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Abstract: The space of one-dimensional disordered interacting quantum models displaying a
many-body localization (MBL) transition seems sufficiently rich to produce critical points with
level statistics interpolating continuously between the Poisson statistics of the localized phase and
the Wigner–Dyson statistics of the delocalized phase. In this paper, we consider the strong disorder
limit of the MBL transition, where the level statistics at the MBL critical point is close to the Poisson
statistics. We analyze a one-dimensional quantum spin model, in order to determine the statistical
properties of the rare extensive resonances that are needed to destabilize the MBL phase. At criticality,
we find that the entanglement entropy can grow with an exponent 0 < α < 1 anywhere between
the area law α = 0 and the volume law α = 1, as a function of the resonances properties, while the
entanglement spectrum follows the strong multifractality statistics. In the MBL phase near criticality,
we obtain the simple value ν = 1 for the correlation length exponent. Independently of the strong
disorder limit, we explain why, for the many-body localization transition concerning individual
eigenstates, the correlation length exponent ν is not constrained by the usual Harris inequality
ν ≥ 2/d, so that there is no theoretical inconsistency with the best numerical measure ν = 0.8(3)
obtained by Luitz et al. (2015).

Keywords: many-body-localization; entanglement; random quantum spin chains

1. Introduction

The thermalization of isolated many-body quantum systems is nowadays discussed in terms of
the Eigenstate thermalization hypothesis (E.T.H.) [1–4] (see the review [5] and the references therein):
the idea is that each many-body excited eigenstate |ψ > is “thermal”, i.e., the reduced density matrix
ρA of a sub-region A corresponds the thermal density matrix:

ρ
(β)
A =

e−βHA

TrA(e−βHA)
(1)

where the inverse temperature β selects the correct average energy corresponding to the initial
quantum state |ψ >. Then, the von Neumann entanglement entropy of the region A with the
complementary region:

SA ≡ −TrA(ρA ln ρA) (2)
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coincides with the thermal entropy, which is extensive with respect to the volume Ld
A of the region A:

SA '
ETH
−TrA(ρ

th
A ln ρth

A ) = sth(β)Ld
A (3)

However, the presence of strong disorder can prevent this thermalization and lead to the
phenomenon of many-body localization (MBL) (see the recent reviews [6,7] and the references therein),
where the disorder-averaged entanglement entropy of Equation (2) follows instead the area law [8]:

SA ∝
MBL

Ld−1
A (4)

Therefore, in the MBL phase, excited states are somewhat similar to ground states, with efficient
representation via the Density Matrix Renormalization Group (DMRG) or matrix product states [9–12]
and tensor networks [13]. The Fisher strong disorder real space RG to construct the ground states
of random quantum spin models [14–17] has been extended into the strong disorder RG procedure
for the unitary dynamics [18,19] and into the Real-Space-RG-for-Excited-States (RSRG-X) in order
to construct the whole set of excited eigenstates [20–25]. This construction is actually possible only
because the MBL phase is characterized by an extensive number of emergent localized conserved
operators [26–33], but breaks down as the MBL transition towards delocalization is approached. As a
consequence, the current RG descriptions of the MBL transition are based on different types of RG
rules concerning either the entanglement [34] or the resonances [35].

From the point of view of the entanglement entropy of Equation (2), a natural question is whether,
at criticality, it is possible to obtain an entanglement power law growth:

SA '
criti

Lα
A (5)

intermediate between the area law and the volume law d− 1 ≤ α ≤ d or with possibly some logarithmic
corrections. Let us now concentrate on the one-dimensional case d = 1. If one assumes some standard
finite-size-scaling form in the critical region in terms of the diverging correlation length ξ:

SA '
FSS

Lα
A Φ

(
LA
ξ

)
(6)

one obtains that the matching with the area law of the MBL phase (Equation (4) in d = 1) requires the
divergence as:

SA ∝
critical,loc

ξα (7)

whereas the matching with the volume law of the delocalized phase in d = 1 requires a vanishing
coefficient of the volume law:

SA ∝
critical,deloc

LA

(
1
ξ

)1−α

(8)

As discussed in detail in [36,37], one should then distinguish two possibilities:

(i) If the transition is directly towards the thermal ergodic phase satisfying E.T.H., the continuous

vanishing of the coefficient
(

1
ξ

)1−α
of the volume law of Equation (8) is actually forbidden by the

strong subadditivity property [36], and the only possibility is that the critical point is itself thermal,
i.e., it should satisfy the volume law α = 1 with the finite thermal coefficient given by Equation (3).
This scenario was found numerically [38,39] and via the RG based on entanglement [34] or
resonances [35]. Then, the difference between the critical point and the delocalized phase is
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not visible in the disorder-averaged entanglement entropy, but in its variance [34,38,39] and in the
dynamical properties [34,35].

(ii) If the transition is towards a delocalized non-ergodic phase, i.e., a phase satisfying the volume law,
but not the E.T.H. with the thermal coefficient fixed by Equation (3), then the continuous vanishing
of the coefficient of the volume law of Equation (8) is possible, and the exponent α is not a priori
fixed by the strong-subadditivity property (see [36] for more details). This scenario is suggested
by the point of view that the MBL transition is somewhat similar to an Anderson localization
transition in the Hilbert space of “infinite dimensionality” as a consequence of the exponential
growth of the size of the Hilbert space with the volume [40–46].

In this paper, we consider the strong disorder limit of a one-dimensional quantum spin model in
order to analyze the statistical properties of resonances that are needed to destabilize an MBL eigenstate
satisfying the area law SA = O(1) and to determine the entanglement properties of the obtained critical
state. The paper is organized as follows. In Section 2, we introduce the one-dimensional quantum spin
model and derive the entanglement spectrum in terms of the couplings. In Section 3, the statistical
properties of the entanglement spectrum are studied in terms of Lévy variables. The behavior of the
entanglement entropy is analyzed in Section 4. Finally in Section 5, the multifractal statistics of the
entanglement spectrum is obtained. Our conclusions are summarized in Section 6. Two appendices
contain complementary computations.

2. Singular Perturbation from the Many-Body Localized Phase

Before we introduce the MBL model, we need to explain the motivations coming from the strong
disorder limit of the Anderson localization transition.

2.1. Motivation: Strong Disorder Limit of the Anderson Localization Transition

At Anderson localization transitions, the critical states can be more or less multifractal (see the
review [47] and the references therein):

(i) For the short-range tight-binding model in dimension d, there is a continuous interpolation between
the “weak multifractality” regime in d = 2+ ε and the “strong multifractality” in high dimension d.

(ii) For the tight-binding model with long-range hopping:

V(r) =
V
ra (9)

criticality is known to occur exactly at ac = d, as can be understood from the scaling of the
difference between energy levels:

∆E(Ld) ∝ L−d (10)

Here, there is also a continuous family of critical points as a function of the amplitude V,
which interpolates between the “weak multifractality” regime for large V → +∞ and the “strong
multifractality” regime for small V → 0 [47].

From the point of view of the statistics of the energy levels, the “weak multifractality” of
wavefunctions corresponds to a level statistics close to the Wigner–Dyson statistics of the delocalized
phase, with a strong level repulsion and a vanishing level compressibility χ→ 0, whereas the “strong
multifractality” of wavefunctions corresponds to a level statistics close to the Poisson statistics of the
localized phase, with a very weak level repulsion and a level compressibility close to unity χ ' 1
(see more details in [47]).

The “strong multifractality” regime V → 0 has been analyzed via the Levitov renormalization
method that takes into account the resonances occurring at various scales [48–55] or other methods [56–62].
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In a previous work [63], we have described how these strong multifractality results for small
amplitude V in the long-range hopping model can be reproduced via the first-order perturbation
theory with respect to the completely localized basis, provided one takes into account the broad Lévy
statistics of the terms involved in the perturbative expansion.

2.2. Model and Notations

In the present paper, we wish to adapt the above strategy for the MBL transition as follows:
instead of the standard nearest-neighbor MBL models, we wish to consider a toy model where the
Hamiltonian contains direct couplings between any pair of configurations in the Hilbert space, with
a vanishing small amplitude and with an appropriate decay as a function of the distance in Hilbert
space in order to reach an MBL critical point. This critical point will be then as close as possible to the
many-body localized phase and can be studied via singular perturbation theory around the completely
localized limit.

Therefore, we consider a one-dimensional model involving L quantum spins

H = H0 + V (11)

with the following properties. The Hamiltonian H0 is chosen as the simplest possible many-body
localized Hamiltonian:

H0 = −
L

∑
i=1

hiσ
z
i (12)

where the fields hi are random variables drawn with the Gaussian distribution of variance W2:

GW(h) =
1√

2πW2
e−

h2

2W2 (13)

The 2L eigenstates are simply given by the tensor products:

|ψ(0)
S1,..,SL

> ≡ |S1 > ⊗|S2 > ...⊗ |SL > (14)

with the random energies:

E(0)
S1,..,SL

= −
L

∑
i=1

hiSi (15)

For instance, the ground state corresponds to the choice Si = sgn(hi) and has the extensive energy:

E(0)
GS = −

L

∑
i=1
|hi| (16)

In the following, we focus on the middle of the spectrum, where the density of states follows the
Gaussian of zero mean and of variance (LW2):

ρ0(E) =
1√

2πLW2
e−

E2

2LW2 (17)

Since there are 2L levels, the level spacing near zero energy scales as:

∆E(L) ∝ L
1
2 2−L (18)
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In analogy with Equation (9), we wish to introduce a small perturbation V that produces a direct
coupling to all other (2L − 1) states of the Hilbert space:

V = −
L

∑
k=1

∑
1≤i1<i2..<ik≤L

Ji1,..,ik σx
i1 σx

i2 ...σx
ik (19)

The couplings Ji1,...,ik are assumed to be of small amplitude, but they should be able to produce
resonances at all scales. Their scaling should thus be directly related to the level spacing of
Equation (18), and in particular, they should decay exponentially in space. However, the precise
conditions will be discussed later, and it is clearer to write the perturbation theory in the arbitrary
small couplings Ji1,...,ik , first for the eigenstates, then for the corresponding reduced density matrices
and, finally, for the entanglement spectrum.

2.3. First Order Perturbation Theory for the Eigenstates

At first order in the perturbation V, the eigenvalues of Equation (15) are unchanged:

E(1)
S1,...,SL

= E(0)
S1,...,SL

+ < ψ
(0)
S1,...,SL

|V|ψ(0)
S1,...,SL

>= E(0)
S1,...,SL

(20)

and the eigenstates read:

|ψ(1)
S1,...,SL

> = |ψ(0)
S1,...,SL

> + ∑
{S′i}
|ψ(0)

S′1,...,S′L
>

< ψ
(0)
S′1,...,S′L

|V|ψ(0)
S1,...,SL

>

E(0)
S1,...,SL

− E(0)
S′1,...,S′L

(21)

To simplify the notations, let us now focus on the particular state:

|0 > ≡ |S1 = +1, S2 = +1, ..., SL = +1 > (22)

whose energy:

E(0)
0 = −

L

∑
i=1

hi (23)

is arbitrary in the spectrum of the unperturbed Hamiltonian H0, as a consequence of the random fields
of Equation (13). Let us label the other (2L − 1) states by the 1 ≤ k ≤ L positions (i1, ..., ik) of flipped
spins with respect to this reference configuration:

|i1, ..., ik > ≡ σx
i1 σx

i2 ...σx
ik |0 > (24)

Then, the perturbed eigenstate of Equation (21) reads:

|ψ(1) > = |0 > +
L

∑
k=1

∑
1≤i1<i2...<ik≤L


Ji1,i2,...,ik

2
k

∑
q=1

hiq

 |i1, ..., ik > (25)
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2.4. Reduced Density Matrix of the Region A

To evaluate the entanglement between the two regions A = [1, LA] and B = [LA + 1, L = LA + LB],
it is convenient to introduce the following basis in each region with the same notations above:

|0 >A ≡ |S1 = +1, S2 = +1, ..., SLA = +1 >

|i1, ..., ik >A ≡ σx
i1 σx

i2 ...σx
ik |0 >A for 1 ≤ i1 < i2... < ik ≤ LA (26)

and:

|0 >B ≡ |SLA+1 = +1, SL+2 = +1, ..., SL = +1 >

|j1, ..., jk >B ≡ σx
j1 σx

j2 ...σx
jk |0 >B for LA + 1 ≤ j1 < j2... < jk ≤ LA + LB (27)

Then, the eigenstate of Equation (25) can be decomposed into:

|ψ(1) >= |0 >A ⊗|0 >B

+
LA

∑
k=1

∑
1≤i1<i2 ...<ik≤LA

Ji1 ,i2 ,...,ik

2 ∑k
q=1 hiq

|i1, ..., ik >A ⊗|0 >B

+
LB

∑
k=1

∑
LA+1≤j1<j2 ...<kk≤LA+LB

Ji1 ,i2 ,...,ik

2 ∑k
q=1 hiq

|0 >A ⊗|i1, ..., ik >B

+
LA

∑
kA=1

∑
1≤i1<i2 ...<ikA

≤LA

LB

∑
kB=1

∑
LA+1≤j1<j2 ...<jkB

≤LA+LB

Ji1 ,...,ikA
,j1 ,...,jkB

2 ∑kA
q=1 hiq + 2 ∑kB

p=1 hjp

|i1, ..., ikA >A ⊗|j1, ..., jkB >B (28)

It is thus convenient to use instead the following perturbed basis for the region A:

|φA
0 > ≡ |0 >A +

LA

∑
k=1

∑
1≤i1<i2...<ik≤LA

Ji1,i2,...,ik

2 ∑k
q=1 hiq

|i1, ..., ik >A

|φA
i1,...,ik > ≡ |i1, ..., ik >A −

Ji1,i2,...,ik

2 ∑k
q=1 hiq

|0 >A for 1 ≤ i1 < i2... < ik ≤ LA (29)

and the similar basis for the region B:

|φB
0 > ≡ |0 >B +

LB

∑
k=1

∑
LA+1≤j1<j2...<jk≤LA+LB

Jj1,j2,...,jk

2 ∑k
q=1 hjq

|j1, ..., jk >B

|φB
j1,...,jk > ≡ |j1, ..., jk >B −

Jj1,j2,...,jk

2 ∑k
q=1 hjq

|0 >B for LA + 1 ≤ j1 < j2... < jk ≤ LA + LB (30)

Then, Equation (28) can be rewritten at first order in the perturbation as:

|ψ(1) >= |φA
0 > ⊗|φB

0 >

+
LA

∑
kA=1

∑
1≤i1<i2...<ikA≤LA

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB≤LA+LB

Ji1,...,ikA ,j1,...jkB

2 ∑kA
q=1 hiq + 2 ∑kB

p=1 hjp

|φA
i1,...,ikA

> ⊗|φB
j1,...,jkB

> (31)
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The corresponding density matrix:

ρ ≡ |ψ(1) >< ψ(1)|
< ψ(1)|ψ(1) >

=
1

1 + Σ1
(|φA

0 > ⊗|φB
0 >

+
LA

∑
kA=1

∑
1≤i1<i2...<ikA≤LA

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB≤LA+LB

Ji1,...,ikA ,j1,...,jkB

2 ∑kA
q=1 hiq + 2 ∑kB

p=1 hjp

|φA
i1,...,ikA

> ⊗|φB
j1,...,jkB

>)

(< φA
0 |⊗ < φB

0 |

+
LA

∑
k′A=1

∑
1≤i′1<i′2..<i′

k′A
≤LA

LB

∑
k′B=1

∑
LA+1≤j′1<j′2..<j′

k′B
≤LA+LB

Ji′1,..,i′kA
,j′1,...j′

k′B

2 ∑
k′A
q=1 hi′q + 2 ∑

k′B
p=1 hj′p

< φA
i′1,..,i′

k′A

|⊗ < φB
j′1,..,j′

k′B

|)(32)

with:

Σ1 ≡
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB

≤LA+LB

 Ji1,...,ikA
,j1,...jkB

2 ∑kA
q=1 hiq + 2 ∑kB

p=1 hjp

2

(33)

leads to the reduced density matrix for the region A:

ρA ≡ TrB(ρ) =< φB
0 |ρ|φB

0 > +
LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB≤LA+LB

< φB
j1,...,jkB

|ρ|φB
j1,...,jkB

>

=
1

1 + Σ1
|φA

0 >< φA
0 |

+
LA

∑
kA=1

∑
1≤i1<i2...<ikA≤LA

LA

∑
k′A=1

∑
1≤i′1<i′2...<i′kA

≤LA

R(i1, ..., ikA ; i′1, ..., i′k′A
)

1 + Σ1
|φA

i1,...,ikA
>< φA

i′1,...,i′
k′A

| (34)

with:

R(i1, ..., ikA ; i′1, ..., i′k′A
) ≡

LB

∑
kB=1

∑
LA+1≤j1<j2 ...<jkB

≤LA+LB

 Ji1 ,...,ikA
,j1 ,...,jkB

2 ∑kA
q=1 hiq + 2 ∑kB

p=1 hjp


 Ji′1 ,...,i′kA

,j1 ,...,jkB

2 ∑
k′A
q=1 hi′q + 2 ∑kB

p=1 hjp

 (35)

In particular, the diagonal elements involve the positive coefficients:

Di1,...,ikA
≡ R(i1, ..., ikA ; i1, ..., ikA) ≡

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB

≤LA+LB

 Ji1,...,ikA
,j1,...,jkB

2 ∑kA
q=1 hiq + 2 ∑kB

p=1 hjp

2

(36)

and their sum corresponds to Equation (33):

Σ1 ≡
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

Di1,...,ikA
(37)

2.5. Entanglement Spectrum

As we will see in the next section, the diagonal coefficients Di1,...,ikA
of Equation (36) and their

sum Σ1 of Equation (37) are very broadly distributed with a Lévy law of index µ = 1/2. The
physical meaning is that they are dominated by the few biggest terms corresponding to the smallest

denominators 1/
(

2 ∑kA
q=1 hiq + 2 ∑kB

p=1 hjp

)2
that can be interpreted as very rare resonances involving

spins of both regions A and B. The technical consequence is that the diagonal coefficients Di1,...,ikA
of Equation (36) and their sum Σ1 give contributions of first order O(|J|) in the couplings. On the
contrary, the off-diagonal coefficients of Equation (35) involving two different denominators have a
finite averaged value of second order O(J2) (see Appendix A).
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In conclusion, at first order in the couplings, the off-diagonal coefficients of Equation (35) do not
contribute, so that the diagonal elements directly represent the entanglement spectrum, i.e., the 2LA

eigenvalues of the reduced density matrix read:

p0 =
1

1 + Σ1

pi1,...,ikA
=

Di1,...,ikA

1 + Σ1
for 1 ≤ i1 < i2... < ikA ≤ LA (38)

To characterize the statistical properties of these weights, it is convenient to introduce:

Yq(LA) = TrA(ρ
q
A) = pq

0 +
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

pq
i1,...,ikA

=
1 + Σq

(1 + Σ1)q (39)

where the sum:

Σq ≡
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

Dq
i1,...,ikA

(40)

generalizes Equation (37).
Then, the Rényi entanglement entropy of index q:

Sq(LA) ≡
ln Yq(LA)

1− q
=

ln(1 + Σq)− q ln(1 + Σ1)

1− q
(41)

allows one to recover the usual entanglement entropy in the limit q→ 1:

S1(LA) ≡ −TrA(ρA ln ρA) = −p0 ln p0 −
L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
pi1,...,ikA

ln pi1,...,ikA
(42)

In particular, to obtain the disorder-averaged value of the Rényi entropy of Equation (41):

Sq =
ln(1 + Σq)− qln(1 + Σ1)

1− q
(43)

one only needs to study separately the probability distributions of Σq and Σ1, as done in the next
section. Other statistical properties involving correlations between Σq and Σ1 can also be computed (see,
for instance, Appendix B for the disorder-averaged values Yq and for the variance of the entanglement
entropy S1).

3. Statistical Properties of the Entanglement Spectrum

In this section, we analyze the statistical properties of the entanglement spectrum obtained in
Equation (38).
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3.1. Probability Distribution of the Variable Di1,...,ikA

Let us first consider the probability distribution Pi1,...,ikA
(Di1,...,ikA

) of the positive random variable
Di1,...,ikA

of Equation (36) by evaluating its Laplace transform at lowest order in the couplings:

e
−tDi1,...,ikA =

∫ +∞

0
dDi1,...,ikA

Pi1,...,ikA
(Di1,...,ikA

)e
−tDi1,...,ikA

= e
−t ∑

LB
kB=1 ∑LA+1≤j1<j2...<jkB

≤LA+LB

 Ji1,...,ikA
,j1,...,jkB

2 ∑
kA
q=1 hiq+2 ∑

kB
p=1 hjp

2

=
LB

∏
kB=1

∏
LA+1≤j1<j2...<jkB

≤LA+LB

1−

1− e
−t

 Ji1,...,ikA
,j1,...,jkB

2 ∑
kA
q=1 hiq+2 ∑

kB
p=1 hjp

2


= 1−
LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB

≤LA+LB

1− e
−t

 Ji1,...,ikA
,j1,...,jkB

2 ∑
kA
q=1 hiq+2 ∑

kB
p=1 hjp

2+ o(J) (44)

The variable:

E = 2
kA

∑
q=1

hiq + 2
kB

∑
p=1

hjp (45)

is a sum of (kA + kB) Gaussian variables (Equation (13)) and is thus distributed with the Gaussian of
zero mean and of variance (4W2(kA + kB)):

G4W2(kA+kB)
(E) =

1
2
√

2(kA + kB)πW2
e
− E2

8(kA+kB)W2 (46)

Therefore, using the change of variable x = ti1,...,ikA

J2
i1,...,jkB

E2 , one obtains:

1− e
−t

 Ji1,...,ikA
,j1,...,jkB

2 ∑
kA
q=1 hiq+2 ∑

kB
p=1 hjp

2

=
∫ +∞

0

dE√
2(kA + kB)πW2

e
− E2

8(kA+kB)W2

1− e
−t

(
Ji1,...,ikA

,j1,...,jkB
E

)2
= |Ji1,...,ikA

,j1,...,jkB
| t

1
2

1
2
√

2(kA + kB)πW2

∫ +∞

0

dx

x
3
2

e
−

J2
i1,i2,...,ik

tA

8(kA+kB)W2x (1− e−x)

= |Ji1,...,ikA
,j1,...,jkB

| t
1
2

1
2
√

2(kA + kB)πW2

∫ +∞

0

dx

x
3
2

(
1− e−x)+ o(Ji1,...,ikA

,j1,...,jkB
)

= |Ji1,...,ikA
,j1,...,jkB

| t
1
2

1√
2(kA + kB)W2

+ o(Ji1,...,ikA
,j1,...,jkB

) (47)
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Therefore, Equation (44) becomes at first order in the couplings Ji1,...,ikA
,j1,...,jkB

:

e
−ti1,...,ikA

Di1,...,ikA

= 1− t
1
2

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB

≤LA+LB

|Ji1,...,ikA
,j1,...,jkB

| 1√
2(kA + kB)W2

+ o(J)

= e
−t

1
2 ∑

LB
kB=1 ∑LA+1≤j1<j2...<jkB

≤LA+LB
|Ji1,...,ikA

,j1,...,jkB
| 1√

2(kA+kB)W2
+o(J)

(48)

It is thus convenient to introduce the notation:

Ωi1,...,ikA
≡

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB

≤LA+LB

|Ji1,...,ikA
,j1,...,jkB

| 1√
2(kA + kB)W2

(49)

and the Lévy positive stable law of index µ = 1/2 and of parameter Ω:

L 1
2 ;Ω(D) ≡ Ω

2
√

πD
3
2

e−
Ω2
4D (50)

with its Laplace transform:

L̂ 1
2 ,Ω(t) ≡

∫ +∞

0
dDL 1

2 ;Ω(D)e−tD = e−Ωt
1
2 (51)

The parameter Ω directly measures the weight of the singularity in t
1
2 of the Laplace

transform, and, thus, also the weight of the power-law behavior at large D of the distribution of
Equation (50). Lévy variables [64] actually appear very often in the studies of disordered systems (see,
for instance, [65–68] for more details on their properties).

Then, Equation (48) means that at lowest order in the couplings J, the variable Di1,...,ikA
is

distributed with the Lévy law L 1
2 ;Ωi1,...,ikA

:

Pi1,...,ikA
(Di1,...,ikA

) = L 1
2 ;Ωi1,...,ikA

(Di1,...,ikA
) (52)

3.2. Probability Distribution of Σ1

The probability distribution P1(Σ1) of the positive random variable Σ1 of Equation (37) can be
evaluated similarly via its Laplace transform:

e−tΣ1 ≡
∫ +∞

0
dΣ1P1(Σ1)e−tΣ1

= e
−t ∑

LA
kA=1 ∑1≤i1<i2...<ikA

≤LA ∑
LB
kB=1 ∑LA+1≤j1<j2...<jkB

≤LA+LB

(
Ji1,...,ikA

,j1,...,jkB

2 ∑
kA
q=1 hiq +2 ∑

kB
p=1 hjp

)2

=
LA

∏
kA=1

∏
1≤i1<i2...<ikA≤LA

LB

∏
kB=1

∏
LA+1≤j1<j2...<jkB≤LA+LB

1−

1− e
−t

(
Ji1,...,ikA

,j1,...,jkB

2 ∑
kA
q=1 hiq +2 ∑

kB
p=1 hjp

)2


= 1−
LA

∑
kA=1

∑
1≤i1<i2...<ikA≤LA

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB≤LA+LB

1− e
−t

(
Ji1,...,ikA

,j1,...,jkB

2 ∑
kA
q=1 hiq +2 ∑

kB
p=1 hjp

)2+ o(J) (53)
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Equation (47) then yields that:

e−tΣ1 = 1− t
1
2

LA

∑
kA=1

∑
1≤i1<i2...<ikA≤LA

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB≤LA+LB

|Ji1,...,ikA ,j1,...,jkB
| 1√

2(kA + kB)W2
+ o(J)

= e−Ω1t
1
2 +o(J) (54)

with:

Ω1 ≡
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

Ωi1,...,ikA

=
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB

≤LA+LB

|Ji1,...,ikA
,j1,...,jkB

| 1√
2(kA + kB)W2

(55)

Equation (54) means that at lowest order in the couplings J, the variable Σ1 is distributed with the
Lévy law L 1

2 ;Ω1
(Equations (50) and (51)) of index µ = 1/2 and of parameter Ω1:

P1(Σ1) = L 1
2 ;Ω1

(Σ1) (56)

In particular, using the identity:

ln(1 + Σ1) =
∫ +∞

0

dt
t

e−t
(

1− e−tΣ1
)

(57)

one obtains:

ln(1 + Σ1) =
∫ +∞

0
dΣ1P1(Σ1) ln(1 + Σ1)

=
∫ +∞

0

dt
t

e−t
(

1− e−tΣ1

)
=

∫ +∞

0

dt
t

e−tΩ1t
1
2 + o(J)

= Ω1
√

π + o(J) (58)

3.3. Probability Distribution of the Weight p0

The probability distribution P(p0) of the weight 0 ≤ p0 ≤ 1 of the unperturbed state
(Equation (38)):

p0 =
1

1 + Σ1
(59)

can be obtained directly from Equation (56) by the change of variable:

P(p0) =
1
p2

0
L 1

2 ;Ω1

(
1
p0
− 1
)
=

Ω1 p
1
2
0

2
√

π(1− p0)
3
2

e
− Ω2

1 p0
4(1−p0) (60)

In particular, its averaged value:

∫ 1

0
dp0 p0P(p0) = 1−Ω1e

Ω2
1

4

∫ +∞

Ω1
2

dte−t2
(61)
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is close to unity for small Ω1:

∫ 1

0
dp0 p0P(p0) = 1−

√
π

2
Ω1 + O(Ω2

1) (62)

3.4. Probability Distribution of Σq

Let us now consider the variable Σq of Equation (40).
Here, one has to distinguish two regions for the index q:

(i) For 0 < q < 1
2 , the moment of order q of Di1,...,ikA

distributed with the Lévy law of Equation (50) is
finite and reads:

Dq
i1,...,ikA

=
∫ +∞

0
dD

Ωi1,...,ikA

2
√

π
Dq− 3

2 e−
Ω2

i1,...,ikA
4D =

Ω2q
i1,...,ikA

Γ
(

1
2 − q

)
4q√π

(63)

As a consequence, the average of Σq is also finite and given by:

Σq =
L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Dq

i1,...,ikA
=

Γ
(

1
2 − q

)
4q√π

L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Ω2q

i1,...,ikA
(64)

Therefore, at lowest order in the couplings, one has:

ln(1 + Σq) ' Σq =
Γ
(

1
2 − q

)
4q√π

L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Ω2q

i1,...,ikA
+ o(|J|2q) (65)

(ii) For q > 1
2 , the average of Σq is infinite, and one needs to estimate the Laplace transform of its

probability distribution Pq(Σq) as above:

e−tΣq ≡
∫ +∞

0
dΣqPq(Σq)e−tΣq =

L

∏
kA=1

∏
1≤i1<i2...<ikA

≤L

[
e
−tDq

i1,...,ikA

]

=
L

∏
kA=1

∏
1≤i1<i2...<ikA

≤L
1−

(
1− e

−tDq
i1,...,ikA

)

= 1−
L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L

(
1− e

−tDq
i1,...,ikA

)
+ o(J) (66)

Using Equation (50) and the change of variable x = tDq, one obtains:

(1− e−tDq
) =

∫ +∞

0
dD

Ω

2
√

πD
3
2

e−
Ω2
4D

(
1− e−tDq

)
=

Ω
2q
√

π
t

1
2q

∫ +∞

0

dx

x1+ 1
2q
(1− e−x) + o(J)

=
Ω
√

π

sin
(

π
2q

)
Γ
(

1
2q

) t
1
2q + o(J) (67)
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Therefore, Equation (66) becomes:

e−tΣq = 1−
√

π

sin
(

π
2q

)
Γ
(

1
2q

) t
1
2q

L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Ωi1,...,ikA

+ o(J)

= e
−

√
πΩ1

sin
(

π
2q

)
Γ
(

1
2q

) t
1
2q

+ o(J) (68)

It is thus convenient to introduce the notation:

Ωq ≡
√

πΩ1

sin
(

π
2q

)
Γ
(

1
2q

) (69)

that generalizes Equation (55) and the Lévy positive stable law Lµ;Ω of index 0 < µ < 1 and of
parameter Ω defined by its Laplace transform:

L̂µ,Ω(t) ≡
∫ +∞

0
dDLµ;Ω(D)e−tD = e−Ωtµ

(70)

Equation (68) means that for q > 1
2 , the variable Σq is distributed with the Lévy stable law Lµq ;Ωq

of index µq = 1
2q and parameter Ωq:

Pq(Σq) = L 1
2q ;Ωq

(Σq) (71)

That generalizes Equation (56). In particular, using the identity of Equation (58) for Σq,
one obtains:

ln(1 + Σq) =
∫ +∞

0
dΣqPq(Σq) ln(1 + Σq)

=
∫ +∞

0

dt
t

e−t
(

1− e−tΣq
)

=
∫ +∞

0

dt
t

e−tΩqt
1
2q + o(J)

= ΩqΓ
(

1
2q

)
+ o(J)

= Ω1

√
π

sin
(

π
2q

) + o(J) (72)

3.5. Disorder-Averaged Values of the Rényi Entropies

The disorder-averaged entanglement entropy of Equation (43) can be obtained from the
previous results:

(i) In the region 0 < q < 1/2, the contribution of Equation (65) of order |J|2q dominates over the
contribution of Equation (58), so that the leading order reads:

Sq =
Γ
(

1
2 − q

)
(1− q)4q√π

L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Ω2q

i1,...,ikA
+ o(|J|2q) (73)
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(ii) In the region q > 1
2 , one obtains using Equations (58) and (72):

Sq =
Ω1
√

π

1− q

 1

sin
(

π
2q

) − q

+ o(J) (74)

and in particular, in the limit q→ 1:

S1 = Ω1
√

π + o(J) (75)

In conclusion, the parameter Ω1 of Equation (55) directly represents the scale of the
disorder-averaged entanglement entropy of Equation (75). As shown in Equation (B15) of Appendix B,
the scale Ω1 also governs the variance of the entanglement entropy S1.

4. Scaling of the Entanglement Entropy with the Length LA

In this section, we study how the scale Ω1 (Equation (55)) of the disorder-averaged entanglement
entropy of Equation (75) depends on the length LA of the region A. Here, we need to make more
precise assumptions on the couplings Ji1,...,ik .

4.1. Statistical Properties of the Couplings Ji1,...,ik

As explained in Section 2.2, within the toy model of Equation (11) that we consider for the MBL
case, the couplings Ji1,...,ik involved in the perturbation of Equation (19) are the analog of the long-range
hoppings of Equation (9) for the Anderson model. In the Anderson case, the hopping between
two points depends only on the distance, but in the MBL case, we have to choose the properties for
all of the couplings Ji1,...,ik . To simplify the discussion, let us make the simplest possible choice and
assume that the couplings Ji1,...,ik are independent Gaussian random variables:

P(Ji1,...,ik ) =
1√

2π∆2(ik − i1)
e
−

J2
i1,...,ik

2∆2(ik−i1) (76)

of zero mean:

Ji1,...,ik = 0 (77)

and of variance depending only on the spatial range r ≡ ik − i1, i.e., on the distance between the two
extremal spins:

J2
i1,...,ik

= ∆2(r ≡ ik − i1) (78)

In addition, we consider the following size dependence with three parameters:

∆(r) =
v
ra 2−br (79)

where b governs the exponential decay, a governs the power law prefactor and v is the small amplitude
of the perturbation theory described in the previous sections. From the exponential decay of the level
spacing of Equation (18), one may already guess that the critical value for the exponential decay will
be bc = 1, as found indeed below.
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Since the perturbation V of Equation (11) is a part of the full Hamiltonian of Equation (19), we
wish to impose that it remains extensive with respect to the number of spins. This means that the local
field in the x direction on a given spin, for instance the first one:

Bx
1 = −

L

∑
k=2

∑
1<i2...<ik≤L

J1,...,ik Sx
i2 ...Sx

ik (80)

should remain a finite random variable as L→ +∞. Its variance may be evaluated as:

(Bx
1 )

2 '
L

∑
k=2

∑
1<i2...<ik≤L

J2
1,...,ik

=
L

∑
k=2

∑
1<i2...<ik≤L

∆2(ik − 1) (81)

When ik = 1+ r is fixed, the number of ways to place the remaining q = (k− 2) points (i2, ..., ik−1)

into the (ik − 2) = r− 1 possible positions (i1 + 1, ..., ik − 1) is given by the binomial coefficient (r−1
q ),

so that Equation (80) yields:

(Bx
1 )

2 ' ∑
r=1

∆2(r)
r−1

∑
q=0

(
r− 1

q

)
= ∑

r=1
∆2(r)2r−1 (82)

Therefore, the extensivity of the perturbation requires the convergence of the sum:

+∞

∑
r=1

∆2(r)2r < +∞ (83)

With the form of Equation (79), the convergence of the sum:

+∞

∑
r=1

∆2(r)2r = v2
+∞

∑
r=1

1
r2a 2(1−2b)r (84)

requires either (i) b > 1/2 or (ii) b = 1/2 with a > 1/2.

4.2. Study of the Scale Ω1

The average value of the absolute value of the coupling distributed with Equation (76):

|Ji1,...,ik | =
∫ +∞

0
dJ J

2√
2π∆2(ik − i1)

e
− J2

2∆2(ik−i1) =

√
2
π

∆(ik − i1) (85)

is also governed by the scale ∆(r) as a function of the spatial range r.
As a consequence, the scale Ω1 of Equation (55) can be evaluated as above, i.e., once the extreme

points i1 and jkB have been chosen, one has binomial coefficients to take into account the number of
ways to place the (kA− 1) points (i2, ..., ikA) in the (LA− i1) remaining possible positions (i1 + 1, ..., LA),
and to place the (kB − 1) points (j1, ..., jkB−1) in the (jkB − LA − 1) remaining possible positions
(LA + 1, ..., jkB − 1):

Ω1 =
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

LB

∑
kB=1

∑
LA+1≤j1<j2...<jkB

≤LA+LB

|Ji1,...,ikA
,j1,...,jkB

| 1√
2(kA + kB)W2

=

√
2

πW

LA

∑
i1=1

LA+LB

∑
jkB

=LA+1
∆(jkB − i1)

LA−i1+1

∑
kA=1

jkB
−LA

∑
kB=1

1√
(kA + kB)

(
LA − i1
kA − 1

)(
jkB − LA − 1

kB − 1

)

=

√
2

πW

LA−1

∑
n=0

LB−1

∑
m=0

∆(1 + n + m)
n+1

∑
kA=1

m+1

∑
kB=1

1√
(kA + kB)

(
n

kA − 1

)(
m

kB − 1

)
(86)
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where n = LA − i1 and m = jkB − LA − 1 represent the distances with respect to the frontier between
the regions A and B.

Of course, the scale Ω1 has always a finite contribution O(1) coming from the finite distances
(n, m) of order O(1) with respect to the frontier. Now, we wish to evaluate the contribution of large
distances (n, m). Using the identity:

1√
kA + kB

=
1√
π

∫ +∞

0
duu−

1
2 e−(kA+kB)u (87)

one obtains:

n+1

∑
kA=1

m+1

∑
kB=1

1√
(kA + kB)

(
n

kA − 1

)(
m

kB − 1

)

=
1√
π

∫ +∞

0
duu−

1
2

[
n+1

∑
kA=1

(
n

kA − 1

)
e−kAu

] [
m+1

∑
kB=1

(
m

kB − 1

)
e−kBu

]

=
1√
π

∫ +∞

0
duu−

1
2 e−2u [1 + e−u]1+n+m

=
1√
π

∫ +∞

0
duu−

1
2 e−2u [2− (1− e−u)

]1+n+m

= 21+n+m 1√
π

∫ +∞

0
duu−

1
2 e−2u

[
1− (1− e−u)

2

]1+n+m

'
n+m→+∞

21+n+m
√

2√
n + m

(88)

As could have been anticipated, this leading behavior means that the sum is dominated by
the regions kA ∼ n

2 and kB ∼ m
2 that maximize the binomial coefficients, i.e., the dominant

resonances on the large distance (n + m) are extensive resonances involving a number of spins
of order kA + kB ' n+m

2 .
As a consequence, after the multiplication by ∆(1 + n + m) with Equation (79), one obtains the

asymptotic behavior:

∆(1 + n + m)
n+1

∑
kA=1

m+1

∑
kB=1

1√
(kA + kB)

(
n

kA − 1

)(
m

kB − 1

)
∝

n+m→+∞

v

(n + m)a+ 1
2

2−(1−b)(n+m) (89)

that we need to integrate over n and m to obtain the scale Ω1 of Equation (86).
Therefore, we arrive at the following conclusions:

(i) for b > 1, there is an exponential convergence 2−(1−b)(n+m) at a large distance, so the many-body
localized phase is stable and displays a finite entanglement entropy.

(ii) for bc = 1, there is no exponential factor anymore in Equation (89), but only the power law 1

(n+m)a+ 1
2

.

We wish that the integral over m converges in order to have a well-defined thermodynamic limit
LB → +∞ for the region B: this is the case for a > 1/2. Then, for 1/2 < a < 3

2 , the scale Ω1 is
dominated by the contribution of the long distance:

Ω1

(
bc = 1; 1/2 < a <

3
2

)
∝ v

LA

∑
n=1

1(
a− 1

2

)
na− 1

2

∝
v( 3

2 − a
) (

a− 1
2

) L
3
2−a
A (90)
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4.3. Entanglement Growth at Criticality

In summary, for the value bc = 1 in Equation (79) for the coupling that matches exactly the
exponential decay of the level spacing of Equation (18), we have obtained that, as the parameter a of
the power law of Equation (79) varies in the interval 1/2 < a < 3

2 , it is possible to construct a critical
state with an entanglement growth governed by the exponent:

0 < α =
3
2
− a < 1 (91)

anywhere between the area law α = 0 and the volume law α = 1.
Of course within the present approach, we have to stop at the critical point, and we have no access

to the delocalized phase; but as recalled in the Introduction near Equation (8), the values 0 < α < 1 are
only possible if the transition is towards a delocalized non-ergodic phase [36].

4.4. Correlation Length Exponent ν of the MBL Phase

In the MBL phase b < bc = 1, the exponential convergence 2−(1−b)(n+m) in Equation (89)
corresponds to the correlation length:

ξ =
1

b− 1
(92)

that diverges near the transition b→ bc = 1 with the simple correlation length exponent:

ν = 1 (93)

This value simply reflects the crossing of the exponential decay of the level spacing of Equation (18)
and of the exponential decay of the couplings of Equation (79). It coincides with the exact correlation
length exponent νloc = 1 for the Anderson localization on the Bethe lattice [69–71], where the Hilbert
space also grows exponentially with the distance.

Since this value ν = 1 does not satisfy the usual Harris [72] or Chayes–Chayes–Fisher–Spencer [73] inequality:

ν ≥ 2
d

(94)

that has been rediscussed recently for the specific case of the MBL transition [37], it is important
to understand why. The Harris inequality of Equation (94) is based on the fact that in a volume Ld

of a disordered sample, there are of order Ld random variables defining the disorder, so that there
will be fluctuations of order L

d
2 as a consequence of the central limit theorem. In the present model,

for instance, the system of L spins contains L random fields hi (Equation (13)). However, the MBL
transition is very different from other types of phase transitions, because it is a transition concerning an
individual arbitrary eigenstate in the middle of the spectrum, in our case the state |0 > of Equation (22).
Then, the full enumeration of possible resonances involves the other (2L − 1) states of energies:

E(0)
S1,...,SL

= −
L

∑
i=1

hiSi (95)

Therefore, in some sense, the eigenstate |0 > does not see only the L random variables hi, but
it sees effectively the (2L − 1) other random energies that are build from the L variables hi by the
various choices of the spin values Si, as can be seen also in the exponentially small level spacing of
Equation (18).

As a consequence, independently of the strong disorder limit considered in the present paper, we
believe that the correlation length exponent ν has no reason to satisfy the inequality of Equation (94), so
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that there is no theoretical inconsistency in the numerical works where the correlation length exponent
ν is found to violate the Harris inequality [38,39].

5. Multifractal Statistics of the Entanglement Spectrum

As in Anderson transitions where the critical point is characterized by multifractal eigenfunctions [47],
one expects that the MBL transition is related to some multifractal properties [46,74–79]. Besides the
entanglement entropy described above, it is thus interesting to characterize the statistics of the whole
entanglement spectrum of Equation (38), both in the many-body localized phase b > 1 and at the
critical point bc = 1.

5.1. Multifractal Exponents τ(q)

In the region 0 < q < 1/2, the disorder-averaged value of the Rényi entropy of Equation (73) can
be evaluated by generalizing the previous calculations of Section 4.2 to obtain:

Sq =
Γ
(

1
2 − q

)
(1− q)4q√π

L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Ω2q

i1,...,ikA
+ o(|J|2q)

∝
LA−1

∑
n=0

LB−1

∑
m=0

∆2q(1 + n + m)
2n+m
√

n + m

∝
LA−1

∑
n=0

LB−1

∑
m=0

[
v

(n + m)a 2−b(n+m)

]2q 2n+m
√

n + m

∝ v2q
LA−1

∑
n=0

LB−1

∑
m=0

2(n+m)(1−2qb)

(n + m)(
1
2+2qa)

(96)

For the bipartite case LA = LB = L, this yields the following power laws in terms of the size
M = 22L of the Hilbert space for the generalized moments:

Ytyp
q (L) = e(1−q)Sq ∝ v2qM−τb(q) (97)

with the multifractal exponents:

τb(q) = 2qb− 1 for q ≤ 1
2b

τb(q) = 0 for
1
2b
≤ q ≤ 1

2
(98)

In the region q > 1
2 , Equation (74) yields:

τb(q) = 0 for q ≥ 1
2

(99)

in continuity with the result of Equation (98).

5.2. Multifractal Spectrum f criti(α) at the Critical Point bc = 1

At the critical point bc = 1, the multifractal exponents of Equations (98) and (99):

τcriti(q) = 2q− 1 for q ≤ 1
2

τcriti(q) = 0 for
1
2
≤ q (100)
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correspond to the Legendre transform of the multifractal spectrum:

f criti(α) =
α

2
for 0 ≤ α ≤ 2 (101)

that is well known as the “strong-multifractality” spectrum in the context of Anderson localization
transition in the limit of infinite dimension d→ +∞ [47] or in the long-ranged power law Anderson
model in one-dimension of Equation (9) [48–63].

More recently, the strong multifractality spectrum of Equation (101) has been found to describe
the statistics of matrix elements of local operators and the statistics of hybridization ratios in
nearest-neighbors many-body localized models at criticality [46]. Our conclusion is thus that the
present toy model is not so far from more realistic short-range models, since it is able to reproduce the
same critical multifractal spectrum.

5.3. Multifractal Spectrum in the Many-Body Localized Phase b > bc = 1

In the many-body localized phase b > bc = 1, the multifractal exponents of Equations (98)
and (99):

τloc
b (q) = 2qb− 1 for q ≤ 1

2b

τloc
b (q) = 0 for

1
2b
≤ q (102)

is the Legendre transform of the multifractal spectrum:

f loc
b (α) =

α

2b
for 0 ≤ α ≤ 2b (103)

that is a very simple deformation of the critical result of Equation (101). The fact that multifractality
occurs also in the many-body localized phase is in agreement with the analysis of matrix elements
of local operators and the statistics of hybridization ratios in nearest-neighbors many-body localized
models [46].

6. Conclusions

In this paper, in analogy with the strong disorder limit of the Anderson transition for a single
particle (recalled in Section 2.1), we have considered the strong disorder limit of the MBL transition,
defined as the limit where the level statistics at the MBL critical point is close to the Poisson statistics
of the MBL phase. For a quantum one-dimensional toy model, we have analyzed the statistical
properties of the rare extensive resonances that are needed to destabilize the many-body localized
phase. At criticality, we have found that the entanglement entropy can grow with an exponent
0 < α = 3/2− a < 1 anywhere between the area law α = 0 and the volume law α = 1, as a function
of the power law exponent a of the couplings (Equation (79)), while the entanglement spectrum
follows the strong multifractality statistics of Equation (101), well-known as the “strong-multifractality”
spectrum in the context of Anderson localization transition [47] and found recently for nearest-neighbor
MBL models at criticality [46].

For an initial short-ranged model, we thus expect that the important extended rare resonances are
described by some effective renormalized couplings Ji1,...,ik , and it would be interesting to compute their
properties in terms of the initial parameters, either via the forward approximation [33,40,44,80–82] or
via some RG procedure.

The main difference between the present approach and the existing RG on resonances [35] is
as follows: (i) here, in the strong disorder limit, we have considered the resonances concerning a
single eigenstate in the middle of the spectrum; (ii) on the contrary, [35] is based on the notion of
resonant blocks, so that when two blocks are declared to be resonant, all eigenstates of the two blocks
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are strongly mixed and exhibit level repulsion. Therefore, we feel that this assumption should be valid
in the opposite weak disorder limit of the transition, defined as the limit where the level statistics at
the critical point is close to the Wigner–Dyson statistics of the delocalized phase.

Therefore, we believe that (i) and (ii) are actually the two extreme theories of a continuous family
of MBL critical points, where the level statistics interpolates between the Poisson statistics and the
Wigner–Dyson statistics.

Finally, in the MBL phase near criticality, we have obtained the simple value ν = 1 for the
correlation length exponent, that simply reflects the crossing of the exponential decay of the level
spacing and of the exponential decay of the couplings. More generally, and independently of the
strong disorder limit, we have explained why the correlation length exponent ν of the MBL transition
has no reason to satisfy the usual Harris inequality ν ≥ 2/d, so that there is actually no theoretical
inconsistency in the numerical works where the correlation length exponent ν is found to violate the
Harris inequality [38,39].

Acknowledgments: It is a pleasure to thank Romain Vasseur for an illuminating discussion on various aspects of
the MBL transition and, in particular, for his explanations concerning the RG procedure on resonances [35].

Conflicts of Interest: The author declares no conflict of interest.

Appendix

Appendix A. Off-Diagonal Elements of the Reduced Density Matrix

In this Appendix, we explain why the off-diagonal elements of Equation (35) of the reduced
density matrix of Equation (34) can be neglected at first order in the couplings.

Let us consider the probability distribution Pi1,...,ikA
;i′1,...,i′

k′A
(R(i1, ..., ikA ; i′1, ..., i′k′A

)) of the variable

R(i1, ..., ikA ; i′1, ..., i′k′A
) of Equation (35) when the indices (i1, ..., ikA ; i′1, ..., i′k′A

) are all distinct (when some
indices are the same, the generalization is straightforward). The Fourier transform at lowest order in
the couplings reads:

e
itR(i1 ,...,ikA

;i′1 ,...,i′
k′A

)
=

∫ +∞

−∞
dR(i1, ..., ikA ; i′1, ..., i′k′A

)Pi1 ,...,ikA
;i′1 ,...,i′

k′A
(R(i1, ..., ikA ; i′1, ..., i′k′A

))e
itR(i1 ,...,ikA

;i′1 ,...,i′
k′A

)

= e

it ∑
LB
kB=1 ∑LA+1≤j1<j2...<jkB

≤LA+LB

 Ji1,...,ikA
,j1,...,jkB

2 ∑
kA
q=1 hiq +2 ∑

kB
p=1 hjp




Ji′1,...,i′kA
,j1,...jkB

2 ∑
k′A
q=1 hi′q

+2 ∑
kB
p=1 hjp



=
LB

∏
kB=1

∏
LA+1≤j1<j2 ...<jkB

≤LA+LB

1−

1− e

it

 Ji1,..,ikA
,j1,...jkB

2 ∑
kA
q=1 hiq +2 ∑

kB
p=1 hjp




Ji′1,..,i′kA
,j1,...jkB

2 ∑
k′A
q=1 hi′q

+2 ∑
kB
p=1 hjp






= 1−
LB

∑
kB=1

∑
LA+1≤j1<j2 ...<jkB

≤LA+LB

1− e

it

 Ji1,..,ikA
,j1,...jkB

2 ∑
kA
q=1 hiq +2 ∑

kB
p=1 hjp




Ji′1,..,i′kA
,j1,...jkB

2 ∑
k′A
q=1 hi′q

+2 ∑
kB
p=1 hjp


+ ... (A1)

The variables:

EA = 2
kA

∑
q=1

hiq

E′A = 2
k′A

∑
q=1

hi′q

EB = 2
kB

∑
p=1

hjp (A2)
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are three independent Gaussian variables (Equation (13)) of zero mean and of variances 4W2kA,
4W2k′A and 4W2kB, respectively. As a consequence, the probability distribution Q(z) of the variable
z = (EA + EB)(E′A + EB) involved in Equation (A1) reads using the change of variables y = EA + EB
and y′ = EA + EB:

Q(z) =
∫ +∞

−∞

dEBe
− E2

B
8kBW2

2
√

2kBπW2

∫ +∞

−∞

dEAe
−

E2
A

8kAW2

2
√

2kAπW2

∫ +∞

−∞

dE′Ae
− (E′A)2

8k′AW2

2
√

2k′AπW2
δ
(
z− (EA + EB)(E′A + EB)

)

=
∫ +∞

−∞

dEBe
− E2

B
8kBW2

2
√

2kBπW2

∫ +∞

−∞

dye
− (y−EB)2

8kAW2

2
√

2kAπW2

∫ +∞

−∞

dy′e
− (y′−EB)2

8k′AW2

2
√

2k′AπW2
δ
(
z− yy′

)

=
∫ +∞

−∞

dye
− y2

8kAW2√
8kAπW2

∫ +∞

−∞

dy′e
− (y′)2

8k′AW2√
8k′AπW2

δ
(
y′ − z

y
)

|y|

∫ +∞

−∞

dEB√
8kBπW2

e
− E2

B
8W2

(
1

kB
+ 1

kA
+ 1

k′A

)
e
(y+y′)EB

4kAW2

= e

z

4W2
(

kA+k′A+
kAk′A

kB

)
1

4πW2
√

kAk′A + kB(kA + k′A)
K0

|z|
√
(kB + kA)(kB + k′A)

4W2
(

kA + k′A +
kAk′A

kB

)
 (A3)

in terms of the Bessel function K0(u) displaying the logarithmic singularity near the origin:

K0(u) = − ln u + (ln 2− γEuler) + O(u2) (A4)

and an exponential decay for large u.
As a consequence, the average of the inverse of the variable z remains finite:

∫ +∞

−∞

dz
z

Q(z) =
∫ +∞

0

dz
z
[Q(z)−Q(−z)]

=
∫ +∞

0

dz
z

sinh

 z

4W2
(

kA+k′A+
kAk′A

kB

)


2πW2
√

kAk′A + kB(kA + k′A)
K0

|z|
√
(kB + kA)(kB + k′A)

4W2
(

kA + k′A +
kAk′A

kB

)


=
1

4W2
√

kAk′A + kB(kA + k′A)
arcsin

(
1

(kB + kA)(kB + k′A)

)
(A5)

Therefore, Equation (A1) yields that the variable R(i1, ..., ikA ; i′1, ..., i′k′A
) has the finite average value:

R(i1, ..., ikA ; i′1, ..., i′k′A
)

=
LB

∑
kB=1

∑
LA+1≤j1<...<jkB≤LA+LB

Ji1,..,ikA ,j1,...jkB
Ji′1,...,i′kA

,j1,...,jkB

4W2
√

kAk′A + kB(kA + k′A)
arcsin

(
1

(kB + kA)(kB + k′A)

)
+ o(J2) (A6)

which is of second order O(J2) with respect to the couplings. As a consequence, at the first order in
the couplings considered in the main text, the off-diagonal elements are negligible.

Appendix B. Disorder-Averaged Values Yq

Using the identity:

1
aq =

1
Γ(q)

∫ +∞

0
dt tq−1e−at (B1)
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the disorder-averaged value of Equation (39) can be decomposed into the two contributions:

Yq =
1 + Σq

(1 + Σ1)q = Yq| f irst + Yq|second

Yq| f irst =
1

(1 + Σ1)q =
1

Γ(q)

∫ +∞

0
dt tq−1e−t e−tΣ1

Yq|second =
Σq

(1 + Σ1)q =
1

Γ(q)

∫ +∞

0
dt tq−1e−t Σqe−tΣ1 (B2)

Equation (54) yields that the first contribution reads:

Yq| f irst =
1

Γ(q)

∫ +∞

0
dt tq−1e−t(1−Ω1t

1
2 + o(J))

= 1−Ω1

Γ
(

q + 1
2

)
Γ(q)

+ o(J) (B3)

To evaluate the second contribution, one needs to consider separately the two cases 0 < q < 1
2

and q > 1
2 .

Appendix B.1. Region 0 < q < 1
2

For 0 < q < 1
2 , the average of Σq is finite (Equation (64)), so that the second contribution at

leading order:

Yq<1/2|second = Σq =
Γ
(

1
2 − q

)
4q√π

L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Ω2q

i1,...,ikA
+ o(|J|2q) (B4)

is bigger than the correction of order Ω1 = O(J) of the first contribution of Equation (B3), so that the
sum of the two contributions reads:

Yq<1/2 = 1 +
Γ
(

1
2 − q

)
4q√π

L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Ω2q

i1,...,ikA
+ o(|J|2q) (B5)

This disorder-averaged value thus coincides at leading order with the typical value computed in
Equation (73):

Ytyp
q<1/2 ≡ eln Yq<1/2 = e(1−q)Sq = 1 +

Γ
(

1
2 − q

)
4q√π

L

∑
kA=1

∑
1≤i1<i2...<ikA

≤L
Ω2q

i1,...,ikA
+ o(|J|2q) (B6)

Appendix B.2. Region q > 1
2

For q > 1
2 , the average of Σq is infinite, so one needs to evaluate the divergence for small t of:

Σqe−tΣ1 =
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

Dq
i1,...,ikA

e
−t ∑

LA
k′A=1 ∑1≤i′1<i′2...<i′kA

≤LA
Di′1,...,i′kA

=
LA

∑
kA=1

∑
1≤i1<i2...<ikA

≤LA

Dq
i1,...,ikA

e
−tDi1,...,ikA

[
1 + O(t

1
2 )
]

(B7)
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The Lévy distribution of Equations (50) and (51) for the variable Di1,...,ikA
yields the singularity:

Dq
i1,...,ikA

e
−tDi1,...,ikA =

Ωi1,...,ikA

2
√

π

∫ +∞

0
dDDq− 3

2 e−
Ω2

i1,...,ikA
4D e−tD

=
Ωi1,...,ikA

2
√

π
t

1
2−q

∫ +∞

0
dxxq− 3

2 e−
Ω2

i1,...,ikA
4x te−x

=
Ωi1,...,ikA

2
√

π
t

1
2−qΓ

(
q− 1

2

)
+ o(|J|) (B8)

Therefore, Equation (B7) displays the same singularity in terms of the parameter of Equation (55):

Σqe−tΣ1 =
Ω1

2
√

π
t

1
2−qΓ

(
q− 1

2

)
+ o(|J|) (B9)

and the second contribution of Equation (B2) reads at leading order:

Yq> 1
2
|second =

1
Γ(q)

∫ +∞

0
dt tq−1e−t Σqe−tΣ1

=
Ω1

2

Γ
(

q− 1
2

)
Γ(q)

+ o(|J|) (B10)

The sum with the first contribution of Equation (B3) yields the disorder-average of Yq in the region
q > 1/2:

Yq> 1
2

= 1 +
Ω1

2Γ(q)

[
Γ
(

q− 1
2

)
− 2Γ

(
q +

1
2

)]
+ o(J)

= 1−Ω1

Γ
(

q− 1
2

)
Γ(q− 1)

+ o(J) (B11)

This disorder-averaged value is thus different from the typical value computed in Equation (74):

Ytyp
q>1/2 ≡ eln Yq>1/2 = e(1−q)Sq = 1 + Ω1

√
π

 1

sin
(

π
2q

) − q

+ o(J) (B12)

Appendix B.3. Consequence for the Variance of the Entanglement Entropy

In the vicinity of q = 1, the difference found above between the averaged value of Equation (B11):

Yq> 1
2
= e(q−1)Sq = 1 + (q− 1)Sq +

(q− 1)2

2
S2

q + O(q− 1)3 (B13)

and the typical value of Equation (B12):

Ytyp
q>1/2 = e(1−q)Sq = 1 + (q− 1)Sq +

(q− 1)2

2
(Sq)

2 + O(q− 1)3 (B14)
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yields the variance of the entanglement entropy S1:

S2
1 − (S1)

2 = 2 lim
q→1

Yq> 1
2
−Ytyp

q>1/2

(q− 1)2



= 2Ω1 lim
q→1


√

π

[
q− 1

sin
(

π
2q

)
]
− Γ(q− 1

2 )
Γ(q−1)

(q− 1)2

+ o(J)

= Ω1
√

π

(
4 ln 2− π2

4

)
+ o(J) (B15)

Therefore, the scale Ω1 that governs the scale of the disorder-averaged entanglement entropy
(Equation (75)) also determines its variance (Equation (B15)).
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