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Abstract: Spectral clustering methods allow datasets to be partitioned into clusters by mapping the

input datapoints into the space spanned by the eigenvectors of the Laplacian matrix. In this article,

we make use of the incomplete Cholesky decomposition (ICD) to construct an approximation of

the graph Laplacian and reduce the size of the related eigenvalue problem from N to m, with

m ≪ N. In particular, we introduce a new stopping criterion based on normalized mutual

information between consecutive partitions, which terminates the ICD when the change in the

cluster assignments is below a given threshold. Compared with existing ICD-based spectral

clustering approaches, the proposed method allows the reduction of the number m of selected pivots

(i.e., to obtain a sparser model) and at the same time, to maintain high clustering quality. The method

scales linearly with respect to the number of input datapoints N and has low memory requirements,

because only matrices of size N × m and m × m are calculated (in contrast to standard spectral

clustering, where the construction of the full N × N similarity matrix is needed). Furthermore, we

show that the number of clusters can be reliably selected based on the gap heuristics computed

using just a small matrix R of size m × m instead of the entire graph Laplacian. The effectiveness of

the proposed algorithm is tested on several datasets.

Keywords: spectral clustering; incomplete Cholesky decomposition; normalized mutual information

1. Introduction

In this paper, we deal with the data clustering problem. Clustering refers to a technique for

partitioning unlabeled data into natural groups, where data points that are related to each other

are grouped together and points that are dissimilar are assigned to different groups [1]. In this

context, spectral clustering [2–5] has been shown to be among the most successful methods in

many application domains, due mainly to its ability to discover nonlinear clustering boundaries.

The algorithm is based on computing the eigendecomposition of a matrix derived from the data

called Laplacian. The eigenvectors of the Laplacian represent an embedding of the input data,

which reveals the underlying clustering structure. A major drawback of spectral clustering is

its computational and memory cost. If we denote the number of datapoints by N, solving the

eigenvalue problem has complexity O(N3), the construction of the Laplacian matrix has cost O(N2),

and the Laplacian may not fit into the main memory when N is large. A number of algorithms

have been devised to make spectral clustering feasible for large scale applications, which include

power iteration clustering [6], spectral clustering in conjunction with the Nyström approximation [7],
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incremental spectral clustering techniques [8–10], kernel spectral clustering [11–13], parallel spectral

clustering [14], consensus spectral clustering [15], vector quantization-based approximate spectral

clustering [16], and approximate pairwise clustering [17]. In this article, we introduce a spectral

clustering algorithm that exploits the incomplete Cholesky decomposition to reduce the size of the

eigenvalue problem. The idea behind the proposed method is similar to [18], but a number of

novelties are introduced. First, a new stopping criterion based on normalized mutual information is

devised, which allows us to decrease the number m of selected pivots, and hence, the computational

complexity. Second, the number of clusters is automatically selected by means of the eigen-gap

heuristics computed on a small similarity matrix of size m × m. Third, a sensitivity analysis shows

how to select specific threshold values in order to achieve desired cluster quality, sparsity, and

computational time. The rest of this paper is organized as follows. Section 2 summarizes the spectral

clustering method and the incomplete Cholesky decomposition. In Section 3, the proposed algorithm

is introduced. Section 4 describes the results of the experiments, Section 5 analyzes the computational

cost of the proposed algorithm, and finally Section 6 concludes the article.

2. Spectral Clustering

Spectral clustering solves a relaxation of the graph partitioning problem. In its most basic

formulation, one is provided with an unweighted/weighted graph and is asked to split it into k

non-overlapping groups A1, . . . ,Ak in order to minimize the cut size, which is the number of edges

running between the groups (or the sum of their weights). This idea is formalized via the mincut

problem [19], that is, the objective of finding k subgraphs such that a minimal number of edges are

cut off and that the sum of all weights of these cut edges is minimal. Furthermore, in order to favour

balanced clusters, the normalized cut problem can be defined as follows:

min
G

k − tr(GTLnG)

subject to GTG = IN

(1)

where:

• Ln = I − D− 1
2 SD− 1

2 is called the normalized Laplacian;

• S is the similarity matrix, which describes the topology of the graph;

• D = diag(d), with d = [d1, . . . , dN]
T and di = ∑

N
j=1 Sij, denotes the degree matrix;

• G = [g1, . . . , gk] is the matrix containing the normalized cluster indicator vectors gl =
D

1
2 yl

||D
1
2 yl ||2

;

• yl , with l = 1, . . . , k, is the cluster indicator vector for the l-th cluster. It has a 1 in the entries

corresponding to the nodes in the l-th cluster and 0 otherwise. Moreover, the cluster indicator

matrix can be defined as Y = [y1, . . . , yk] ∈ {0, 1}N×k;

• IN denotes the N × N identity matrix.

Since this is a NP-hard problem, a good approximate solution can be obtained in polynomial

time, allowing G to take continuous values; i.e., G ∈ R
N×k. In this case it can be shown that solving

problem (1) is equivalent to finding the solution to the following eigenvalue problem:

Lngl = λlgl , l = 1, . . . , k, (2)

where λ1, . . . , λk are the k smallest eigenvalues of the normalized Laplacian Ln, which contain the

clustering information.

2.1. Incomplete Cholesky Decomposition

A Cholesky decomposition [20] of a matrix A ∈ R
N×N is a decomposition of a symmetric

positive definite matrix into the product of a lower triangular matrix and its transpose; i.e.,
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A = CCT, and it is widely used to solve linear systems. The incomplete Cholesky decomposition

(ICD) [21] allows the reduciton of the computational time required by the Cholesky decomposition

by computing a low rank approximation of accuracy τ of the matrix A in O(m2N), such that

||A − CCT ||F < τ, with C ∈ R
N×m and m ≪ N. In fact, the ICD selects the rows and the columns

of A in an appropriate manner, such that the rank of the approximation is close to the rank of the

original matrix. In other words, the selected rows and columns, also called pivots, are related to

certain data points, and this sparse set of data points is a good representation of the full data set.

As discussed in [22], the ICD leads to small numerical error only when there is a fast decay of the

eigenvalues. However, as pointed out in [18], this condition is not always met. Therefore, the ICD

stopping criterion based on the low rank assumption is not optimal.

2.2. A Reduced Eigenvalue Problem

As described in [18,22], the ICD technique briefly summarized in the previous section can be

used to speed up the solution of the spectral clustering eigenvalue problem (2). In this section, we will

review the main linear algebra operations that are needed for this purpose. Let’s start by considering

the following eigenvalue problem:

L̃ngl = λ̃lgl , l = 1, . . . , k, (3)

with L̃n = D− 1
2 SD− 1

2 , whose eigenvalues λ̃l are related to the eigenvalues of Ln by the relation

λ̃l = 1 − λl (the eigenvectors are the same). Therefore, the clustering information is contained in the

eigenvectors corresponding to the largest eigenvalues of L̃n. If we replace the similarity matrix S with

its ICD, we obtain that L̃n ≈ D̃− 1
2 CCTD̃− 1

2 . In order to reduce the size of the eigenvalue problem

involving L̃n, we can replace D̃− 1
2 C with its QR factorization and substitute R with its singular value

decomposition to obtain:

L̃n ≈ D̃− 1
2 CCTD̃− 1

2 ≈ (QR)(QR)T ≈ Q(URΣRVT
R )(VRΣRUT

R)QT ≈ QUR(Σ
2
R)U

T
RQT, (4)

where Q ∈ R
N×m, R ∈ R

m×m, R = URΣRVR, and UR, ΣR, VR ∈ R
m×m. Notice that now we have to

solve an eigenvalue problem of size m×m involving matrix RRT , which can be much smaller than the

size N × N of the original problem (3). Furthermore, the eigenvectors of problem (3) can be estimated

as ĝl = QUR,l, whose related eigenvalues are λ̂l = σ
2
R,l . Finally, the extraction of the cluster indicator

matrix from the top k eigenvectors can be achieved by computing a pivoted LQ decomposition of the

eigenvector matrix D− 1
2 Ĝ as proposed in [23]:

Ŷ = PLQĜ (5)

where Ĝ = [ĝ1, . . . , ĝk], P ∈ R
N×N is a permutation matrix, L ∈ R

N×k is a lower triangular matrix,

and Q ∈ R
k×k denotes a unitary matrix. In real-world scenarios, the clusters present a certain

amount of overlap. Therefore, matrix Ŷ becomes real-valued and the cluster assignment for point

xi is computed as:

ji = arg maxl=1,...,k(|Ŷil |). (6)

3. Proposed Algorithm

As explained previously, the classic ICD algorithm is based on the assumption that the spectrum

of the Laplacian matrix is characterized by a fast decay. Since this property in some cases does not

hold [18], in this article we introduce a novel stopping criterion, which will be explained now.
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3.1. New Stopping Criterion

The new stopping condition only assumes that the cluster assignments after the selection of each

pivot tend to converge. In particular, given the cluster assignments js at step s and js−1 at iteration

s− 1, with j = [j1, . . . , jN], we can compute the normalized mutual information (NMI) [24] as follows:

nmis = NMI(js, js−1). (7)

The value nmis measures the statistical information shared between the cluster assignments js

and js−1, and takes values in the range [0, 1]. It tells us how much knowing one of these clusterings

reduces our uncertainty about the other. The higher the NMI, the more useful the information in

js helps us to predict the cluster memberships in js−1 and viceversa. In practice, this means that

when the cluster assignments between two consecutive iterations are the same (up to the labelling),

nmis = 1. On this basis, we propose to terminate the ICD algorithm when |nmis − 1| < THRstop,

THRstop being a user-specified threshold value. Furthermore, to speed up the procedure, we start

to check the convergence of the cluster assignments only when the approximation of the similarity

matrix is good enough. An approximation of matrix S implies that the degree of each datapoint is

also approximated. Therefore, the ratio rdeg = min(d̃)
max(d̃)

can be used to have an idea of the quality of

the approximation [18], where d̃ = CCT1N , and min and max denote the minimum and maximum

element of a vector. In particular, the convergence of the cluster assignments begins to be monitored

when
min(d̃)

max(d̃)
> THRdeg. From our experience THRstop = THRdeg = 10−6 represents a good choice,

which prevents termination of the ICD algorithm too early (with poor clustering performance), but

also not too late (by selecting more pivots than needed). In this realm, a sensitivity analysis (the

study is related to the dataset Three 2D Gaussians) of the proposed algorithm with respect to different

threshold settings is depicted in Figure 1. In Figure 2, the trend of nmis as a function of the number

of selected pivots is shown for the synthetic datasets analysed in this paper.
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Figure 1. Sensitivity analysys. Behavior of the proposed approach with respect to different threshold

values in terms of cluster quality, as measured by the (a) Adjusted Rand Index (ARI), (b) sparsity (e.g.,

number of selected pivots), (c) runtime.
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Figure 2. Proposed stopping criterion. Convergence of the cluster assignments during the incomplete

Cholesky decomposition as measured by the normalized mutual information between consecutive

partitionings. (a) Aggregation; (b) Compounds; (c) D31; (d) Flames; (e) Jain; (f) R15; (g) Three 2D

Gaussians; (h) Three rings; (i) Two spirals.
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3.2. Choosing the Number of Clusters

The number of clusters k present in the data is not known beforehand and must be chosen

carefully to ensure meaningful results. To tackle this issue, we exploit the theoretical fact that the

multiplicity of the eigenvalue 1 of the Laplacian Ln equals the number of connected components

(i.e., clusters) in the graph. In other words, we use the eigen-gap heuristics [4], which unlike standard

spectral clustering, in our case is computed using the m × m R matrix (see Equation (4)) rather than

the original N × N Laplacian matrix. Furthermore, we consider an eigenvalue to have converged if

|λ̂l − 1| < THReig. For simplicity, we set THReig = THRstop = 10−6, which from our experiments,

turned out to be a good choice. In Figure 3, we show through several examples that a meaningful

value for k can be detected using only the information provided by the m selected pivots. However,

it should be pointed out that the eigengap heuristic can fail in real situations when, due to some

overlap between the clusters, the sharp decay of the eigenvalues of the ideal case quickly deteriorates.

In this case, the Gershgorin circle theorem, which provides upper bounds on the eigenvalues of the

Laplacian matrix, can be utilized to determine a meaningful interval for the number of clusters [25].

Another alternative to select the number of clusters, although more computationally demanding,

could be the use of any internal cluster validity criterion in conjunction with the current cluster

assignments.

The complete clustering algorithm proposed in this paper, which we call ICD-NMI, is

summarized in Algorithm 1. Furthermore, a Matlab implementation can be downloaded from [26].
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Figure 3. Choosing the number of clusters. Estimated eigenvalues of the approximated Laplacian

L̃n. In general, the number of eigenvalues λ̂l such that |λ̂l − 1| < 10−6 gives a good indication of the

number of clusters which are present in the data. (a) Aggregation; (b) Compounds; (c) D31; (d) Flames;

(e) Jain; (f) R15; (g) Three 2D Gaussians; (h) Three rings; (i) Two spirals.
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Algorithm 1: ICD-NMI algorithm

Data: Data set D = {xi}
N
i=1, positive semi-definite similarity measure W(xi, xr) = Sir,

thresholds THRstop, THRdeg, and THReig, maximum number of clusters to search for

maxk, maximum number of pivots (e.g., maximum number of iterations) dC

Result: Selected number of clusters k, vector of cluster assignments j, matrix of soft cluster

memberships F.

/* Initialize variables: */

s = 1

P = IN

C = 0N×dC

S̄ = 0N

hr = Srr, r = 1, . . . , N

j1 = 1N.

/* Start ICD: */

while |nmis − 1| < THRstop do
Find new pivot element r⋆ = arg maxr∈[s,N]hr

Update permutation matrix P such that Pss = Pr⋆r⋆ = 0 and Psr⋆ = Pr⋆s = 1

Permute elements s and r⋆ in S̄ as S̄1:N,s ↔ S̄1:N,r⋆ and S̄s,1:N ↔ S̄r⋆,1:N

Update the element of C as Cs,1:s = Cr⋆,1:s

Set Css =
√

S̄ss

Calculate sth column of C as Cs+1:N,s =
1

Css
(S̄s+1:N,s − ∑

s−1
r=1 Cs+1:N,rCsr)

Calculate rdeg = min(d̃)
max(d̃)

if rdeg > THRdeg then

Compute QR decomposition of D̃− 1
2 C

Compute the singular value decomposition of R as R = UΣVT

Obtain the approximated eigenvectors via Ĝ = QUR,1:maxk.

/* Select current number of clusters */

Check number of eigenvalues approximating 1, i.e., such that |λ̂j − 1| < THReig

Set this number as the current number of clusters ks.

/* Check stopping condition */

Set Ĝ = Ĝ1:ks

Compute LQ factorization with row pivoting as DĜĜ = PLQĜ

Put Ŷ = PL̂, with L̂ = [LT
11LT

22]L
−1
11 , being L11 ∈ ks × ks a lower triangular matrix

Compute cluster assignment for point xi according to Equation (6), where k = ks

Store current assignments for the N datapoints in vector js

Compute nmis according to Equation (7).

end

hr = hr − C2
rs, r = s + 1, . . . , N

s = s + 1
end

/* Compute soft memberships (optional) */

Calculate soft cluster membership matrix F:

• F = Ŷ

• normalize each column of matrix F between 0 and 1

• normalize each row of matrix F such that ∑r Fir = 1.
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4. Experimental Results

In this section the outcomes of the experiments are presented. Given a dataset {xi}
N
i=1, with

xi ∈ Rd, we start by constructing a graph G = (V , E ) where the N data points represent the vertices

V = {vi}
N
i=1, and their pairwise similarity Sir the weight of the edge between them E = {Sir}

N
i,r=1.

Throughout this paper, the radial basis function with parameter σ is taken as the similarity measure

between two data points xi and xr; i.e., Sir = W(xi, xr) = exp(−
||xi−xr||22

2σ2 ). For simplicity, the

parameter σ is chosen based on the Silverman (the issue concerning the tuning of the bandwidth

parameter is outside of the scope of the paper) rule of thumb [27]. To understand the behaviour

of the proposed algorithm, we have performed simulations on a number of synthetic datasets

that are commonly used to benchmark (the majority of the datasets has been downloaded from

http://cs.joensuu.fi/sipu/datasets/) clustering algorithms. In Figure 3, the eigenvalues λ̂l that are

estimated after selecting the last pivot are illustrated. We can notice how, in general, the number

of eigenvalues that have converged to 1 up to threshold THReig reflect the true number of clusters

present in the data. Figure 2 shows the working principle of the stopping criterion introduced in

Section 3.1: the value nmis converges to 1 − THRstop after a certain number of iterations. In Figure 4,

the detected clusters are depicted together with the selected pivots. In all the datasets, a meaningful

clustering result has been obtained, and the pivot elements represent the clustered structure of the

related data distribution well.

Table 1 reports a comparison between the proposed method and two other clustering algorithms

based on the incomplete Cholesky decomposition, namely algorithms (for a fair comparison, we

report the results of the algorithm that does not use the L1 regularization) [18,22]. The comparison

concerns both the number of selected pivots and the match between the detected clusters and the true

groupings, as measured by the Adjusted Rand Index ([28]). The results indicate that the proposed

algorithm, namely ICD-NMI, requires a minor number of pivots, resulting in a sparser spectral

clustering method with comparable or higher accuracy.
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Figure 4. Clustering results.Clusters detected by the proposed approach in different colors. The

selected pivots are indicated with red stars. We can notice how the detected partitions are

meaningful, and the distribution of the pivots is representative of the distribution of the related

dataset. (a) Aggregation; (b) Compounds; (c) D31; (d) Flames; (e) Jain; (f) R15; (g) Three 2D Gaussians;

(h) Three rings; (i) Two spirals.

Table 1. Comparison with other incomplete Cholesky decomposition (ICD)-based methods on toy

datasets. Different algorithms are contrasted in terms of the number of selected pivots and clustering

quality, in the case of three synthetic datasets. We can notice how the proposed technique obtains a

high clustering performance in terms of Adjusted Rand Index (ARI), and at the same time it requires

a small number of pivots. (Boldface numbers indicate the best performance).

Dataset Algorithm Number of Pivots ARI

Two spirals
ICD-NMI 88 1

[22] 129 1
[18] 94 1

Three rings
ICD-NMI 71 1

[22] 93 0.85
[18] 87 0.87

Three 2D Gaussians
ICD-NMI 9 1

[22] 21 1
[18] 9 1

Figure 5 shows the convergence of the cluster assignments in the analysis of a number of

large real-life databases. The results confirm the main observation that we have made in the case

of the synthetic datasets; that is, the proposed technique requires a limited number of pivots (in

the case of the poker dataset, the method stopped because it reached the maximum number of

iterations without converging) to perform the clustering. Table 2 reports a comparison with the

k-means algorithm [1] used as baseline and an alternative low-rank method based on the Nyström

approximation (the size of the subset should be less than 500 points to not get out-of-memory

error). The cluster quality is measured in terms of the Silhouette index [29] and the Davies–Bouldin

(DB) criterion [30], and the computational burden in terms of runtime. The results indicate that

the proposed approach, although slower than k-means, reaches a higher clustering performance

compared to the alternative approaches, in general.
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Figure 5. Convergence of cluster assignments on real datasets. Normalized mutual information

between consecutive partitionings during the ICD. (a) Covertype; (b) GalaxyZoo; (c) PokerHand.
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Table 2. Comparison with k-means and the Clustered Nyström method on three large real-life datasets

Performance of different approaches in terms of runtime, Silhouette and DB criterion (average values

over ten randomizations). (Boldface numbers indicate the best performance).

Algorithm

Covertype [31] GalaxyZoo [32] PokerHand [33]

N d N d N d

581,012 54 667,944 9 1,025,010 10

Sil DB time (s) Sil DB time (s) Sil DB time (s)

ICD-NMI 0.93 0.14 14.61 0.55 0.55 521.76 0.16 3.70 3408.5

k-means [34] 0.16 1.30 5.57 0.54 1.36 2.89 0.12 2.20 83.56

Clustered Nyström [35] 0.06 2.98 218.48 0.56 0.94 308.91 0.11 2.33 650.89

5. Computational Complexity and Memory Requirements

In this section, the computational burden of the proposed method is analysed in more detail. In

Algorithm 1, two main parts are present: (i) the computation of the current ICD approximation at each

step, which scales linearly with respect to the total number of data points N; (ii) the steps involved

in the calculation of the NMI between current and previous cluster assignments, all of which depend

linearly on N. This reasoning is supported by Figure 6, where the runtime of the proposed approach

is analysed by using one of the synthetic datasets mentioned earlier. It can be evinced how algorithm

ICD-NMI scales linearly, i.e., has complexity O(N).

Regarding the memory load, the proposed method has low requirements, because only matrices

of size N × m and m × m need to be constructed. Furthermore, as we have shown, in general the

algorithm selects a low number of pivots, even in case of very large datasets, meaning that m ≪ N.

10 2 10 3 10 4 10 5 10 6 10 7
10 -2

10 -1

10 0

10 1

10 2

10 3

N

ti
m

e
(s
)

Figure 6. Computational complexity. Scalability of the proposed algorithm with the number N of

datapoints. The Three rings dataset has been used to perform this analysis. The CPU complexity is

O(N), which makes the method suitable for handling large-scale clustering problems. Furthermore,

the memory requirements are low compared to standard spectral clustering because the full N × N

similarity matrix is never constructed.

6. Conclusions

In this paper we have introduced a new stopping criterion for the incomplete Cholesky

decomposition (ICD). The proposed criterion terminates the ICD when the change in the cluster
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assignments is below a given threshold, as measured by the normalized mutual information between

consecutive partitionings. This allows the selection of a limited number of pivots compared to

existing techniques, and at the same time, achieves good clustering quality, as shown for a number of

synthetic and real-world datasets. Furthermore, the number of clusters is selected efficiently based on

the eigengap heuristic computed on a small m × m matrix, with m ≪ N. Finally, a sensitivity analysis

demonstrated how specific threshold values can influence the desired cluster quality, sparsity, and

computational burden. Future work may be related to exploiting memory mapping to handle bigger

datasets that do not fit in memory.
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