syntactic parameters of languages, as they require the choice of a group
of languages that are all very far from each other syntactically, with very large relative Hamming
distances between syntactic parameters.

On the other hand, even for cases of groups of languages for which the resulting code parameters
are below the GV line, it is still possible to get some additional information by comparing the position
of the code parameters to other curves obtained from other bounds, such as the Blokh–Zyablow
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bound or the Katsman–Tsfasman–Vladut bound, see Appendix A.2.1 of [12] for a summary of all these
different bounds.

For example, the first example given above, with the three languages Italian, Spanish, French
and a string of six syntactic parameters, gives a code with code parameters that are below the GV
line, but above both the Blokh–Zyablow and the Katsman–Tsfasman–Vladut, according to the table of
asymptotic bounds given in Appendix A.2.4 of [12].

2.7. Entailment and Dependency of Parameters

In the discussion above we did not incorporate in our model the fact that certain syntactic parameters
can entail other parameters in such a way that one particular value of one of the parameters renders
another parameter irrelevant or not defined, see the discussion in Section 5.3.2 of [3].

One possible way to alter the previous construction to account for these phenomena is to consider
the codes C associated to families of languages as codes in Fn

3 , where n is the number of parameters, as
before, and the set of values is now given by {−1, 0,+1} = F3, with ±1 corresponding to the binary
values of the parameters that are set for a given language and value 0 assigned to those parameters that
are made irrelevant for the given language, by entailment from other parameters, or are not defined.
This allows us to consider the full range of parameters used in [3,4]. We revisit Example 2 considered
above.

Example 3. Let C = {L1, L2, L3} be the code obtained from the languages L1 = Arabic, L2 = Wolof,
and L3 = Basque, as a code in Fn

3 with n = 63, using the entire list of parameters in [3]. The code
parameters (R = 0.0252, δ = 0.4643) of this code no longer violate the Plotkin bound. In fact, the
parameters satisfy R < 1− H3(δ) so the code C now also lies below the GV bound.

Thus, the effect of including the entailed syntactic parameters in the comparison spoils the code
parameters enough that they fall in the area below the GV bound.

Notice that what we propose here is different from the counting used in [3], where the relative
distances δH(L1, L2) are normalized with respect to the number of non-zero parameters (which
therefore varies with the choice of the pair (L1, L2)) rather than the total number n of parameters.
While this has the desired effect of getting rid of insignificant parameters that spoil the code, it has the
undesirable property of producing codes with code words of varying lengths, while counting only
those parameters that have no zero-values over the entire family of languages, as in Example 2 avoids
this problem. Adapting the coding theory results about the asymptotic bound to codes with words of
variable length may be desirable for other reasons as well, but it will require an investigation beyond
the scope of the present paper.

More generally, there are various kinds of dependencies among syntactic parameters. Some sets
of hierarchical relations are discussed, for instance, in [29].

By the spoiling operations C ?i f of codes described above, we know that if some of the syntactic
parameters considered are functions of other parameters, the resulting code parameters of C ?i f are
worse than the parameters of the code C where only independent parameters were considered.

Part of the reason why code parameters of groups of languages in the family analyzed in [3]
end up in the region below the asymptotic and the GV bound may be an artifact of the presence of
dependences among the chosen 63 syntactic parameters. From the coding theory perspective, the
parametric comparison method works best on a smaller set of independent parameters than on a larger
set that includes several dependencies.

Entailment relations between syntactic parameters play an important role in the dynamical models
of language evolutions constructed in [8], based on spin glass models in statistical physics.

Notice that the type of entailment relations we consider here are only of a rather special form,
where a parameter is made undefined by effect of the value of another parameter (hence the use of
the value 0 for the undetermined parameter). There are more general forms of entailment that we do
not consider here, but which will be discussed in more detail in upcoming work. For example, one
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can have a situation with two languages in which a parameter is entailed by the values of two other
parameters, but entailed to two different values in the two languages. In this case, the proposal above
need to be modified, because this entailed parameter should contribute to the Hamming distance
between the two languages. In such a situation the entailed parameter should increase, rather than
spoil, the efficiency of the code. Keeping entailed parameters can be used for error-correcting purposes,
as contributing to error detection. The role of entailment of parameters was considered in [8], in the
use of spin glass models for language change, where the entailment relations appear as couplings at
the vertices (interaction terms) between different Ising/Potts models on the same underlying graph of
language interactions. In upcoming work, now in preparation, we will discuss how treating different
forms of entailment of parameters in the coding theory setting described here related to the treatment
of entailment relations in the spin glass model of [8].

3. Entropy and Complexity for Language Families

3.1. Why the Asymptotic Bound?

In the examples discussed above we compared the position of the code point associated to a given
set of languages to certain curves in the space of code parameters. In particular, we focused on the
asymptotic bound curve and the Gilbert–Varshamov curve. It should be pointed out that these two
curves have a very different nature.

The asymptotic bound is the only curve that separates regions in the space of parameters that
correspond to code points with entirely different behavior. As shown in [13,24], code points in the area
below the asymptotic bound are realized with infinite multiplicity and fill densely the region, while
code points that lie above the asymptotic bound are isolated and realized with finite multiplicity.

The Gilbert–Varshamov curve, by contrast, is related to the statistical behavior of sufficiently
random codes (as we recall in Section 3.2 below), but does not separate two regions with significantly
different behavior in the space of code points. Thus, in this respect, the asymptotic bound is a more
natural curve to consider than the Gilbert–Varshamov curve.

Thus, a heuristic interpretation of the position of codes obtained from groups of languages, with
respect to the asymptotic bound can be understood as follows. The position of a code point above or
below the asymptotic bound reflects a very different behavior of the corresponding code with respect
to how easily “deformable” it is. The sporadic codes that lie above the asymptotic bound are rigid
objects, in contrast to the deformable objects below the asymptotic bound. In terms of properties
of the distribution of syntactic parameters within a set of languages, this different nature of the
associated code can be seen as a measure of the degree of “deformability” of the parameter distribution:
in languages that belong to the same historical linguistic families, the parameter distribution has
evolved historically along with the development of the family’s phylogenetic tree, and one expects
that correspondingly the code parameters will indicate a higher degree of “deformability” of the
corresponding code. If a group of languages is chosen that belong to very different historical families,
on the contrary, one expects that the distribution of syntactic parameters will not necessarily lead any
longer to a code that has the same kind of deformability property: code points above the asymptotic
bound may be realizable by this type of language groups.

There is no similar interpretation for the position of the code point with respect to the
Gilbert–Varshamov line. An interpretation of that position can be sought in terms of Shannon entropy,
as we discuss below. Summarizing: the main conceptual distinction between the Gilbert–Varshamov
line and the asymptotic bound is that the GV line represents only a statistical phenomenon, as
we review below, while the asymptotic bound represents a true separation between two classes of
structurally different codes, in the sense explained above.
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3.2. Entropy and Statistics of the Gilbert–Varshamov Line

The Gilbert–Varshamov line R = 1− Hq(δ) can be characterized statisticallly. Such a statistical
description can be obtained by considering the Shannon Random Code Ensemble (SRCE). These are
random codes obtained by choosing code words as independent random variables with respect to a
uniform Bernoulli measure, so that a code is described by a randomly chosen set of different words of
length n occurring with probability q−n, see [26,27]. There is no a priori reason why the type of codes
we consider here, with code words formed using the syntactic parameters of natural languages, would
be linear. Thus, we consider the general setting of unstructured codes, as in Section V of [27].

The Hamming volume Volq(n, d = nδ), that is, the number of words of length n at Hamming
distance at most d from a given one, can be estimated in terms of the q-ary Shannon entropy

Hq(δ) = δ logq(q− 1)− δ logq δ− (1− δ) logq(1− δ)

in the form

q(Hq(δ)−o(1))n ≤ Volq(n, d = nδ) =
d

∑
j=0

(
n
j

)
(q− 1)j ≤ qHq(δ)n.

The expectation value for the random variable counting the number of unordered pairs of distinct
code words with Hamming distance at most d is then estimated as

E ∼
(

qk

2

)
Volq(n, d)q−n ∼ qn(Hq(δ)−1+2R)+o(n).

This estimate is then used (see [26,27]) to show that the probability to have codes in the SRCE with
Hq(δ) ≥ max{1− 2R, 0} + ε is bounded by q−εn(1+o(1)). By a similar argument (see Section V of
[27] and Proposition 2.2 of [16]) it is shown that the probability that Hq(δ) ≥ 1− R + ε is bounded
by q−nε(1+o(1)).

While, by this type of argument, one can see the Gilbert–Varshamov line as representing the
typical behavior of sufficiently random codes, the asymptotic bound does not have a similar statistical
interpretation. It does have, however, a relation to Kolmogorov complexity, which is relevant to
the point of view discussed in the present paper. The relation between asymptotic bound of error
correcting codes and Kolmogorov complexity was described in [16]. We recall it in the rest of this
section, along with its implications for the linguistic applications we are considering.

3.3. Kolmogorov Complexity

We refer the reader to [30] for an extensive treatment of Kolmogorov complexity and its properties.
We recall here some basic facts we need in the following.

Let TU be a universal Turing machine, that is, a Turing machine that can simulate any other
arbitrary Turing machine, by reading on tape both the input and the description of the Turing machine
it should simulate. A prefix Turing machine is a Turing machine with unidirectional input and output
tapes and bidirectional work tapes. The set of programs P on which a prefix Turing machine halts
forms a prefix code.

Given a string w in an alphabet A, the prefix Kolmogorov complexity is given by minimal length
of a program for which the universal prefix Turing machine TU outputs w,

KTU (w) = min
P:TU (P)=w

`(P).

There is a universality property. Namely, given any other prefix Turing machine T, one has

KT(w) ≤ KTU (w) + cT ,



Entropy 2016, 18, 110 12 of 17

where the shift is by a bounded constant, independent of w. The constant cT is the Kolmogorov
complexity of the program needed to describe T so that TU can simulate it.

A variant of the notion of Kolmogorov complexity described above is given by conditional
Kolmogorov complexity,

KTU (w | `(w)) = min
P:TU (P,`(w))=w

`(P),

where the length `(w) is given, and made available to the machine TU . One then has

K(w | `(w)) ≤ `(w) + c,

because if `(w) is known, then a possible program is just to write out w. This means that then `(w) + c
is just number of bits needed for the transmission of w plus the print instructions.

An upper bound is given by

KTU (w) ≤ KTU (w | `(w)) + 2 log `(w) + c.

If one does not know a priori `(w), one needs to signal the end of the description of w. For this it
suffices to have a “punctuation method", and one can see that this has the effect of adds the term
2 log `(w) in the above estimate. In particular, any program that produces a description of w is an
upper bound on Kolmogorov complexity KTU (w).

One can think of Kolmogorov complexity in terms of data compression: the shortest description of
w is also its most compressed form. Upper bounds for Kolmogorov complexity are therefore provided
easily by data compression algorithms. However, while providing upper bounds for complexity is
straightforward, the situation with lower bounds is entirely different: constructing a lower bound
runs into a fundamental obstacle caused by the fact that the halting problem is unsolvable. As a
consequence, Kolmogorov complexity is not a computable function. Indeed, suppose one would list
programs Pk (with increasing lengths) and run them through the machine TU . If the machine halts on
Pk with output w, then `(Pk) is an approximation to KTU (w). However, there may be an earlier Pj in
the list such that TU has not yet halted on Pj. If TU eventually halts also on Pj and outputs w, then `(Pj)

will be a better approximation to KTU (w). So one would be able to compute KTU (w) if one could tell
exactly on which programs Pk the machine TU halts, but that is indeed the unsolvable halting problem.

Kolmogorov complexity and Shannon entropy are related: one can view Shannon entropy as an
averaged version of Kolmogorov complexity in the following sense (see Section 2.3 of [31]). Suppose
given independent random variables Xk, distributed according to Bernoulli measure P = {pa}a∈A
with pa = P(X = a). The Shannon entropy is given by

S(X) = − ∑
a∈A

P(X = a) logP(X = a).

There exists a c > 0, such that, for all n ∈ N,

S(X) ≤ 1
n ∑

w∈Wn
P(w)K(w | `(w)) ≤ S(X) +

#A log n
n

+
c
n

.

The expectation value

lim
n→∞

E( 1
n
K(X1 · · ·Xn | n)) = S(X)

shows that the average expected Kolmogorov complexity for length n descriptions approaches the
Shannon entropy in the limit when n→ ∞.
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3.4. Kolmogorov Complexity and the Asymptotic Bound

We recall here briefly the result of [16] linking the asymptotic bound of error correcting codes to
Kolmogorov complexity.

As we discussed above, only the asymptotic bound marks a significant change of behavior of
codes across the curve (isolated code points with finite multiplicity versus accumulation points with
infinite multiplicity). In this sense this curve is very different from all the other bounds in the space
of code parameters. However, there is no explicit expression for the curve R = αq(δ) that gives the
asymptotic bound. Indeed, even the question of the computability of the function R = αq(δ) is a priori
unclear. This question was formulated explicitly in [25].

It is proved in [16] that the asymptotic bound R = αq(δ) becomes computable given an oracle
that can list codes by increasing Kolmogorov complexity. Given such an oracle, one can provide an
explicit iterative (algorithmic) procedure for constructing the asymptotic bound. This implies that the
asymptotic bound is “at worst as non-computable as Kolmogorov complexity”.

Consider the set X = Cq of (unstructured) q-ary codes and the set Y ⊂ [0, 1]2 of code points and
the computable function f : X → Y that assigns to a code C ∈ X its code parameters (R(C), δ(C)) ∈ Y.
Let Yf in and Y∞ be, respectively, the subsets of the space of code points that correspond to code points
realized with finite and with infinite multiplicity. The algorithm iteratively produces two sets Am

and Bm that approximate, respectively, Y∞ and Yf in by Yf in = ∪m≥1Bm and Y∞ = ∪m≥1(∩n≥0 Am+n).
The inductive construction starts by choosing an increasing sequence of positive integers Nm and
setting B1 = ∅ and taking A1 to be the set of code points y with ν−1

Y (y) ≤ N1, where νY : N→ Y is a
fixed enumeration of the set of rational points [0, 1]2 ∩Q2 where code points belong.

General estimates on the behavior of (exponential) Kolmogorov complexity under
composition of total recursive functions (see [30], Section VI.9 of [32]) show that, for
a composition F = f0( f1(t1, . . . , tm), · · · , fn(t1, . . . , tm), tm+1, . . . , t`) of recursive functions the
Kolmogorov complexity satisfies

K(F) ≤ c ·
n

∏
i=1
K( fi) ·

(
log

n

∏
i=1
K( fi)

)n−1

,

for a fixed f0 and varying fi, i ≥ 1.
Consider the total recursive function F(x) = ( f (x), n(x)) with

n(x) = #{x′ | ν−1
X (x′) ≤ ν−1

X (x), f (x′) = f (x)}

where νX : N → X is an enumeration of the space of codes. Consider the enumerable sets Xm :=
{x ∈ X | n(x) = m} and Ym := f (Xm) ⊂ Y, with Y∞ = ∩m f (Xm) and Yf in = f (X) r Y∞. For
ϕ : f (X) → X1, defined as f−1 on f (X1) = f (X), applying the composition rule for exponential
Kolmogorov complexity, it is shown in Proposition 3.1 of [16] that, for x ∈ X1 and y = f (x), one has
K(x) = K(ϕ(y)) ≤ cϕ · K(y) ≤ cν−1

Y (y), hence

KTU (x) ≤ c · ν−1
Y (y).

Using the same type of estimate of Kolmogorov complexity for composition of recursive functions,
it is then shown in Proposition 3.2 [16] that, for y ∈ Y∞ and m ≥ 1, and for a unique xm ∈ X, with
y = f (xm), n(xm) = m and c = c( f , u, v, νX , νY) > 0, one finds

KTU (xm) ≤ c · ν−1
Y (y)m log(ν−1

Y (y)m).
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To construct inductively Am+1 and Bm+1, given Am and Bm, one takes Am+1 to consist of the
elements in the list

Lm+1 = {y ∈ f (X) : ν−1
Y (y) ≤ Nm+1, ∃x ∈ X, with y = f (x) and n(x) = m + 1}.

Here one invokes the oracle, which ensures that, if such x exists, then it must be contained in a
finite list of points x ∈ X with bounded complexity

KTU (xm) ≤ c · ν−1
Y (y)m log(ν−1

Y (y)m).

One then takes Bm+1 to consist of the remaining elements in the list Lm+1. We refer the reader
to [16] for a more detailed formulation.

More generally, the argument of [16] recalled above shows that, for a recursive function f : Z+ →
Q, determining which values have infinite multiplicities is computable given an oracle that enumerate
integers in order of Kolmogorov complexity.

As discussed in [16,24], the asymptotic bound can also be seen as the phase transition curve for
a quantum statistical mechanical system constructed out of the space of codes, where the partition
function of the system weights codes according to their Kolmogorov complexity. This is as close to a
“statistical description” of the asymptotic bound that one can achieve.

In comparison with the behavior of random codes (codes whose complexity is comparable to
their size), which concentrate in the region bounded by the Gilbert–Varshamov line, when ordering
codes by complexity, non-random codes of lower complexity populate the region above, with code
points accumulating in the intermediate region bounded by the asymptotic bound. That intermediate
region thus, in a sense, reflects the difference between Shannon entropy and complexity.

3.5. Entropy and Complexity Estimates for Language Families

On the basis of the considerations of the previous sections and of the results of [16,24] recalled
above, we propose a way to assign a quantitative estimate of entropy and complexity to a given set of
natural languages.

As before let C = {L1, . . . , Lk} be a binary (or ternary) code where the code words Li are the
binary (ternary) strings of syntactic parameters of a set of languages Li. We define the entropy of
the language family {L1, . . . , Lk} as the q-ary Shannon entropy Hq(δ(C)), where q is either 2 or 3 for
binary or ternary codes, and δ(C) is the relative minimum distance parameter of the code C. We also
define the entropy gap of the language family {L1, . . . , Lk} as the value of Hq(δ(C))− 1 + R(C), which
measures the distance of the code point (R(C), δ(C)) from the Gilbert–Varshamov line, that is, from
the behavior of a typical random code.

As a source of estimates of complexity of a language family {L1, . . . , Lk} one can consider any
upper bound on Kolmogorov complexity of the code C. A possible approach, which contains more
linguistic input, would be to provide estimates of complexity for each individual language in the family
and then compare these. Estimates of complexity for individual languages have been considered
in the literature, some of them based on the description of languages in terms of their syntactic
parameters. For instance, following [18], for a syntactic parameter Π with possible values v ∈ {±1},
the Kolmogorov complexity of Π set to value v is given by

K(Π = v) = min
τ expressing Π

KTU (τ),

with the minimum taken over the complexities of all the parse trees that express the syntactic parameter
Π and require Π = v to be grammatical in the language. Notice that, in this approach, the syntactic
parameters are not just regarded as binary or ternary values, but one needs to consider actual parse
trees of sentences in the language that express the parameter. Thus, such an approach to complexity
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has the advantage that it is very rich in linguistic information. However, it is at the same time
computationally very difficult to realize.

What we are proposing here is a much simpler way to obtain an estimate of complexity for a
language family {L1, . . . , Lk}, which is not based on estimating complexity of the individual languages
in the family, but which is aimed at detecting how spread out and diversified the syntactic parameters
are across the family, by estimating the position of the code point (R(C), δ(C)) of the associated code
C with respect to the asymptotic bound R = αq(δ). This can be estimated in terms of the distance to
other curves in the space of code parameters (R, δ) that constrain the asymptotic bound from above
and below, such as the Plotkin bound, Hamming bound, and Gilbert–Varshamov bound, as in the
examples discussed in the previous sections.

4. Conclusions

We proposed an approach to estimating entropy and complexity of groups of natural languages
(language families), based on the linguistic parametric comparison method (PCM) of [2,22] via the
mathematical theory of error-correcting codes, by assigning a code to a family of languages to be
analyzed with the PCM, and investigating its position in the space of code parameters, with respect to
the asymptotic bound and the GV bound. We have shown that there are examples of languages not
belonging to the same historical-linguistic family that yield isolated codes above the asymptotic bound,
while languages belonging to the same historical-linguistic family appear to give rise to codes below
the bound, though a more systematic analysis would be needed to map code parameters of different
language groups. We have also shown that, from these coding theory perspective, it is preferable to
exclude from the PCM all those parameters that are entailed and made irrelevant by other parameters,
as those spoil the properties of the resulting code and produce code parameters that are artificially low
with respect to the asymptotic bound and the GV bound.

The approach proposed here, based on the PCM and the theory of error-correcting codes, suggests
a few new linguistic questions that may be suitable for treatment with coding theory methods:

1. Do languages belonging to the same historical-linguistic family always yield codes below the
asymptotic bound or the GV bound? How often does the same happen across different linguistic
families? How much can code parameters be improved by eliminating spoiling effects caused by
dependencies and entailment of syntactic parameters?

2. Codes near the GV curve are typically coming from the Shannon Random Code Ensemble, where
code words and letters of code words behave like independent random variables, see [26,27].
Are there families of languages whose associated codes are located near the GV bound? Do their
syntactic parameters mimic the uniform Poisson distribution of random codes?

3. The asymptotic bound for error-correcting codes was related in [16] to Kolmogorov complexity,
and the measure of complexity for language families that we proposed here is estimated in terms
of the position of the code point with respect to the asymptotic bound. There are other notions of
complexity, most notably the type of organized complexities discussed in [33–35]. Can these be
related to loci in the space of code parameters? What do these represent when applied to codes
obtained from syntactic parameters of a set of natural languages?

4. Is there a more direct linguistic complexity measure associated to a family of natural languages
that would relate to the position of the resulting code above or below the asymptotic bound?

5. Codes and the asymptotic bound in the space of code parameters were recently studied using
methods from quantum statistical mechanics, operator algebra and fractal geometry, [24,36].
Can some of these mathematical methods be employed in the linguistic parametric
comparison method?

The observational results reported here are still preliminary. The following topics should
be consolidated:
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• How much the conclusions obtained for a given family of languages will depend on data
pre-processing (removal of “spoiling” features, etc.)

• To what extent the proposed criterion (above or below the asymptotic bound) is really an objective
property of a set of languages.

This will be addressed more thoroughly in future work. The concern about the effect of data
pre-processing in paticular requires more analysis, that will be developed in further ongoing work, as
outlined at the end of Section 2.5.
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