
entropy

Article

Quantum Private Query Protocol Based on
Two Non-Orthogonal States

Yan Chang *, Shibin Zhang, Guihua Han, Zhiwei Sheng, Lili Yan and Jinxin Xiong

College of Information Security Engineering, Chengdu University of Information Technology, Chengdu 610225,
China; cuitzsb@cuit.edu.cn (S.Z.); alenhan@cuit.edu.cn (G.H.); shengziwei@cuit.edu.cn (Z.S.);
yanlili@cuit.edu.cn (L.Y.); xiongjinxin@yahoo.com (J.X.)
* Correspondence: cyttkl@cuit.edu.cn; Tel.: +86-28-8596-6648

Academic Editor: Gerardo Adesso
Received: 15 December 2015; Accepted: 20 April 2016; Published: 3 May 2016

Abstract: We propose a loss tolerant quantum private query (QPQ) protocol based on two
non-orthogonal states and unambiguous state discrimination (USD) measurement. By analyzing
a two-point attack by a third party, we find that our protocol has a stronger ability to resist external
attacks than G-protocol and Y-protocol. Our protocol requires a smaller number of compressions than
that in G-protocol (Gao et al., Opt. Exp. 2012, 20, 17411–17420) and Y-protocol (Yan et al. Quant. Inf.
Process. 2014, 13, 805–813), which means less post-processing. Our protocol shows better database
security and user privacy compared with G-protocol.

Keywords: quantum private query; two-point attack; conclusive bits

1. Introduction

Nowadays, communications are omnipresent. The problems of security and privacy have come
to assume an unprecedented importance. Cryptography is an effective way to ensure data security in
communication. Both classical and quantum cryptography can be used to ensure security. However,
a higher advantage in security has been shown for quantum physical principles. Therefore, in recent
years, more and more scholars have been paying attention to quantum cryptography.

In communications, the safety of common privacy is usually considered. However, in
communications among distrustful users, both common privacy and individual privacy need to
be protected. Private information retrieval (PIR) [1] is an application in such research areas, which
guarantees the security of private database query. Another similar application is called symmetrically
private information retrieval (SPIR) [2], which finishes the following task: user (Alice) obtains a record
in a database that she has paid for it, however, the database provider (Bob) should not know which
record Alice obtains. On the other hand, Alice should not know about other records that she does not
pay for. That is, SPIR protects both Alice’s privacy and Bob’s database privacy. However, classical
cryptosystems and using physical principles cannot ideally realize the task of SPIR [3].

Quantum Private Query (QPQ) is the quantum scheme for the SPIR problem. Bennett [4] and
Brassard [5] proposed quantum protocols to solve the similar tasks of SPIR, and it was found to
be difficult to offer complete protection for both sides. In 2008, the pioneer QPQ scheme (GLM
protocol, where GML denotes the first letter of the name of the three authors) has been put forward
by Giovannetti et al. [6]. In the scheme, oracle operations are used to denote records in the database
and are operated on the incoming query states. Query state and decoy state are needed in the
protocol. The query state is used to obtain the needed record from the database. While possible
attacks from Bob are checked with the decoy state, in the GLM scheme, Alice’s privacy is protected
by the non-signaling principle, which means that the spiteful behavior of Bob may lead to wrong
answers to Alice. The behavior of Bob will be found by Alice later which will destroy her trust in him,

Entropy 2016, 18, 163; doi:10.3390/e18050163 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy

Entropy 2016, 18, 163 2 of 11

that is called being cheat sensitive for user privacy. On the other hand, GLM protocol shows good
database privacy. That is, no more than two records are obtained through dishonest queries. GLM
protocol displays better performance in communication complexity and computational complexity
compared with existing schemes. After that, the proof-of-principle experimental realization and the
security analysis of GLM protocol were done in Refs. [7,8], respectively. Similar with GLM protocol,
Olejnik et al. put forward O-protocol [9] (another QPQ protocol) based on oracle operation. O-protocol
reduces communication complexity further by using only one query state to obtain the needed record
from the database and detect eavesdropping from Bob.

Although the existing schemes show high quality theoretically, they are hard to realize for large
databases because of the difficulty of high-dimensional oracle operation. Jakobi et al. provides a new
way for solving the difficulty, in which Alice and Bob share an oblivious key based on SARG04 QKD,
which is proposed by Scarani et al. in 2004 [10]. This scheme is a pioneer practical QPQ protocol
(J-protocol) [11]. In this practical scheme, Bob knows the whole key, which is for encrypting the whole
database, and Alice knows only limited bits of the key, which safeguards the database privacy. Oracle
operations and other complex operations are not included in J-protocol; therefore, it is easy to realize
for a large database.

In 2012, Gao et al. put forward a flexible QPQ scheme (G-protocol) [12] based on J-protocol.
G-protocol shows better performance in flexibility, communication complexity and security than
J-protocol. In G-protocol, non-orthogonal states {|0 >,|1 >,|01 >,|11 >} are selected as carrier states.
(Here, |01 > = cosθ|0 > + sinθ|1 >, |11 > = sinθ|0 > ´ cosθ|1 >, and θ is polarization angle).
By adjusting the value of θ, the length of Alice’s key bits is limited to a certain reasonable value. When
θ < π/4, G-protocol displays better database security, but poor user privacy.

In 2013, Yang et al. put forward another QPQ scheme (Y-protocol) [13] based on a two-particle
entangled state and non-orthogonal projective measurements. Y-protocol has all the features of
G-protocol, such as being flexible, loss tolerant and practical. What’s more, it displays a better
user privacy.

In this paper, we presents another QPQ scheme based on two non-orthogonal states and
unambiguous state discrimination (USD) measurement. Our protocol can resist two-point attacks
by a third party. In our protocol, a smaller number of compressions is required than G-protocol
and Y-protocol under similar conditions, which means that less post-processing is needed in our
protocol. Our protocol shows better database security and user privacy compared with G-protocol.
Furthermore, our protocol requires a bigger polarization angle to achieve similar conditions (the
number of compressions, the average bits that Alice will know in the final key, the probability that
Alice can not know any bits at all and the length of Bob’s final key) than G-protocol, which means that
our protocol is easier to realize technically compared with Gao’s protocol.

2. The QPQ Protocol Based on Two Non-Orthogonal States

On assumption that N records are included in Bob’s database, one of them is bought by Alice, and
Alice intends to obtain it in secret. The scheme is to help them to complete the task safely. Our idea is
to distribute a pair of oblivious secret keys between Alice and Bob which is known completely to Bob
and partly to Alice, through a series of steps. To try to reduce the bits Alice knows in the raw key, Bob
generates a raw key with length kN, where k is a natural number.

(1) Bob randomly prepares some non-orthogonal states |ϕ0y or |ϕ1y forming quantum sequence
S, where

|ϕ0y “ cos θ
2 |0y ` sin θ

2 |1y ,
|ϕ1y “ cos θ

2 |0y ´ sin θ
2 |1y .

(1)

The range of parameter θ is between 0 and π/2. Bob inserts some decoy states |+ >,|´ >,|0 >
or|1 > in sequence S randomly, which forms new sequence S’. Bob tells Alice the length of sequence S’
through an authenticated channel. Then, Bob sends new sequence S’ to Alice.

Entropy 2016, 18, 163 3 of 11

(2) When Alice receives each particle that Bob sends to her, she stores it in quantum memory firstly.
After Alice has received the whole sequence S’, Alice informs Bob about this. Then, Bob tells
Alice which particles are used as decoy states and the basis of the corresponding decoy state.
Alice extracts decoy states and measures them. Alice tells Bob the measurement results. Bob
determines whether there is eavesdropping by comparing the information Alice reports and the
decoy states Bob prepares. If there is eavesdropping, Bob stops the protocol.

(3) Alice measures the rest particles with unambiguous state discrimination (USD) method [14]
to distinguish which state the qubit is in. The success probability of this USD measurement
is bounded (from above) by p = 1 ´ Fp|ϕ0y xϕ0| , |ϕ1y xϕ1|q =1 ´ |xϕ0|ϕ1y| = 1 ´ cosθ, where
Fp|ϕ0y xϕ0| , |ϕ1y xϕ1|q “ Trp

a

|ϕ0y xϕ0| |ϕ1y xϕ1| |ϕ0y xϕ0|q is the fidelity between the two states
to be discriminated. That is, Alice obtains the state of the qubit she measures with probability
p = 1 ´ cosθ. Thus, Alice knows the corresponding bit that the qubit is carrying with a certain
probability p = 1 ´ cosθ. For Bob, he doesn’t know which particle Alice measures successfully.
Alice represents |ϕ0y as “0” and |ϕ1y as “1”. Alice publishes which qubits in sequence S she has
successfully received.

(4) Bob also obtains a binary sequence according to the quantum sequence S that Bob prepares and
the rule: |ϕ0y denotes “0” and |ϕ1y denotes “1”.

(5) For the lost particles Alice publishes, Bob flips his corresponding bits randomly. Then Bob
randomly adds a bit “0” or “1” behind his data; by doing so, Bob doubles his key. Obviously,
Bob’s bits corresponding to lost particles are all used as parts of the raw key. Therefore, Alice will
not falsely declare lost particles, because Alice will not benefit from reporting a lost particle for any
unsuccessful USD measurement, such as increasing the probability of conclusive measurements
and knowing a larger fraction of bits that are expected for a giving θ. On the contrary, Bob will
obtain more information about Alice’s bits if Alice reports a lost particle for any unsuccessful
USD measurement. In addition, by flipping Bob’s bits corresponding to lost particles randomly,
Eve can not obtain database information by measuring some lost particles.

Tables 1 and 2 are examples of sharing oblivious raw keys between Alice and Bob by using all
particles in sequence S (the lost particles and received particles). Table 1 shows the case that Alice
honestly reports all lost particles. Table 2 shows the case that Alice dishonestly reports the lost particles;
that is, Alice will report some measuring failure particles as lost particles. In Tables 1 and 2 “#”
denotes the honest reporting of lost particle, “?” denotes measurement failure of Alice , “$” denotes
measurement failure of Alice but reporting particles as lost particles, “*” denotes knowing nothing
about the bit. In Tables 1 and 2 the bits in Bob’s final bits corresponding to reporting as lost particles
(including the honest reporting of lost particles and measurement failure by Alice, but reporting
particles as lost particles) are the results of flipping the original Bob’s bits randomly.

Table 1. The case that Alice honestly reports all lost particles.

Order Number 1 2 3 4 5 6 7 8 9

The states Bob
prepares |ϕ0y |ϕ1y |ϕ1y |ϕ1y |ϕ0y |ϕ0y |ϕ0y |ϕ0y |ϕ0y

Bob’s original bits 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1

Lost particles and
Alice’s measuring

result
* |ϕ1y * |ϕ1y * ? * ? * |ϕ0y * ? * ? * # *

Alice’s bits 1 1 0

Bob’s final bits 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 1 1

Notes: |ϕ0y and |ϕ1y denotes non-orthogonal states in Equation (1).

Entropy 2016, 18, 163 4 of 11

Table 2. The case that Alice dishonestly reports the lost particles.

Order Number 1 2 3 4 5 6 7 8 9

The states Bob
prepares |ϕ0y |ϕ1y |ϕ1y |ϕ1y |ϕ0y |ϕ0y |ϕ0y |ϕ0y |ϕ0y

Bob’s original bits 0 1 1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 1

Lost particles and
Alice’s measuring

result
* |ϕ1y * |ϕ1y * $ * ? * |ϕ0y * $ * $ * # *

Alice’s bits 1 1 0

Bob’s final bits 0 1 1 0 1 1 0 0 0 1 0 1 1 0 0 1 1 1

In Table 1, Alice honestly reports all lost particles (1,9) and measurement failure of particles
(4,5,7,8). In Table 2, Alice dishonestly reports the lost particles (1,4,7–9), where particles 4,7,8 are the
case of measurement failure by Alice but reporting particles as lost particles. By comparing Alice’s
bits and Bob’s final bits in Tables 1 and 2 we find that the dishonest reporting of lost particles will
not impact Alice’s bits. In addition, we still find that the bits corresponding to dishonest reporting of
lost particles in Bob’s final bits are the results of flipping Bob’s corresponding original bits randomly;
however, Alice knows nothing about these bits. From Tables 1 and 2 we find that if Alice honestly
reports lost particles, Bob knows that Alice may successfully measure particles 2–8; if Alice reports
failure measurements as lost particles, Bob knows that Alice may successfully measure particles 2,3,5,6.
That is, the probability that Bob knows Alice’s bits increases. Therefore, dishonest reporting of lost
particles will make Bob know more information of Alice’s bits; however, Alice can not know more
information about Bob’s final bits.

For Alice, with the exception of those two-bit-groups corresponding to lost particles, she owns
the first bit of each of Bob’s two-bit-groups corresponding to received photons, but nothing about the
second bit. Whatever the measurement result of Alice, the second bit is 0 or 1 with equal probability.
Therefore, Alice knows the first bit of Bob’s each two-bit-group corresponding to received photons
with probability p = 1 ´ cosθ.

In this way, Alice and Bob have shared a raw key Kr known completely to Bob and partly to Alice.
Obviously, for each two-bit-group corresponding to received photons, Alice should know only one bit
with probability 1 ´ cosθ. Therefore, Alice knows only p ď (1 ´ cosθ)/2 of the raw key Kr on average.
That is, (1 ´ cosθ)/2 is the upper bound of the bits that Alice knows of the raw key Kr.

(6) To reduce the bits by Alice known in the raw key they shared in the above steps, Alice and Bob
execute post-processing on the raw key. Because the length of Kr is kN, where k is a natural
number, Alice and Bob break Kr up into k parts, thus the length of each parts is N. By adding the
k parts bitwise, the raw key becomes a final key with length N. Bob knows the whole key, while
Alice only knows several bits. For example, Bob’s bits are “011011100000” and Alice's bits are
“**1*1***0***”, where “*” denotes that Alice knows nothing about the bit. If k = 2, Bob and Alice
divide their bits into two parts, respectively: Bob's bits: “011011, 100000”; Alice's bits: “**1*1*,
0*”. Then, Bob and Alice perform bitwise exclusive-OR (XOR) operation on the top six bits and
the post six bits, respectively: Bob: 011011 XOR 100000 = 111011; Alice: **1*1* XOR **0*** = **1***.
Therefore, Bob’s and Alice’s key is 111011 and **1***, respectively. The process is similar to
that in J-protocol, G-protocol and Y-protocol. If Alice knows nothing of the final key after this
post-processing, the protocol should be restarted. However, this condition can be avoided by
choosing appropriate parameters, which will be analyzed later.

(7) Bob encrypts the database and Alice obtains the record that she needs. The detailed procedure is
as follows: if Alice owns the jth bit Kj of Bob’s key K, and she needs to obtain the ith record Xi in
Bob’s database. Then, Alice tells Bob the value s = j ´ i. If s is a negative number, Bob shifts K
right circularly with |s| bits; otherwise, Bob shifts K left circularly with s bits, by doing so Bob

Entropy 2016, 18, 163 5 of 11

can obtain a new key K1. Bob encrypts the database with K1 in the way of a one-time pad. Alice
decrypts the ith record with her key Kj.

3. Analysis

After step (6) (Alice and Bob add k substrings bitwise), Alice obtains n “ NRk bits of the final
key K on average, where R = 1´cosθ

2 . The probability that Alice can not know any bits at all is

P0 “ p1´ Rkq
N
“ p1´ n

N q
N

. When N " n is satisfied, P0 « e´n is obtained and n follows a Poisson
distribution approximately. When n ď 2 is satisfied, we have P0 ě 0.135; when n ě 3 is satisfied, we
have P0 ď 0.05. In order to make Alice get less bits, at the same time, the failure rate is very small,
obviously, n “ 3 is an optimal value. We have Pě4 “ 1´ P3 ´ P2 ´ P1 ´ P0 “ 1´ 13e´3 “ 0.35 and
Pě5 “ 1´ P4 ´ P3 ´ P2 ´ P1 ´ P0 “ 0.18, where Pě4 denotes the probability that Alice knows more
than four bits in a distribution and Pě5 denotes the probability that Alice knows more than five bits
in a distribution when the average value of n is three. That is to say, the success probability of Alice
to learn more bits by cheating is very small. The distribution of n in G-protocol and Y-protocol also
follows a Poisson distribution approximately.

Figure 1 (locating N = 10,000) indicates that a different n is reached by adjusting θ and k when N
is fixed. Compared with G-protocol (see Figure 2 in [12]), we find that, to achieve similar N and n, the
value of k ranges from 2 to 5 in our protocol, while from 5 to 10 in G-protocol. This means that we need
smaller k compared with G-protocol under similar conditions (n, θ and N). That is, less post-processing
is required in our protocol.

Entropy 2016, 18, 163 5 of 12

after this post-processing, the protocol should be restarted. However, this condition can be
avoided by choosing appropriate parameters, which will be analyzed later.

(7) Bob encrypts the database and Alice obtains the record that she needs. The detailed procedure
is as follows: if Alice owns the jth bit Kj of Bob’s key K, and she needs to obtain the ith record Xi
in Bob’s database. Then, Alice tells Bob the value s = j − i. If s is a negative number, Bob shifts K
right circularly with |s| bits; otherwise, Bob shifts K left circularly with s bits, by doing so Bob
can obtain a new key K′. Bob encrypts the database with K′ in the way of a one-time pad. Alice
decrypts the ith record with her key Kj.

3. Analysis

After step (6) (Alice and Bob add k substrings bitwise), Alice obtains kn NR bits of the final

key K on average, where R = 1 cos
2

 . The probability that Alice can not know any bits at all is

0 (1) (1)k N NnP R
N

 . When N n is satisfied, 0
nP e is obtained and n follows a Poisson

distribution approximately. When 2n is satisfied, we have 0 0.135P ; when 3n is satisfied,
we have 0 0.05P . In order to make Alice get less bits, at the same time, the failure rate is very

small, obviously, 3n is an optimal value. We have 3
4 3 2 1 01 1 13 0.35P P P P P e and

5P 4 3 2 1 01 0.18P P P P P , where 4P denotes the probability that Alice knows more than
four bits in a distribution and 5P

 denotes the probability that Alice knows more than five bits in a

distribution when the average value of n is three. That is to say, the success probability of Alice to
learn more bits by cheating is very small. The distribution of n in G-protocol and Y-protocol also
follows a Poisson distribution approximately.

Figure 1 (locating N = 10,000) indicates that a different n is reached by adjusting θ and k when
N is fixed. Compared with G-protocol (see Figure 2 in [12]), we find that, to achieve similar N and
n , the value of k ranges from 2 to 5 in our protocol, while from 5 to 10 in G-protocol. This means that
we need smaller k compared with G-protocol under similar conditions (n , θ and N). That is, less
post-processing is required in our protocol.

Figure 1. When N = 10,000, n << N can be achieved.

Figure 1. When N = 10,000, n << N can be achieved.

3.1. Loss Tolerant

The following two reasons can show that our protocol is loss tolerance. Firstly, Bob’s bits
corresponding to lost particles are all used as parts of the raw key. Therefore, Alice will not falsely
declare lost particles, because Alice will not benefit from reporting a lost photon for any unsuccessful
USD measurement, such as increasing the probability of conclusive measurements and knowing
a larger fraction of bits than expected for a giving θ. On the contrary, Bob will obtain more information
about Alice’s bits if Alice reports a lost particle for any unsuccessful USD measurement. Secondly, by
flipping Bob’s bits corresponding to lost particles randomly and post-processing on the raw key, Eve
can not obtain database information by measuring some lost photons.

Entropy 2016, 18, 163 6 of 11

3.2. The Third-Party Attacks

The intercept resend attack and Trojan Horse attack are two common attack strategies in quantum
secure communication. In our protocol, the particles are one-way transmission, and there is no loop
(circuit); therefore, there is no Trojan Horse attack. Two-point attack [15] is a specific intercept resend
attack strategy aiming to attack the QKD system based on two non-orthogonal states [16]. In two-point
attacks, there are two third-party eavesdroppers Eve1 and Eve2. Eve1 is located at a point near Alice’s
security domain, and Eve2 at a point near Bob’s security domain. Eve1 and Eve2 can communicate
with each other through a classical channel. Eve1 intercepts the quantum channel and measures
every quantum state. Eve2 resends the quantum state according to the measurement result Eve1 tells
him. Next, we analyze the influence of two-point attacks on user privacy and database privacy in
our protocol.

(1) The influence of two-point attacks on user privacy

In our protocol, if Eve1 intercepts a particle and successfully measures it with a USD method, after
Eve1 tells the result to Eve2, Eve2 resends the particle to Alice. Then, Eve1 and Eve2 will know the
bit of Alice. That is, user privacy is threat. However, because Bob inserts decoy particles with x-basis
and z-basis randomly in quantum sequence S, Eve1 and Eve2 has 1/3 probability or less to select
correct basis (USD, x-basis or z-basis) to measure the intercepted particles successfully. In addition,
the eavesdropping of Eve1 and Eve2 will be easily found with probability 2/3. They only have
the probability

PT “
1´ cosθ

3
(2)

to know the corresponding bit of Alice. While in G-protocol and Y-protocol, the probability that Eve1
and Eve2 are found is 0, and the probability that Eve1 and Eve2 know the corresponding bit of Alice is

PG
T “ PY

T “
sin2θ

2
. (3)

From Figure 2, we find that the probability that Eve1 and Eve2 know Alice’s bits for different θ in
our protocol is much lower than that in G-protocol and Y-protocol.Entropy 2016, 18, 163 7 of 12

Figure 2. The probabilities that Eve1 and Eve2 know Alice’s bits for different θ in our protocol,
G-protocol and Y-protocol. The solid line represents the probabilities for G-protocol (PTG) and
Y-protocol (PTY); the star line represents the probability for our protocol (PT).

(2) The influence of two-point attacks on database privacy

In our protocol, Bob’s bits corresponding to particles that are intercepted by Eve1 without
being resend by Eve2 are flipped randomly; therefore, Eve1 and Eve2 know nothing about these
bits. For the particles that Eve1 intercepts and Eve2 resends, according to analysis in the influence
of two-point attacks on user privacy, we know that Eve1 and Eve2 will be easily found with
probability 2/3, and they only have the probability (1 − cosθ)/3 to know the corresponding bit.
Therefore, it is difficult to obtain database information for Eve1 and Eve2, and their eavesdropping
will be found easily.

3.3. Qubit Efficiency Comparison

To estimate the efficiency of QPQ, we define the qubit efficiency as
()

N
n M l

, where N

denotes the final classical bits that can be generated for Bob, n denotes the final classical bits that
can be generated for Alice, M denotes the total coding particles in each communication, and l
denotes the decoy photons to check the presence of eavesdropping in each communication.

Because n = NRk, we have 1
k

N
Rn

 , then

1
()kR M l

 (4)

For G-protocol,
2sin

2
R

 , M kN and there is no eavesdropping detecting, thus

2

1
sin()2

G k kN

.

 (5)

For Y-protocol,
2sin

2
R

 , 2M kN and there is no eavesdropping detecting, thus

2

1
sin() 22

Y k kN

.

 (6)

Figure 2. The probabilities that Eve1 and Eve2 know Alice’s bits for different θ in our protocol,
G-protocol and Y-protocol. The solid line represents the probabilities for G-protocol (PT

G) and
Y-protocol (PT

Y); the star line represents the probability for our protocol (PT).

Entropy 2016, 18, 163 7 of 11

(2) The influence of two-point attacks on database privacy

In our protocol, Bob’s bits corresponding to particles that are intercepted by Eve1 without being
resend by Eve2 are flipped randomly; therefore, Eve1 and Eve2 know nothing about these bits. For the
particles that Eve1 intercepts and Eve2 resends, according to analysis in the influence of two-point
attacks on user privacy, we know that Eve1 and Eve2 will be easily found with probability 2/3, and
they only have the probability (1 ´ cosθ)/3 to know the corresponding bit. Therefore, it is difficult to
obtain database information for Eve1 and Eve2, and their eavesdropping will be found easily.

3.3. Qubit Efficiency Comparison

To estimate the efficiency of QPQ, we define the qubit efficiency as η “ N
npM`lq , where N denotes

the final classical bits that can be generated for Bob, n denotes the final classical bits that can be
generated for Alice, M denotes the total coding particles in each communication, and l denotes the
decoy photons to check the presence of eavesdropping in each communication.

Because n = NRk, we have N
n “

1
Rk , then

η “
1

RkpM` lq
(4)

For G-protocol, R “ sin2θ
2 , M “ kN and there is no eavesdropping detecting, thus

ηG “
1

psin2θ{2q
k
kN

. (5)

For Y-protocol, R “ sin2θ
2 , M “ 2kN and there is no eavesdropping detecting, thus

ηY “
1

psin2θ{2q
k
2kN

. (6)

For our protocol, R “ 1´cosθ
2 , M “ kN, thus

ηOur “
1

p 1´cosθ
2 q

k
pkN ` lq

. (7)

In Table 3, we compare the qubit efficiency of G-protocol [12], Y-protocol [13] and our protocol
when N = 10,000.

Table 3. Examples of qubit efficiency comparison of G-protocol, Y-protocol and our protocol when
N = 10,000 and l = 15,000.

θ, k θ = 0.15,
k = 2

θ = 0.25,
k = 2

θ = 0.36,
k = 3

θ = 0.4,
k = 3

θ = 0.57,
k = 4

θ = 0.62,
k = 4

G-protocol 0.4010 0.0534 0.1395 0.0765 0.0556 0.0308
Y-protocol 0.2005 0.0267 0.0698 0.0382 0.0278 0.0154

Our protocol 0.9064 0.1183 0.6749 0.3614 0.4656 0.2424

From Table 3, we find that our protocol has better qubit efficiency than G-protocol [12] and
Y-protocol [13].

Entropy 2016, 18, 163 8 of 11

3.4. Database Security

Database security means that Alice can not get extra records in Bob’s database no matter the
methods she uses. Suppose that, to obtain extra records, Alice performs more efficient measurements
on particles that Bob sends to her.

As analyzed in Ref. [11], there is a measurement called minimal error probability
measurement [17], which distinguishes two equally likely qubits. If Alice measures the k qubits
forming an element of the final key K with the efficient measurement, she obtains the bits of K directly.
By using minimal error probability measurement, the maximal chance of distinguishing the two states
ρ0 and ρ1 correctly is Pguess = 1/2 + D(ρ0, ρ1)/2, where D(ρ0, ρ1) denotes trace distance between ρ0

and ρ1. In our protocol, the probability is Pguess = (1
2 `

1
2 sinkθ) at most. However, even though Alice

guesses |ϕ0y and |ϕ1y correctly, (the probability is Pguess/3), she can infer correctly the corresponding
two-bit group of Bob with 50% chance, that is, on average, Alice can infer correctly each bit of Bob
with a 75% chance. Therefore, Alice can correctly guess the bit of Bob with probability

Pguess “
1
4
p

1
2
`

1
2

sinkθq (8)

at most. Obviously the probability is much less than that in G-protocol (PG
guess “

1
2 `

1
2 sinkθ), which

means better database security than that in G-protocol. Figure 3 shows that Pguess in our protocol is
much less than that in G-protocol for a giving k = 2.Entropy 2016, 18, 163 9 of 12

Figure 3. Comparison of probability with which Alice correctly guesses the bit of Bob for different θ
between our protocol and G-protocol when k = 2. The solid line represents Pguess for G-protocol; the
dotted line represents Pguess for our protocol.

3.5. User Security

We suppose that Bob transmits a false qubit |Θ> to Alice, where |Θ> = cosβ|+> + sinβ|->. Alice
obtains the conclusive result with probability (1 − cos(θ ± β))/2. By sending a fake state, Bob biases
the probability of measurement results of Alice between ((1 − cos(θ + β))/2, (1 − cos(θ − β))/2) unless β

= 0. Let Y = cos(θ − β) − cos(θ + β), by deducing 0dY
d

 and
2

2

d Y
d

, we can get β = π/2 when

2

2 0d Y
d

. We construe this result as that optimal probability with which Bob knows Alice’s bits is

between ((1 − cos(θ + π/2))/2, (1 − cos(θ − π/2))/2). That is, the bounds on Pb (the probability with
which Bob knows Alice’s bits) is:

(1 − cos(θ + π/2))/2 < Pb < (1 − cos(θ − π/2))/2. (9)

Figure 4 shows that when θ ∈ (0,π/2), the low bound of Pb for our protocol is smaller than that
in G-protocol. The upper bound of Pb for our protocol is smaller than that in G-protocol when 0 < θ <
π/4, and bigger than that in G-protocol when π/4 < θ < π/2. That is, when 0 < θ < π/4, we can achieve
a better user privacy compared with G-protocol.

Figure 4. Comparisons of probability with which Bob knowing Alice’s bits for different θ between
our protocol and G-protocol. The star line represents Pb for G-protocol; the dotted line represents the
upper bound of Pb for our protocol; the solid line represents the lower bound of Pb for our protocol.

Figure 3. Comparison of probability with which Alice correctly guesses the bit of Bob for different θ
between our protocol and G-protocol when k = 2. The solid line represents Pguess for G-protocol; the
dotted line represents Pguess for our protocol.

3.5. User Security

We suppose that Bob transmits a false qubit |Θ> to Alice, where |Θ> = cosβ|+> + sinβ|->. Alice
obtains the conclusive result with probability (1 ´ cos(θ ˘ β))/2. By sending a fake state, Bob biases
the probability of measurement results of Alice between ((1 ´ cos(θ + β))/2, (1 ´ cos(θ ´ β))/2) unless
β = 0. Let Y = cos(θ ´ β) ´ cos(θ + β), by deducing dY

dβ “ 0 and d2Y
d2β

, we can get β = π/2 when d2Y
d2β

ă 0.
We construe this result as that optimal probability with which Bob knows Alice’s bits is between
((1 ´ cos(θ + π/2))/2, (1 ´ cos(θ ´ π/2))/2). That is, the bounds on Pb (the probability with which
Bob knows Alice’s bits) is:

p1´ cospθ ` π{2qq{2 ă Pb ă p1´ cospθ´π{2qq{2. (9)

Entropy 2016, 18, 163 9 of 11

Figure 4 shows that when θ P (0,π/2), the low bound of Pb for our protocol is smaller than that in
G-protocol. The upper bound of Pb for our protocol is smaller than that in G-protocol when 0 < θ < π/4,
and bigger than that in G-protocol when π/4 < θ < π/2. That is, when 0 < θ < π/4, we can achieve
a better user privacy compared with G-protocol.

Entropy 2016, 18, 163 9 of 12

Figure 3. Comparison of probability with which Alice correctly guesses the bit of Bob for different θ
between our protocol and G-protocol when k = 2. The solid line represents Pguess for G-protocol; the
dotted line represents Pguess for our protocol.

3.5. User Security

We suppose that Bob transmits a false qubit |Θ> to Alice, where |Θ> = cosβ|+> + sinβ|->. Alice
obtains the conclusive result with probability (1 − cos(θ ± β))/2. By sending a fake state, Bob biases
the probability of measurement results of Alice between ((1 − cos(θ + β))/2, (1 − cos(θ − β))/2) unless β

= 0. Let Y = cos(θ − β) − cos(θ + β), by deducing 0dY
d

 and
2

2

d Y
d

, we can get β = π/2 when

2

2 0d Y
d

. We construe this result as that optimal probability with which Bob knows Alice’s bits is

between ((1 − cos(θ + π/2))/2, (1 − cos(θ − π/2))/2). That is, the bounds on Pb (the probability with
which Bob knows Alice’s bits) is:

(1 − cos(θ + π/2))/2 < Pb < (1 − cos(θ − π/2))/2. (9)

Figure 4 shows that when θ ∈ (0,π/2), the low bound of Pb for our protocol is smaller than that
in G-protocol. The upper bound of Pb for our protocol is smaller than that in G-protocol when 0 < θ <
π/4, and bigger than that in G-protocol when π/4 < θ < π/2. That is, when 0 < θ < π/4, we can achieve
a better user privacy compared with G-protocol.

Figure 4. Comparisons of probability with which Bob knowing Alice’s bits for different θ between
our protocol and G-protocol. The star line represents Pb for G-protocol; the dotted line represents the
upper bound of Pb for our protocol; the solid line represents the lower bound of Pb for our protocol.

Figure 4. Comparisons of probability with which Bob knowing Alice’s bits for different θ between our
protocol and G-protocol. The star line represents Pb for G-protocol; the dotted line represents the upper
bound of Pb for our protocol; the solid line represents the lower bound of Pb for our protocol.

4. Discussion

In the above section, we have analyzed the advantages of our protocol in the aspect of less
post-processing (smaller k) compared with G-protocol under similar conditions (n, θ and N), in the
aspect of qubit efficiency compared with G-protocol and Y-protocol for fixed N, and θ and k, in the
aspect of database security and user security compared with G-protocol. In this section, we give a more
comprehensive discussion focusing on security and resources for specific, optimal sets of parameters.

From Table 4, we find that when n is fixed, G-protocol, Y-protocol and our protocol have the same
P0. When N and n are given , for a specific k, Pb in our protocol is much lower than that in G-protocol
and is close to that in Y-protocol, which means that our protocol shows much higher user security
than G-protocol and the user security of our protocol is close to Y-protocol. Furthermore, in the same
condition, our protocol always needs bigger θ than that in G-protocol and Y-protocol. Because a very
small θ might make its realization technically difficult [12], our protocol is easier to realize technically
than G-protocol and Y-protocol.

Table 4. Examples of P0, Pb, θ and M + l comparison of G-protocol, Y-protocol and our protocol for
a given N and n.

a. N = 104, n = 3 and k = 3

Protocol P0 Pb θ M + l

Y-protocol 0.05 0.32~0.68 0.375 6 ˆ 104

G-protocol 0.05 0.98 0.375 3 ˆ 104

Our-protocol 0.05 0.25~0.75 0.5234 4.5 ˆ 104

b. N = 105, n = 3 and k = 3

Protocol P0 Pb θ M + l

Y-protocol 0.05 0.38~0.62 0.252 6 ˆ 105

G-protocol 0.05 0.98 0.252 3 ˆ 105

Our-protocol 0.05 0.33~0.67 0.3544 4.5 ˆ 105

c. N = 105, n = 3 and k = 4

Protocol P0 Pb θ M + l

Y-protocol 0.05 0.31~0.69 0.395 8 ˆ 105

G-protocol 0.05 0.96 0.395 4 ˆ 105

Our-protocol 0.05 0.24~0.76 0.5510 5.5 ˆ 105

Entropy 2016, 18, 163 10 of 11

Table 5 shows that, for a given N and n, when three protocols (Y-protocol, G-protocol and our
protocol) achieve similar θ, our protocol shows higher qubit efficiency than Y-protocol and better user
privacy than G-protocol.

Table 5. Examples of P0, Pb, θ and M + l comparison of G-protocol, Y-protocol and our protocol for
N = 104 and a given n.

a. n = 3

Protocol P0 Pb θ k M + l

Y-protocol 0.05 0.24~0.76 0.539 4 8 ˆ 104

G-protocol 0.05 0.93 0.539 4 4 ˆ 104

Our-protocol 0.05 0.25~0.75 0.5234 3 4.5 ˆ 104

b. n = 5

Protocol P0 Pb θ k M + l

Y-protocol 0.0067 0.23~0.77 0.579 4 8 ˆ 104

G-protocol 0.0067 0.92 0.579 4 4 ˆ 104

Our-protocol 0.0067 0.23~0.77 0.5712 3 4.5 ˆ 104

In a practical condition, channel noise is inevitable, which will cause errors in the obvious
key shared between Alice and Bob. Therefore, error correction is necessary. We can use the
method proposed in Ref. [18] to correct errors. Suppose the kN-bit raw oblivious key is denoted
as OR “ OR

1 OR
2 ...OR

kN , the final obvious key after dilution is denoted as .OF “.OF
1 OF

2 ...OF
N . Here,

OF
i “

k´1
‘

j“0
OR

i`jN , 1 ď i ď N, and ‘ denotes the addition module 2. Alice and Bob select a [k, s]

error-correcting code [19] which uses k bits codeword to encode s bits word using generator matrix
G and can correct one codeword error bits with error-correcting function. Bob chooses a bits word
M = (m1, m2, . . . , ms) and obtains the corresponding bits codeword W = (w1, w2, . . . , wk) by calculating
W = M¨G. Then, Bob encrypts W with {OR

i`jN} as the key, by using a one-time pad, and sends the

ciphertext c to Alice. If Alice knows all the k bits {OR
i`jN}, Alice decrypts c with {OR

i`jN} and obtains
a k-bit codeword W’. Alice corrects the error in W’ and obtains W. By adding the k bits in W bitwise,
Alice knows OF

i . If Alice does not know all the k bits in {OR
i`jN}, she labels OF

i = ?. Bob also adds the k
bits in W bitwise to obtain his corresponding bit OF

i .

5. Conclusions

We put forward a novel QPQ protocol based on two non-orthogonal states and unambiguous
state discrimination (USD) measurement. Our protocol is loss tolerant. Compared with existing QPQ
protocols, we have the following differences:

(1) We analyze the influence of two-point attacks by a third party on user privacy and database
privacy in our protocol. By comparing, we find that the probability that Eve1 and Eve2 know
Alice’s bits for different θ in our protocol is much lower than that in G-protocol and Y-protocol,
which means that our protocol has a stronger ability to resist external attacks than G-protocol and
Y-protocol.

(2) Smaller k is required to achieve similar conditions (n, θ and N) than G-protocol and Y-protocol,
which means less post-processing and higher qubit efficiency.

(3) For a given N and n, our protocol shows much higher user security than G-protocol and the
user security of our protocol is close to Y-protocol. However, in the same condition, our protocol
always needs bigger θ than that in G-protocol and Y-protocol. Because a very small θ might make
its realization technically difficult [12], our protocol is easier to realize technically than G-protocol
and Y-protocol.

Entropy 2016, 18, 163 11 of 11

However, because of eavesdropping detection in Step (2), our protocol requires quantum memory
on the Alice side. The use of quantum memory will bring our protocol difficulties in practicality and
realizability using current technology.

Acknowledgments: This work is supported by the National Natural Science Foundation of China (Grant Nos.
61402058, 61572086), the Fund for Middle and Young Academic Leaders of Chengdu University of Information
Technology (Grant No. J201511), the Science and Technology Support Project of Sichuan Province of China (Grant
No. 2013GZX0137), and the Fund for Young Persons Project of Sichuan Province of China (Grant No. 12ZB017).

Author Contributions: All of the authors read and approved the final manuscript. Yan Chang and Shibin Zhang
conceived and designed the protocol; Yan Chang and Guihua Han performed the experiments; Yan Chang
analyzed the data; Yan Chang, Zhiwei Sheng, Lili Yan and Jinxin Xiong contributed modification of paper;
Yan Chang wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Chor, B.; Goldreich, O.; Kushilevitz, E.; Sudan, M. Private Information Retrieval. J. ACM 1998, 45, 965–981.
[CrossRef]

2. Gertner, Y.; Ishai, Y.; Kushilevitz, E.; Malkin, T. Protecting data privacy in private information retrieval
schemes. J. Comput. Syst. Sci. 2000, 60, 592–629. [CrossRef]

3. Lo, H.-K. Insecurity of quantum secure. Phys. Rev. A 1997, 56, 1154–1162. [CrossRef]
4. Bennett, C.-H.; Brassard, G.; Crlpeau, C.; Skubiszewska, M.H. Practical quantum oblivious transfer.

Adv. Cryptol. 1992, 576, 351–366.
5. Brassard, G.; Crepeau, C.; Jozsa, R.; Langlois, D. A quantum bit commitment scheme provably unbreakable

by both parties. In Proceedings of the 34th Annual Symposium on Foundations of Computer Science,
Palo Alto, CA, USA, 3–5 November 1993; Volume 362.

6. Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum private queries. Phys. Rev. Lett. 2008, 100, 230502. [CrossRef]
7. Martini, F.D.; Giovannetti, V.; Lloyd, S.; Maccone, L.; Nagali, E.; Sansoni, L.; Sciarrino, F. Experimental

quantum private queries with linear optics. Phys. Rev. A 2009, 80, 010302. [CrossRef]
8. Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum private queries: Security analysis. IEEE Trans. Inf. Theory

2010, 7, 3465–3477. [CrossRef]
9. Olejnik, L. Secure quantum private information retrieval using phase-encoded queries. Phys. Rev. A

2011, 84, 022313. [CrossRef]
10. Scarani, V.; Acin, A.; Ribordy, G.; Gisin, N. Quantum cryptography protocols robust against photon number

splitting attacks for weak laser pulse implementations. Phys. Rev. Lett. 2004, 92, 057901. [CrossRef] [PubMed]
11. Jakobi, M.; Simon, C.; Gisin, N.; Bancal, J.D.; Branciard, C.; Walenta, N.; Zbinden, H. Practical private

database queries based on a quantum-key-distribution protocol. Phys. Rev. A 2011, 83, 022301. [CrossRef]
12. Gao, F.; Liu, B.; Wen, Q.Y. Flexible quantum private queries based on quantum key distribution. Opt. Exp.

2012, 20, 17411–17420. [CrossRef] [PubMed]
13. Yang, Y.-G.; Sun, S.J.; Xu, P.; Tian, J. Flexible protocol for quantum private query based on B92 protocol.

Quant. Inf. Process. 2014, 13, 805–813. [CrossRef]
14. Raynal, P. Unambiguous State Discrimination of two density matrices in Quantum Information Theory. 2006,

arXiv: quant-ph/0611133.
15. Yang, L.; Wu, L.-A. Two-point attack on the two nonorthogonal states QKD protocol over a fiber optic

channel. 2005, arXiv: quant-ph/0310080.
16. Bennett, C.-H. Quantum Cryptography Using Any Two Nonorthogonal States. Phys. Rev. Lett. 1992, 68. [CrossRef]
17. Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: New York, NY, USA, 1976.
18. Gao, F.; Liu, B.; Huang, W.; Wen, Q.-Y. Postprocessing of the oblivious key in Quantum Private Query. IEEE J.

Sel. Top. Quant. Electron. 2014, 21, 6600111.
19. MacWilliams, F.J.; Sloane, N.J.A. The Theory of Error-Correcting Codes; North-Holland Publishing Company:

Amsterdam, The Netherlands, 1977.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/293347.293350
http://dx.doi.org/10.1006/jcss.1999.1689
http://dx.doi.org/10.1103/PhysRevA.56.1154
http://dx.doi.org/10.1103/PhysRevLett.100.230502
http://dx.doi.org/10.1103/PhysRevA.80.010302
http://dx.doi.org/10.1109/TIT.2010.2048446
http://dx.doi.org/10.1103/PhysRevA.84.022313
http://dx.doi.org/10.1103/PhysRevLett.92.057901
http://www.ncbi.nlm.nih.gov/pubmed/14995344
http://dx.doi.org/10.1103/PhysRevA.83.022301
http://dx.doi.org/10.1364/OE.20.017411
http://www.ncbi.nlm.nih.gov/pubmed/23038294
http://dx.doi.org/10.1007/s11128-013-0692-8
http://dx.doi.org/10.1103/PhysRevLett.68.3121
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	
	
	
	
	
	
	
	

	
	

