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Abstract: The heat transfer enhancement and entropy generation of Al2O3-water nanofluids laminar
convective flow in the microchannels with flow control devices (cylinder, rectangle, protrusion,
and v-groove) were investigated in this research. The effects of the geometrical structure of
the microchannel, nanofluids concentration ϕ(0%–3%), and Reynolds number Re (50–300) were
comparatively studied by means of performance parameters, as well as the limiting streamlines and
temperature contours on the modified heated surfaces. The results reveal that the relative Fanning
frictional factor f/f0 of the microchannel with rectangle and protrusion devices are much larger and
smaller than others, respectively. As the nanofluids concentration increases, f/f0 increases accordingly.
For the microchannel with rectangle ribs, there is a transition Re for obtaining the largest heat
transfer. The relative Nusselt number Nu/Nu0 of the cases with larger nanofluids concentration are
greater. The microchannels with cylinder and v-groove profiles have better heat transfer performance,
especially at larger Re cases, while, the microchannel with the protrusion devices is better from an
entropy generation minimization perspective. Furthermore, the variation of the relative entropy
generation S1/S10 are influenced by not only the change of Nu/Nu0 and f/f0, but also the physical
parameters of working substances.

Keywords: nanofluids; microchannels; heat transfer enhancement; entropy generation; flow
control devices

1. Introduction

Nanofluids, regarded as the new generation cooling working substances with high heat transfer
enhancement performance, have been widely investigated from physical properties [1,2] to heat
transfer characteristics [3,4] in recent years. Heris et al. [5] studied the CuO-water and Al2O3-water
nanofluids flowing through an annular tube with a constant wall temperature in the laminar regime,
and found that the heat transfer coefficient increased with the increase of nanofluids concentration
and Peclet number, and the latter nanofluids obtained greater enhancement. Barzegarian et al. [6]
investigated the heat transfer enhancement and pressure drop of TiO2-water nanofluids in the
brazed plate heat exchanger, and found a significant increase in convective heat transfer coefficient,
being enhanced by increasing nanofluids concentration, while, the increment in pressure drop was
negligible. Andreozzi et al. [7] studied the turbulent forced convection of Al2O3-water nanofluids in
symmetrically-heated ribbed channels, and the results showed that heat transfer increased with the
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increase of nanofluids concentration and Reynolds number, but the pumping power also increased
a lot. Moreover, the channel with triangle presented higher thermal performance and pressure
losses. Sun et al. [8] found that the proposed nanofluids consisting of Cu nanoparticles, cetyltrimethyl
ammonium chloride (CTAC), sodium salicylate (NaSal), and deionized water showed an improved
drag-reducing performance and increased heat transfer coefficient. Hsieh et al. [9] conducted the
experiments about spray cooling with nanofluids, and obtained a transient cooling curve and steady
boiling curve, then found the average heat transfer coefficient and the associated critical heat flux
significantly increased. Tsai et al. [10] investigated the flow and heat transfer of Au-water nanofluids
in a heat pipe. The results showed that utilizing nanofluids as a working substance in heat pipes was
promising to obtain large decreases of thermal resistance of heat pipes. Both the experimental and
numerical studies about the flow resistance and heat transfer of nanofluids reveal that nanofluids give
rise to considerable enhancement of heat transfer enhancement performance [11]. Additionally, the
successful employment of nanofluids makes the heat transfer equipment more portable and smaller,
so the process of miniaturization of heat transfer device is accelerated.

Microchannel heat sinks are an effective cooling technology to remove the large amount of heat
from electronic systems. More recently, numerical and experimental researches about the flow and
heat transfer characteristics of microchannels have been conducted [12–14]. Results suggested that the
conventional Navier-Stokes analysis could be used in predicting heat transfer in a microchannel [15],
and the correlation for the local Nusselt number was obtained. Furthermore, flow control technologies
can be used to obtain desired flow structures in the internal flow, and they have been employed in
the heat transfer enhancement researches. Liu et al. [16] investigated the turbulent flow and heat
transfer characteristics in the proposed square channels with cylindrical grooves, and the results
showed the heat transfer of proposed channels increased with reducing pressure drop. They [17] also
studied the flow and heat transfer performances of rectangular dimpled channels with secondary
protrusions, and found the secondary protrusion reduced the scale of recirculation flow in the next
primary dimple, so the local heat transfer coefficient of the latter was improved. Additionally,
both the heat transfer and pressure drop increased with the increase of the height of the secondary
protrusions. Khan et al. [18] studied the thermal resistance and pressure drop of microchannels with
various ribs in the laminar regime, and the results revealed that the lowest thermal resistance was
observed in the microchannel with triangular ribs, and rectangular ribs produced the largest pressure
drop. Recently, flow control technologies have also been introduced in the microchannels to achieve
higher heat transfer enhancement, and the results showed strip-fins [19], wavy microchannel [20],
and dimples/protrusions [21–23] were beneficial. Wei et al. [24] introduced dimples to the heat
transfer enhancement of microchannel heat sinks, but the misuse of boundary conditions may lead
to some discrepancies between the simulated results and real flow. The authors [25] investigated the
laminar forced flow and heat transfer enhancement of a dimpled/protruded microchannel, and the
detailed flow structures and performance parameters varying with physical properties and geometrical
structures were analyzed, finally the correlations of friction factor and Nusselt number were obtained.
Furthermore, we conducted the thermal performance of water in microchannels with grooves and
obstacles in the laminar region. The results showed the combination structures of grooves and
obstacles was beneficial for heat transfer enhancement [26]. The above studies show that application
of flow control devices in microchannels could obtain a higher heat transfer coefficient in a forced
convective flow.

In order to develop more high-efficiency, compact heat exchanger and microchannel heat sinks, the
heat transfer enhancement and entropy generation of Al2O3-water nanofluids laminar convective flow
in the microchannels with different flow control devices are investigated in this research. The effects
of the geometrical structure of the microchannel, nanofluids concentration ϕ (0%–3%), and Reynolds
number Re (50–300) are studied. The detailed flow structures, heat transfer performance and entropy
generation are obtained and comparatively analyzed.
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2. Physical Properties of Nanofluids

Al2O3 is a common and inexpensive nanoparticle, so it is selected as the nanoparticle of coolant in
this research [27,28]. Al2O3-water nanofluids are selected as working substances in this study [29,30],
which are assumed as the mixtures of base fluid (water) and Al2O3 nanoparticle with 30 nm diameter.
The physical properties of the base fluid and Al2O3 nanoparticle [31,32] are shown in Table 1, in which
the reference temperature is 293 K. A single-phase model [33] is used to evaluate the physical properties
of Al2O3-water nanofluids, and based on the assumptions that the aluminium oxide nanoparticle is
spherical and homogeneously suspended in the base fluid, the following models are used to compute
density, specific heat, dynamic viscosity, and thermal conductivity, respectively. Obtained from the
above data and models, the physical properties of Al2O3-water nanofluids are shown in Table 2.

Density model:
ρn f “ p1´ φq ρb ` φρp (1)

Specific heat model:

Cpn f “
p1´ φqCpb ρb ` φCpp ρp

ρn f
(2)

Dynamic viscosity model [34,35], which has been obtained by performing a precise least-square
curve fitting of experimental data:

µn f “ µb

´

123φ2 ` 7.3φ` 1
¯

(3)

Thermal conductivity (Bruggeman model) [36,37], which can be applied to spherical particle with
various concentration of inclusion and obtained reasonable results:

kn f “ 0.25rp3φ´ 1qkp ` p2´ 3φqkb `
?

∆s (4)

∆ “ rp3φ´ 1qkp ` p2´ 3φqkbs
2
` 8kpkb (5)

Table 1. Physical properties of base fluid and Al2O3 nanoparticle.

Substances Dp/nm k/W¨ m´1¨ K´1 Cp/J¨ kg´1¨ K´1 ρ/kg¨ m´3 µ/Pa¨ s

Al2O3 30 36.00 773.00 3880.00 -
Base fluid - 0.60 4182.00 998.20 9.93e´4

Table 2. Physical properties of Al2O3-water nanofluids.

ϕ/% k/W¨ m´1¨ K´1 Cp/J¨ kg´1¨ K´1 ρ/kg¨ m´3 µ/Pa¨ s

0.0 0.60 4182.00 998.20 9.93e´4
1.0 0.62 4053.21 1027.02 1.08e´3
2.0 0.63 3931.45 1055.84 1.19e´3
3.0 0.65 3816.16 1084.65 1.32e´3

3. Numerical Method and Validation

3.1. Governing Equations

Similar with our previous work [25], the incompressible steady Navier-Stokes equation is used
to solve the flow and heat transfer in microchannels in this study, under the assumptions that
the nanofluids flow is constant, the respective fluid properties, and negligible viscous dissipation.
The governing equations are as follows:
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Continuity equation:
∇ ¨Ñu “ 0 (6)

Momentum equation:
ρn f

´

Ñ
u ¨∇

¯

Ñ
u “ ´∇p` µn f∇2Ñu (7)

Energy equation:
ρn f Cpn f

´

Ñ
u ¨∇T

¯

“ kn f∇2T (8)

The SIMPLE method is used in coupling the pressure and velocity. The standard scheme is used for
pressure discretization. The momentum and energy equations are solved with a second-order up-wind
scheme. The residues of continuity, energy, and velocities are monitored to judge the convergence of
computation, in which convergence criteria is set as 1 ˆ 10´7.

3.2. Geometrical Configuration of Models and Boundary Conditions

Fully developed periodic velocity and temperature can be obtained after some typical streamwise
rows of flow control devices in the microchannels. The main domain of the microchannels is a
periodic unit in the flow and heat transfer. Under this condition, it is desirable to choose the smallest
repetitive unit as the computational domain to minimize the computational expense. Cross-sections of
microchannels with cylinder, rectangle, and v-groove devices and the flow domain of the microchannel
with protrusions in a periodic unit are shown in Figure 1. The microchannel is 150 µm (W) ˆ 50 µm (H)
in cross-section, and the flow control devices are arranged on the surface with a width of 200 µm and
the relative depth δ/D = 0.2. The coordinates x, y, z in Figure 1 represent the streamwise, spanwise,
and normalwise directions, respectively, in the simulation model. A uniform constant heat flux of
q2 = 5 ˆ 105 W¨m´2 and no-slip boundary condition are specified at the four external surfaces of
the microchannel in the y and z directions. Transitional periodic boundary condition is applied at
the inlet and outlet. Nanofluids flows into the transitional domain in the positive x direction from
inlet surface with a fully developed velocity and bulk temperature of 300 K, in which the inlet Re
ranges from 50 to 300, and nanofluids concentration are set as 0%–3%, named as water, nano1, nano2,
nano3, respectively.
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Figure 1. Models of microchannels with flow control devices: (a) cross-sections of microchannels with
cylinder, rectangle, and v-groove devices; and (b) flow domain of the microchannel with protrusions.

3.3. Data Reduction

In this research, the Reynolds number is defined by:

Re “
ρn f UaveDh

µn f
(9)
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where Uave is the average velocity of inlet, Dh is hydraulic diameter and defined by:

Dh “
2WH

W ` H
(10)

The Nusselt number is given by:

Nu “
hDh
kn f

(11)

where knf is the thermal conductivity of nanofluids, h is the heat transfer coefficient and described as:

h “
q2

∆T
(12)

where q2 represents the heat flux, and ∆T is the difference of mean wall temperature Tw,ave and mean
fluids temperature Tnf,ave:

∆T “ Tw,ave ´ Tn f ,ave (13)

The Fanning friction factor f is defined as:

f “ ´
p∆p{LqDh
2ρn f U2

ave
(14)

where ∆P is the pressure drop and L is the streamwise microchannel length.
The entropy generation in the forced conductive flow with heat transfer contains two parts, one

due to the heat transfer irreversibility, and the other accounting for the fluid frictional irreversibility [38].
The entropy generation of flow for nanofluids can be calculated by the following equations [39,40]:

S1 “
k

T2 p|∇T|q2 `
µ

T

˜

BUi
Bxj

`
BUj

Bxi

¸

BUi
Bxj

“ S1T ` S1F (15)

S1T “
k

T2 p|∇T|q2 (16)

S1F “
µ

T

˜

BUi
Bxj

`
BUj

Bxi

¸

BUi
Bxj

(17)

For an internal flow in the proposed microchannels, the rate of entropy generation per unit length
can be calculated as [41]:

S1 “
1

πNu
q12

kT2 `
m3 f

π2ρ2Tr5 (18)

And, q1 and r can be given as:

q1 “ 2πr0q2 , r “
Dh
2

(19)

Therefore, Equation (18) can be given as:

S1 “
q2 2πD2

kT2Nu
`

32m3

π2ρ2T
f

D5 “ S1T ` S1F (20)

Furthermore, the baseline Fanning friction factor f0 and Nusselt number Nu0 for a smooth
rectangular microchannel of the analytical solutions of Shah and London [42], as well as the resulting
entropy generation S10, are used to normalize the Fanning friction factor, Nusselt number, and entropy
generation in this research.
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3.4. Model Validation

For the purpose of increasing the accuracy and validity of the model, an all-hexahedral mesh
is generated and refined. To balance the simulation accuracy and computational resource, a grid
independence validation is carried out to determine reasonable grid nodes for computational analysis
at the case of q2 = 5ˆ105 W¨m´2, Tin = 300 K, Re = 200 with water as working substance (Table 3),
taking a microchannel with protrusions as an example. In the validation procedure, the Nusselt
number and Fanning friction factor are selected as the evaluation criteria, starting from a coarse mesh
and refining it until the characteristic parameters are independent of the mesh size. As is shown, the
relative discrepancies of f and Nu are 0.10% and 0.89% when the mesh changes from mesh3 to mesh4,
respectively. Therefore, the proposed mesh is mesh3. Grid independence is similarly established for
the other microchannels.

Table 3. Grid independence validation.

Nodes Nu Difference % f ˆ 10 Difference %

1 498,920 5.775 12.68 1.370 5.71
2 1,163,056 5.125 5.87 1.296 3.52
3 2,452,800 4.841 0.10 1.252 0.89
4 5,689,802 4.836 - 1.241 -

The above solution method is validated by simulating the flow and heat transfer of a base fluid
(water) in a smooth microchannel, in which the computational domain has a height of 200 µm, a width
of 50 µm, and a length of 150 µm. The results from the proposed model is compared with referenced
results from Shah and London’s [42] research, and the largest difference is 0.92% (Table 4), which means
that the proposed model could be employed to simulate the flow and heat transfer in microchannels in
the cases of working substances with constant physical properties.

Table 4. Simulation model validation.

Re
fRe Nu

Referenced
Result

Proposed
Model Difference% Referenced

Result
Proposed

Model Difference%

50 18.233 18.136 ´0.53 2.94 2.930 ´0.35
100 18.233 18.300 ´0.37 2.94 2.914 0.87
200 18.233 18.344 0.61 2.94 2.954 0.46
300 18.233 18.401 ´0.92 2.94 2.957 ´0.59

4. Results and Discussions

4.1. Effects of Structures

The variations trend of f/f0, Nu/Nu0 and S1/S10 are similar for different nanofluid concentration
cases, so the results of ϕ = 2% are shown as examples herein to illustrate the effects of structures.

The relative Fanning friction factor f/f0 (Figure 2) of microchannel with rectangle and protrusion
devices are much larger and smaller than others, respectively, and increase a little as Re increases.
While, f/f0 of microchannels with cylinder and v-groove devices are medium, and increase quickly
with the increase of Re. To investigate the variation of f/f0 influenced by the mirochannel structures
in detail, the flow structures analysis can be employed. In the studied microchannels, f/f0 consists
of frictional resistance and form drag. The development of flow boundary layer is interrupted due
to the presence of flow control devices, and then the frictional resistance decreases. However, the
flow separation occurs near the flow control devices, so the form drag increases. Figure 3 shows the
limiting streamlines and temperature contours of the four microchannels in the case of ϕ = 2% and
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Re = 100. For the microchannel with cylinder (Figure 3a) devices, flow separates at the tail end of the
cylinder, and reattaches in the central upstream of next period domain. The start of flow separation is
wide in the channel in the spanwise direction, so the forepart of the separation bubble nearly fills the
whole channel. After leaving the cylinder zone, the separation flow reattaches directing the central
flow quickly, and finally reattaches near the inlet of the next period domain, forming a large separation
bubble, so the whole separation bubble shows a trapezoid-like structure. Then the form drag increases
a lot and, therefore, the increase of form drag and f/f0 of the microchannel with cylinder is maximum.
For the microchannel with rectangle (Figure 3b) devices, part of the main flow impinges directly on
the front surface of rectangle and flows backward to the previous period domain from the inlet. While,
near the back surface, the cross-section is suddenly enlarged, and then the adverse pressure gradient
forms herein, so the backflow from the front of the next period domain flows directly to the back
surface of the rectangle, and turns to the main flow, finally, flowing to the outlet together with the
main flow. Therefore, the flow domains both ahead and behind the rectangle devices are filled with
the separation flow, then the form drag increases sharply. For the microchannel with protrusions
(Figure 3c), the main flow impinges on the front of the protrusion, just leaving curving streamlines
on the surface. While the flow separates at the tail end of the protrusion due to the formation of a
local advance pressure gradient, and the separation flow reattaches quickly in the wake, so the small
separation bubble herein makes the form drag increase slightly. Therefore, the increase of the form
drag and f/f0 of the microchannel with protrusions is a minimum. For the microchannel with v-groove
(Figure 3d) devices, the main flow flows through the front part of the channel with curving streamlines,
then separates in the central back of the v-groove devices and reattaches in the wake, so the separation
bubble shows a spindle-like structure. Moreover, two small corner vortices form near the walls, due
to the combined effects of the non-slip wall and advanced pressure gradient in the channel in the
spanwise direction. Furthermore, comparing with that of the microchannel with cylinder devices, the
separation bubble locates in the back of channel, not affecting the next period domain. Therefore, the
increase of form drag and f/f0 herein is less than that of the microchannel with cylinder devices. What
is more, as the mass flow rate and Re increase, the separation flow in the microchannels with flow
control devices are enhanced, more or less, so their f/f0 increase gradually.
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The variation trend of relative Nusselt number Nu/Nu0 are more complex than that of f/f0.
As Figure 4 shows, Nu/Nu0 of microchannel with cylinder devices are larger than that of others,
and, at low Re cases (Re = 50 and 100), Nu/Nu0 of microchannel with protrusion devices are minimum,
while, as Re further increases to 200 and 300, Nu/Nu0 of microchannel with rectangle are smaller
than that of others. Nu/Nu0 of all microchannels increase with the increase of Re, except that of
microchannel with rectangle devices. Analyzing from temperature contour on the heated surfaces
(Figure 3), heat transfer in the zones before separation, reattachment, and wake, heat transfer is better.
It indicates that high heat transfer region is caused by the reattachment and the vortices shedding
from the flow control devices, and the low heat transfer region locates in the region of flow separation.
In the microchannel with cylinder (Figure 3a) devices, the large separation bubble fills the back of
the channel and the front of the next period domain, especially enhancing the heat and mass transfer
between the central flow and the near wall flow in the spanwise direction, and then the average
temperature and temperature gradient are the lowest, so its Nu/Nu0 is larger than others. In the
microchannel with rectangle (Figure 3b) devices, separation flow almost fills both ahead and behind
the rectangle, but the heat and mass transfer between the central flow and the near wall flow in the
spanwise direction is weakened, then the temperature gradient and average temperature increases, so
Nu/Nu0 is lower. In the microchannel with protrusion (Figure 3c) devices, the higher temperature and
larger temperature gradient are observed, so Nu/Nu0 is minimum herein. In the microchannel with
v-groove (Figure 3d) devices, although the large separation bubble forms in the back of the channel,
showing the enhancement of heat and mass transfer between the central flow and the near wall flow
in the spanwise direction, the central low temperature region is small, so the average temperature is
medium. Furthermore, as the mass flow rate and Re increase, the separation flow in the microchannels
with cylinder, protrusion, and v-groove devices are enhanced, more or less, so their Nu/Nu0 increase
gradually. Especially, for the microchannel with rectangle devices, starting from the minimum Re case
(Re = 50), the large-scale separation flow forms and locates ahead and behind of the rectangle, when Re
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increases, the separation flow fills the whole of these regions, so the main flow no longer impinges
directly on the front surface of the rectangle, and the direct contact area between the main flow and the
heated surfaces decreases; therefore, the heat transfer is reduced. Meanwhile, when Re increases, the
heat transfer coefficient of heated surfaces increases, and the local heat transfer is enhanced. Therefore,
for the microchannel with rectangle devices, there must be a transition point of Re for obtaining the
largest heat transfer. In the above studied cases, the transition point is Re = 100. Finally, it can be
concluded that not only the scale and intensity of the separation flow, but also the development of the
separation bubble in the spanwise direction, can give rise to the Nu/Nu0.
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Based on the entropy generation theory and Equation (20), for the given working condition, the
entropy generation of microchannel increases with the increase of pressure drop (reflected by Fanning
friction factor) and the decrease of heat transfer (reflected by the Nusselt number). Furthermore,
due to the nonlinear effect of mass flow rate, the influences of Fanning friction factor on the entropy
generation for varied Re cases are obviously different from that of the Nusselt number. Similar with the
above analysis, the relative entropy generation S1/S10 of ϕ = 2% due to the heat transfer irreversibility
and the fluid frictional irreversibility is calculated and shown in Figure 5. The results reveal that
the microchannel with protrusion devices shows favorable entropy generation performance. For the
microchannel with rectangle, the large f/f0 and relative small Nu/Nu0 make its relative large S1/S10,
especially at larger Re cases, so this structure is not suitable for the studied working conditions.
The Nu/Nu0 of microchannels with cylinder and v-groove devices are large enough, but the f/f0 are
also large, so the S1/S10 are larger than that of microchannels with protrusion devices in most cases.
The results shows that S1/S10 are more influenced by f/f0 at the larger Re cases, while, more influenced
by Nu/Nu0 at the smaller Re cases. What is more, the microchannels with cylinder and v-groove devices
have better heat flux transfer performance, while the microchannel with protrusion devices is better
from the perspective of entropy generation minimization.
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4.2. Effects of Nanofluids Concentration

As are shown in the above results, the microchannel with protrusion devices shows favorable
performance in entropy generation minimization, especially at larger Reynolds number cases, and then
the variations trend of f/f0, Nu/Nu0 and S1/S10 of the protruded microchannel are shown as examples
herein to illustrate the effects of nanofluids concentration.

Figure 6 is the variation of f/f0 in the protruded microchannel with working substances varying
from water to nano3. f/f0 increases with the increase of Re. For the same Re, f/f0 show a small difference
among different fluids, while, as the nanofluids concentration increases, f/f0 increases a bit accordingly.
When Re increases, the above-mentioned differences get obvious. Figure 7 shows the temperature
contours and limiting streamlines on the protruded surface. Flow separates at the tail end of the
protrusion, and reattaches quickly in the wake under the effect of the adverse pressure gradient, so the
separation bubbles are small. As the nanofluid concentration increases, separation bubbles show little
change in the streamwise direction, while the effect of protrusion on flow structure and temperature
develops along the spanwise direction, then f/f0 increases slightly.
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The variation trend of Nu/Nu0 is more obvious, comparing with that of f/f0. As are shown in
Figure 8, Nu/Nu0 of the cases with larger nanofluids concentrations are larger. When Re is relatively
small (Re = 50 and 100), only a small difference can be observed among different working substances.
As Re further increases to 200 and 300, Nu/Nu0 of all the cases increase sharply, which is due to the
quick development of separation bubbles, and then the differences of Nu/Nu0 among different working
substances also becomes obvious. As are shown in Figure 7, as nanofluid concentration increases, the
effect of separation flow develops along the spanwise direction, enhancing the heat and mass transfer
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between near wall fluid and the main flow; therefore, the average temperature and temperature
gradient decreases, and the temperature of the surfaces in the spanwise direction decreases, obviously,
so Nu/Nu0 of the whole channel increases. Furthermore, this influence is enhanced at larger Re cases.
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The variation of S1/S10 in the protruded microchannel with working substances varying from
water to nano3 are shown in Figure 9. When Re is 50, S1/S10 of the water case is at a maximum,
and as nanofluid concentration increases, S1/S10 decreases gradually, combining with the results in
Figures 7 and 8 the variation of S1/S10 herein means the influence of Nu/Nu0 is dominant for small Re
cases. As Re increases, S1/S10 of cases with larger nanofluids concentration increase more quickly, and
then S1/S10 of nano3 case is maximum at Re = 200 and 300, which means that the mass flow rate and
f/f0 have combined dominant effects for large Re cases. As Re increases, differences of S1/S10 among
different cases with varied working substances also increase.

Furthermore, S1/S10 consists of the heat transfer irreversibility and the fluid frictional irreversibility,
which can be evaluated by ST

1/S10 and SF
1/S10, respectively, and due to the large increase in the form

drag, the fluid friction induced entropy generation can no longer be negligible [41], different with that
in low flow resistance applications [43]. The variation of ST
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to illustrate the change of S1/S10 in detail. For the given Re, as nanofluids concentration increases,
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1/S10 decreases and SF

1/S10 increases. With the increases of nanofluids concentration, both the thermal
conductivity of Al2O3-water nanofluids (Table 2) and Nu/Nu0 (Figure 8) increase. Then, based on the
Equation (20), ST

1/S10 decreases. While, with the increases of nanofluids concentration, the density
of working substances increases (Table 2), but f/f0 (Figure 7) and mass flow rate also increase, and
the change of the latter two parameters are much larger than that of former, then SF
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5. Conclusions

The heat transfer enhancement and entropy generation of Al2O3-water nanofluids laminar
convective flow in the microchannels with flow control devices (cylinder, rectangle, protrusion and
v-groove ribs) are investigated in this research, in which the nanofluids concentration vary from 0% to
3%, and the Reynolds number range from 50 to 300. The detailed conclusions are as follows.

(1) f/f0 of the microchannel with rectangle and protrusion ribs are much larger and smaller than
others, respectively, and increase a little as Re increases. While, f/f0 of the microchannels with
cylinder and v-groove ribs are medium, and increase quickly with the increase of Re. As the
nanofluids concentration increases, f/f0 increases a bit, accordingly, and this trend is enhanced
when Re increases.

(2) Nu/Nu0 of the microchannel with cylinder ribs are larger than others, and, at low Re cases
(Re = 50 and 100), Nu/Nu0 of the microchannel with protrusion ribs are a minimum, while, as Re
further increases to 200 and 300, Nu/Nu0 of the microchannel with rectangle ribs are smaller than
that of others. Nu/Nu0 of all the microchannels increase with the increase of Re, except that of the
microchannel with rectangle ribs. For the microchannel with rectangle ribs, there is a transition
point of Re for obtaining the largest heat transfer. Nu/Nu0 of the cases with larger nanofluids
concentration are higher. The differences of Nu/Nu0 among different working substances increase
with the increase of Re.

(3) The microchannels with cylinder and v-groove ribs have the better heat flux transfer performance,
especially at larger Re cases, while the microchannel with protrusion ribs is better from the
perspective of entropy generation minimization. The variation of S1/S10 is based on the change of
ST
1/S10 and SF

1/S10, which are all influenced by not only the change of Nu/Nu0 and f/f0, but also
the physical parameters of the working substances.
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Nomenclature

Cp Fluid special heat (J¨kg´1¨K´1)
D Dimple/Protrusion print diameter (µm)
Dh Characteristic length
f Fanning friction factor
H Microchannel height (µm)
h Heat transfer coefficient (W¨m´2¨K´1)
k Fluid thermal conductivity (W¨m´1¨K´1)
m Flow rate (kg¨ s´1)
Nu Nusselt number
P Fluid pressure (Pa)
q1 Heat transfer rate per unit length (W¨m´1)
q2 Surface heat flux rate (W¨m´2)
Re Reynolds number
S1 Entropy generation (W¨K´1¨m´1)
SF
1 Friction induced entropy generation (W¨K´1¨m´1)

ST
1 Heat transfer induced entropy generation (W¨K´1¨m´1)

T Temperature (K)
Uave Average velocity of inlet (m¨ s´1)
∆P Pressure drop (Pa)
∆T Mean temperature difference (K)

Greek symbols

δ Dimple/protrusion depth (µm)
φ Nanoparticle volume fraction (%)
ρ Fluid density (kg¨m´3)

Subscripts

h Hydraulic
w Wall
o Baselines condition
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