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Abstract:

 The often used Nusselt number is critically questioned with respect to its physical meaning. Based on a rigorous dimensional analysis, alternative assessment numbers are found that in a systematic way separately account for the quantitative and qualitative aspect of a heat transfer process. The qualitative aspect is related to the entropy generated in the temperature field of a real, irreversible heat transfer. The irreversibility can be quantified by referring it to the so-called entropic potential of the energy involved in the transfer process.
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1. Introduction


One of the first quantities introduced in almost every lecture about heat transfer is the convective heat transfer coefficient:


[image: there is no content]



(1)




or its nondimensional version, the Nusselt number:


[image: there is no content]



(2)







They combine the heat flux [image: there is no content] at a heat transfer surface (index w, because often it is a wall) and a certain temperature difference [image: there is no content] due to which the heat transfer occurs. For internal flows [image: there is no content] usual is [image: there is no content], for external flows [image: there is no content] is the appropriate choice, with [image: there is no content]: wall temperature, [image: there is no content]: bulk temperature, and [image: there is no content]: ambient temperature. The length [image: there is no content] is a characteristic geometrical length of the geometry under consideration and [image: there is no content] is the thermal conductivity of the fluid.



The motivation for introducing [image: there is no content] is often given in terms of “Newton’s law of cooling”, see for example [1,2,3], found about three centuries ago by Sir Isaac Newton: when a small hot object is cooled in a fluid flow the cooling is approximately exponential with time. With some additional assumptions (see [1], Example 1.6) this corresponds to [image: there is no content] and suggests the introduction of a coefficient, which here is [image: there is no content].



In a systematic approach including dimensional analysis, [image: there is no content] and [image: there is no content] are combined in a nondimensional group which is named the Nusselt number after Wilhelm Nusselt (1882–1957). For the formal relation between [image: there is no content] and Nu see Equation (2). The crucial question that will be addressed here is referred to the physical interpretation of the Nusselt number Nu, or more precisely: What kind of information is associated with a certain value of Nu?



In standard text books this question is answered as follows:

	
Incropera/DeWitt [2] (p. 314): “This parameter is equal to the dimensionless temperature gradient at the surface, and it provides a measure of the convective heat transfer occurring at the surface. The Nusselt number is to the thermal boundary layer what the friction coefficient is to the velocity boundary layer.”



	
White [1] (p. 270): “The traditional dimensionless form of [image: there is no content] is the Nusselt number Nu, which may be defined as the ratio of convection heat transfer to fluid conduction heat transfer under the same conditions.”



	
Özisik [3] (p. 268): “Then the Nusselt number may be interpreted as the ratio of heat transfer by convection to conduction across the fluid layer of thickness L. A larger value of the Nusselt number implies enhanced heat transfer by convection.”








Taking these three statements as representative for those of the heat transfer community in general, it seems that [image: there is no content] and Nu are routinely used when it comes to solving heat transfer problems but that their physical interpretation is qualitative in nature and not a real answer to the question “what exactly is the Nusselt number?”.



In order to give a more substantial answer to the question about the information associated with a certain Nusselt number a thorough dimensional analysis of convective heat transfer problems is followed by a critical look at the nondimensional groups obtained. This analysis is performed from a thermodynamics point of view, keeping in mind that heat transfer is a fundamental process in thermodynamics; see [4] for more details about this often ignored relationship.



As it turns out the Nusselt number is a combination of two aspects: quantity and quality of the energy-transfer. When both aspects are treated separately and given by their own nondimensional groups more information is available. Thus, this study is conceptual in nature and relevant for practical applications alike.




2. Dimensional Analysis of Convective Heat Transfer


Nondimensional groups like the Nusselt number are the outcome of a dimensional analysis of a physical problem based on the Buckingham Pi-theorem. It states that from a list of [image: there is no content] relevant system parameters [image: there is no content] independent nondimensional groups can be deduced, with [image: there is no content] being the number of fundamental dimensions involved in the problem under consideration, see Ref. [5,6,7] for more details. Important steps are:

	(1)

	
Choose a target quantity and collect all system parameters which affect it (→ list of [image: there is no content] relevant system parameters).




	(2)

	
Determine the [image: there is no content] fundamental dimensions.




	(3)

	
Determine the [image: there is no content] independent nondimensional groups.









In this general procedure Step (1) is crucial, Steps (2) and (3) are purely formal. In Step (1) a certain mathematical/physical model is selected in terms of the principal parameters involved. The assessment criterion with respect to this model is not “right or wrong” but “adequate or not” in order to capture the relevant aspects of the physics with respect to the problem under consideration.



2.1. Convective Momentum Transfer


As an example in Table 1 the dimensional analysis data are collected for an incompressible fully developed flow in a smooth channel. The target quantity is the pressure gradient [image: there is no content]. With [image: there is no content] relevant system parameters and [image: there is no content] fundamental dimensions two nondimensional groups appear, which here are the Reynolds number:


[image: there is no content]



(3)




and the head loss coefficient:


[image: there is no content]



(4)






Table 1. Dimensional analysis data of the convective momentum transport for an incompressible fully developed flow in a smooth channel.


	(1) System Parameters
	(2) Fundamental Dimensions
	(3) Nondimensional Groups





	[image: there is no content] (mean velocity)
	length
	[image: there is no content]



	[image: there is no content] (length)
	time
	[image: there is no content]



	[image: there is no content] (density)
	mass
	-



	[image: there is no content](dynamic viscosity)
	-
	-



	[image: there is no content] (pressure gradient)
	-
	-









Together they are the friction law K = K(Re) of the channel flow. Its general form is given by the dimensional analysis, its specific function has to be determined afterwards.




2.2. Convective Heat Transfer


The example given in Table 1 is now resumed and heat transfer is added. Instead of the target quantity [image: there is no content] now the heat flux [image: there is no content] is selected as the system parameter of interest. Table 2 shows the standard dimensional analysis data which are (more or less explicitly) listed for this problem in standard textbooks like [1,2,3].


Table 2. Dimensional analysis data of the convective heat transfer for an incompressible fully developed flow in a smooth channel.


	(1) System Parameters
	(2) Primary Dimensions
	(3) Nondimensional Groups





	[image: there is no content] (mean velocity)
	length
	[image: there is no content]



	[image: there is no content] (length)
	time
	[image: there is no content]



	[image: there is no content] (density)
	mass
	[image: there is no content]



	[image: there is no content] (dynamic viscosity)
	temperature
	[image: there is no content]



	[image: there is no content](heat flux)
	-
	-



	[image: there is no content] (temperature difference)
	-
	-



	[image: there is no content] (thermal conductivity)
	-
	-



	[image: there is no content] (specific heat)
	-
	-









With [image: there is no content] relevant system parameters and [image: there is no content] fundamental dimensions now four nondimensional groups appear, which here are the Reynolds number, see Equation (3), the Prandtl number:


[image: there is no content]



(5)




the Brinkman number:


[image: there is no content]



(6)




associated with viscous heating in the flow field (which is often neglected) and instead of the nondimensional target number K now the Nusselt number Nu according to Equation (2).



As mentioned at the beginning of this section listing the [image: there is no content] relevant system parameters is the crucial step of selecting the adequate mathematical/physical model. This listing of relevant parameters also means that certain other parameters are not included in the list. With respect to Table 2 this refers to the temperature level [image: there is no content] at which the heat transfer occurs as well as to the ambient temperature [image: there is no content]. Whether both temperatures are really irrelevant in a convective heat transfer problem will be discussed next.





3. Convective Heat Transfer from a Thermodynamics Point of View


Heat transfer from a thermodynamics point of view is characterized by the entropy that is transferred as well as generated in this thermodynamic process. It is a special kind of mystery that in the heat transfer community this aspect is ignored completely, see Ref. [4] for further details.



An ideal heat transfer occurs without entropy generation transferring entropy at a rate:


[image: there is no content]



(7)




when there is a heat transfer rate [image: there is no content] with a constant temperature [image: there is no content] on the heat transfer surface [image: there is no content]. When neither the heat transfer rate [image: there is no content] nor the surface temperature is constant the instantaneous entropy transfer rate is:


S˙=∫Aq˙wTw dA



(8)







For more details of the entropy transfer and the entropy generation described next, see for example [8,9].



The ideal heat transfer, accompanied by entropy transfer according to Equation (7) or Equation (8) occurs without operating temperature difference, i.e., with [image: there is no content]. This corresponds to a heat transfer coefficient [image: there is no content] as well as to Nu [image: there is no content], c.f. Equations (1) and (2).



A real heat transfer will have a finite [image: there is no content] and thus finite values of [image: there is no content] and Nu. For such a real process entropy is generated in the flow as well as in the temperature field. The instantaneous and local rate at which this occurs can be determined from an entropy balance equation as shown in Equation (8) of Ref. [4] or more extensively in Chapter 3.2 of [5]. In this equation [image: there is no content] and [image: there is no content] appear as source terms which (in Cartesian coordinates) read:


[image: there is no content]



(9)




for entropy generation in the flow field, and:


[image: there is no content]



(10)




for that in the temperature field. Here the index [image: there is no content] means dissipation while [image: there is no content] stands for conduction.



The [image: there is no content] according to Equation (9) multiplied by [image: there is no content] is the instantaneous and local dissipation rate in the flow field. Its integration over the flow field:


S˙d=∫VS˙d‴ dV



(11)




yields[image: there is no content], the instantaneous, entropy generation rate in the whole flow field. This [image: there is no content] can immediately be linked to the head loss coefficient K replacing the pressure drop or drag force usually implemented in a head loss coefficient by the corresponding entropy generation as shown and discussed in [10]. The head loss coefficient then reads:


[image: there is no content]



(12)




since all losses (which are losses of exergy or available work) manifest themselves in terms of entropy generation. Here [image: there is no content] is the channel cross section, for more details of why and how [image: there is no content] can be used to determine [image: there is no content] see [10,11]. Thus the flow field is characterized by two nondimensional groups:

	
the Reynolds number, which determines the strength of the flow (its quantity).



	
the head loss coefficient, which determines the losses of the flow (its quality).








Note that the quality is basically determined by the entropy generation [image: there is no content] in the flow field.



From a thermodynamics point of view a very similar situation occurs in the temperature field. The heat transfer is characterized by two aspects, its quantity and its quality. Both should be determined by its own nondimensional group, with the quality being related to [image: there is no content].



Determination of [image: there is no content] and [image: there is no content] is always possible when solutions are available in terms of numerical results with respect to the flow and temperature fields. Then in a post processing step local entropy generation data can be determined. Especially for the turbulent case see [10,12].



With the dimensional analysis according to Table 2, however, there is only one nondimensional group characterizing the heat transfer: the Nusselt number (keeping in mind that Pr is a mere fluid property and that Br characterizes the effect of viscous heating in a flow field, which often is neglected).




4. The Full Model of Heat Transfer


Collecting all relevant system parameters in a dimensional analysis corresponds to selecting the adequate mathematical/physical model by which the problem under consideration can be treated in order to predict all physical aspects of interest. Obviously the “aspects of interest” is the crucial step in this procedure. Analyzing the dimensional analysis data in Table 2 from a thermodynamics point of view two system parameters are missing:

	(1)

	
The temperature level of heat transfer, since according to Equation (10) it determines the strength of real heat transfer entropy generation, i.e., the irreversibility of the transfer. For internal flows this temperature level is given by the caloric mean temperature in a certain cross section, also called bulk temperature [image: there is no content]. It can moderately change in flow direction due to heating or cooling of the fluid and it can strongly deviate from the ambient temperature [image: there is no content] when the heat transfer occurs in a system with a large temperature range within the whole process (like in power or refrigeration cycles).




	(2)

	
The ambient temperature [image: there is no content], since it determines the quality of the transferred energy in terms of exergy and its losses in the real heat transfer process. This temperature is an important parameter for all processes in which exergy counts, like in power cycles.









Adding these two temperatures to the list of relevant system parameters results in two more nondimensional groups when performing the dimensional analysis, see Table 3.


Table 3. Dimensional analysis data of the convective heat transfer for an incompressible fully developed flow in a smooth channel; full model.


	(1) System Parameters
	(2) Fundamental Dimensions
	(3) Nondimensional Groups





	[image: there is no content] (mean velocity)
	length
	[image: there is no content]



	[image: there is no content] (length)
	time
	[image: there is no content]



	[image: there is no content] (density)
	mass
	[image: there is no content]



	[image: there is no content](dynamic viscosity)
	temperature
	[image: there is no content]



	[image: there is no content](heat flux)
	-
	(or: [image: there is no content])



	[image: there is no content] (temperature difference)
	-
	[image: there is no content]



	[image: there is no content] (thermal conductivity)
	-
	[image: there is no content]



	[image: there is no content] (specific heat)
	-
	-



	[image: there is no content] (bulk temperature)
	-
	-



	[image: there is no content] (ambient temperature)
	-
	-









Here we keep Re, Pr and Br as before. We can also keep the Nusselt number or replace it by a nondimensional group characterizing the quantity of heat transfer:


[image: there is no content]



(13)







For the quality of heat transfer:


[image: there is no content]



(14)




is introduced. Since [image: there is no content] the two options ([image: there is no content]) and [image: there is no content] are formally equivalent. In the subsequent discussion [image: there is no content] is used, however, in order to clearly ascribe the two aspects quantity and quality of heat transfer to the two corresponding nondimensional groups.



The group:


[image: there is no content]



(15)




basically corresponds to the Carnot-factor:


[image: there is no content]



(16)




which (for example) determines the exergy part [image: there is no content] of a heat transfer rate [image: there is no content], transferred on a temperature level [image: there is no content] by:


[image: there is no content]



(17)







See [8,9] for more details. Here N is the general symbol for the new nondimensional groups which are specified by their respective indices (formally different from the classical groups which all are represented by two letters, like Re, Nu, Pr, …).



In Equations (13)–(17) [image: there is no content] corresponds to a heating of the fluid. When [image: there is no content] the fluid is cooled and [image: there is no content] and [image: there is no content] become negative. Thermodynamically the negative [image: there is no content], for example, indicates that [image: there is no content] and [image: there is no content] then are counter-flowing fluxes, as explained at the end of Chapter 5 in [9].



For a momentum transfer the flow quality is given in terms of the head loss coefficient K for a certain flow quantity, given by the Reynolds number Re.



For a heat transfer, in an analogous presentation the heat transfer quality is given in terms of [image: there is no content] for a certain heat transfer quantity, given by [image: there is no content]. In the next section we will discuss the quality assessment by [image: there is no content], showing that it basically corresponds to the entropy generation. With the group [image: there is no content] this information is turned into one about the exergy and its loss in a convective heat transfer situation.



[image: there is no content] and [image: there is no content] can be combined to the Nusselt number [image: there is no content]. This Nusselt number, however, can be discussed only after a discussion with respect to [image: there is no content] and [image: there is no content]. Only after this we can answer the key question of this study: What exactly is the Nusselt number?




5. The Irreversibility of Heat Transfer


Real life heat transfer from a thermodynamics point of view is an irreversible process with the irreversibility measured by the entropy generation involved. In a convective heat transfer, irreversibilities occur in the associated flow field as well as in the temperature field involved. The first is due to the dissipation of mechanical energy and immediately determines the head loss coefficient of the flow, see Equation (12).



Entropy generation in the temperature field, however, does not immediately correspond to the number of a certain nondimensional group like [image: there is no content] or the Nusselt number Nu. These nondimensional groups, however, are obviously related to the irreversibility since the limit of a reversible heat transfer is that for [image: there is no content], so that [image: there is no content] and Nu [image: there is no content]. In order to understand that relationship one first has to analyze the role of [image: there is no content] in a heat transfer process.



5.1. Irreversibility in the Temperature Field


With the local and instantaneous entropy generation rate [image: there is no content], c.f. Equation (10) for Cartesian coordinates, the entropy generation in a finite volume [image: there is no content] is:


S˙c=∫VS˙c‴ dV



(18)







As an example Figure 1 shows a fully developed laminar circular pipe flow heated with [image: there is no content] In this example the temperature profile is known explicitly and could be used to determine [image: there is no content] and thus [image: there is no content]. This explicit knowledge of the temperature profile, however, is an exception so that in the following it is shown how temperature profiles can be approximated in order to determine[image: there is no content].


Figure 1. Temperature distribution in a fully developed pipe flow with [image: there is no content]



[image: Entropy 18 00198 g001 1024]







5.2. Irreversibility in an Approximated Temperature Field


Since the exact temperature profile generally is not known (especially in a turbulent convective heat transfer) the entropy generation should be determined from a reasonable approximation of it. Such an approximation is shown in Figure 2, where a constant temperature gradient occurs only in a wall adjacent layer of thickness [image: there is no content]. For [image: there is no content] the constant temperature further away from the wall is the local bulk temperature [image: there is no content].


Figure 2. Approximate temperature profile.



[image: Entropy 18 00198 g002 1024]






Independent of the layer thickness [image: there is no content], integration of the entropy generation in the wall layer gives, see [11] for details:


[image: there is no content]



(19)







This result holds for negligibly small axial conduction, i.e., for RePr[image: there is no content], and for a wall layer thickness [image: there is no content] (because only then the second temperature is the bulk temperature [image: there is no content]). Quite generally this result can be referred to a heat transfer area [image: there is no content] so that with [image: there is no content] the entropy generation rate per wall area is:


[image: there is no content]



(20)







This equation shows that the entropy generation in a heat transfer process depends on the temperature levels [image: there is no content] and [image: there is no content], respectively.



In a certain heat transfer situation [image: there is no content] and [image: there is no content] are parameters of the process, just like a thermal boundary condition, for example. Constant values of these temperatures are either mean values in finite ranges of heating or cooling or exact values of a local analysis. Since [image: there is no content] and [image: there is no content] are the (absolute) thermodynamic temperatures, the [image: there is no content] will often be much smaller than the temperatures [image: there is no content] and [image: there is no content]. For [image: there is no content], i.e., [image: there is no content], we then get:


[image: there is no content]



(21)




from which the physical meaning of [image: there is no content] becomes obvious. Within this approximation [image: there is no content] is:


[image: there is no content]



(22)




and corresponds to the relative entropy generation (entropy generation rate per heat transfer rate) for a heat transfer on the temperature level [image: there is no content]. It thus is a real measure of the quality of heat transfer.



Since quite generally the entropy generation [image: there is no content] corresponds to the loss of exergy [image: there is no content], c.f. Equation (17), here named [image: there is no content], by:


[image: there is no content]



(23)




known as Gouy-Stodola theorem, we also have (index [image: there is no content]: loss):


[image: there is no content]



(24)




with [image: there is no content] as the exergy part of the heat flux [image: there is no content].



With [image: there is no content] according to Equation (22) we can now look at the nondimensional groups introduced above. The parameter [image: there is no content] according to Equation (14) is the nondimensional quality of heat transfer:


[image: there is no content]



(25)







The Nusselt number Nu according to Equation (2) is:


[image: there is no content]



(26)







Both nondimensional groups will be discussed in the following sections.




5.3. The Nusselt Number and Its Physical Meaning


From the above considerations we can first conclude what the Nusselt number is NOT:

	(1)

	
[image: there is no content] is not an immediate and general measure of the irreversibility of the heat transfer, because regardless of the (constant) factor [image: there is no content] the relative entropy generation [image: there is no content] is referred to the heat flux [image: there is no content] again, though in a reciprocal manner.




	(2)

	
Nu is not a measure of the exergy loss because it does not include the ambient temperature [image: there is no content], c.f. Equation (24) for the exergy loss of [image: there is no content].









The actual meaning of the Nusselt number can best be illustrated for the two standard thermal boundary conditions [image: there is no content] and [image: there is no content], respectively.



The Nusselt number for the special case [image: there is no content] in a certain problem is the information about [image: there is no content] which is a measure of the quality of heat transfer, c.f. Equation (22). However, only with the additional Equations (21) and (24) from this the entropy generation and the exergy loss rates can be determined.



The Nusselt number for the special case [image: there is no content] provides the information about [image: there is no content] which basically is that about [image: there is no content]. It is neither the relative entropy generation [image: there is no content], i.e., the quality of heat transfer, nor the strength of heat transfer [image: there is no content] so that the interpretation is vague.



Often it is argued that the Nusselt number can be used twofold: Either [image: there is no content] is prescribed and [image: there is no content] is the result or [image: there is no content] is given and [image: there is no content] emerges as the result. For both cases increasing Nusselt numbers are interpreted as an “improvement of the convective heat transfer”.



From a thermodynamics point of view this should be analysed more deeply. For a given [image: there is no content] an increasing Nusselt number occurs for decreasing [image: there is no content] and thus an increase in the quality of heat transfer (less [image: there is no content] per [image: there is no content]). For a given [image: there is no content], however, the quality of heat transfer is fixed, c.f. Equation (22), and an increasing Nusselt number means equally increasing [image: there is no content] and [image: there is no content].



Thus an increasing Nusselt number means increasing quality of heat transfer only for [image: there is no content] but not for [image: there is no content]. At least the above term “improvement of the convective heat transfer” should be stated more precisely.





6. Alternatives with Respect to the Nusselt Number


When the full model in Table 3 is compared to the corresponding considerations in Table 2 it becomes obvious that the Nusselt number Nu in the full model can be replaced by the three nondimensional groups [image: there is no content], [image: there is no content] and [image: there is no content]. A straight forward physical interpretation can be given to the two nondimensional groups:


[image: there is no content]



(27)




and:


[image: there is no content]



(28)







With [image: there is no content] and [image: there is no content] being parameters of a heat transfer problem, [image: there is no content] according to Equation (27) is the nondimensional heat flux, i.e., a measure of the quantity of heat transfer.



The quality of heat transfer is now given by [image: there is no content] according to Equation (28). This [image: there is no content] was introduced in [11] and named energy devaluation number. Basically it is the entropy generation in the irreversible heat transfer process referred to the so-called entropic potential of the energy (rate) [image: there is no content], see Ref. [11,13] for a detailed discussion of this concept. The entropic potential [image: there is no content] of a certain energy is that amount of entropy that is discharged to the ambient when the energy starts as primary energy (being pure exergy) and ends as part of the internal energy of the ambient (then being pure anergy). This energy devaluation can be looked upon as an overall devaluation chain of an energy starting as primary energy and ending as part of the internal energy of the ambient.



A certain heat transfer process may be one chain link [image: there is no content] characterized by the energy devaluation number [image: there is no content]. It determines how much of the entropic potential is used in this process [image: there is no content]. In a heat transfer process the energy (rate) is [image: there is no content]. The entropic potential of it is (index g: generation):


[image: there is no content]



(29)




and [image: there is no content] can be written as:


[image: there is no content]



(30)







According to its definition we always have [image: there is no content] with [image: there is no content] for a reversible process, and [image: there is no content] for the complete devaluation chain. Only when the energy is devaluated completely in one process [image: there is no content], [image: there is no content] would occur.



The Nusselt number alternatives in Table 3 comprise three independent nondimensional groups. They now take the form [image: there is no content] according to Equation (27), [image: there is no content] according to Equation (30) and [image: there is no content] according to Equation (15). This [image: there is no content] determines the exergy part of the energy since it immediately corresponds to the Carnot factor, c.f. Equations (16) and (17).



Whenever solutions are available in terms of numerical results with respect to the temperature data this set of nondimensional groups can be used as an alternative to characterizing the heat transfer by the Nusselt number Nu alone as will be shown with three examples hereafter.



Applying the Nusselt Number and Its Alternatives


The following three examples may illustrate how important it is to account for entropy generation which is the crucial aspect in the energy devaluation number [image: there is no content] according to its definition Equation (28). All three examples are about internal flows which often occur in energy transfer operations in which exergy counts and entropy generation is counterproductive. A second law analysis, however, is also applicable for external flows, as shown in [10], for example, where losses in the flow field usually specified in terms of friction coefficients are determined through the entropy generation by dissipation in the flow field.



Example 1. 

Fully developed pipe flow in power cycles





What can usually be found as the characterization of the heat transfer performance of a fully developed pipe flow is the Nusselt number Nu. Let’s assume it is Nu = 100 and a heat flux [image: there is no content] 103 W/m2 on a length [image: there is no content] m occurs in two different power cycles:

	
A steam power cycle (SPC) with water as the working fluid and an upper temperature level [image: there is no content] 900 K.



	
A geothermal organic Rankine cycle (ORC) with ammonia (NH3) as working fluid and an upper temperature level [image: there is no content] 400 K.








When in both cycles Nu, [image: there is no content] and [image: there is no content] are the same, the temperature difference [image: there is no content] in Nu according to Equation (2) is larger by a factor 2.6 for ammonia compared to water. This is due to the different values of the thermal conductivity [image: there is no content] of water (at [image: there is no content] 900 K and [image: there is no content] = 250 bar) and ammonia (at [image: there is no content] 400 K and [image: there is no content]= 25 bar), assuming typical values for the temperature and pressure levels in both cycles.



For a further comparison note that the energy devaluation number [image: there is no content] according to Equation (28) now is:


[image: there is no content]



(31)







Table 4 shows the energy devaluation number [image: there is no content] for both cases according to this approximation. It shows that only 0.37% of the entropic potential is used for the heat transfer in the SPC-case, but almost 5% in the ORC-case “even though” both heat transfer situations have the same Nusselt number Nu = 100 and the same amount of energy is transferred. Note that only that part of the entropic potential that is not yet used is available for further use after the process under consideration.


Table 4. Heat transfer with Nu = 100, [image: there is no content] 103 W/m2, L = 0.1 m in two different power cycles.


	Cycle/Fluid
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]

Equation (28)
	[image: there is no content]

Equation (27)
	[image: there is no content]

Equation (15)
	[image: there is no content]





	SPC/water
	0.1
	300
	900
	10
	0.0037
	1.11
	0.33
	0.67



	ORC/ammonia
	0.038
	300
	400
	26
	0.049
	6.58
	0.75
	0.25









In Table 4 also [image: there is no content] and [image: there is no content] are listed together with [image: there is no content] which corresponds to the relative exergy content [image: there is no content] of the heat flux [image: there is no content].



Note that formally:


[image: there is no content]



(32)




which shows that the Nusselt number is some kind of mixed information about the quantity and quality of an irreversible heat transfer process.



Example 2. 

Convective heat transfer and wall roughness





Example 1 is now extended by addressing the question whether a rough wall might perform better than a smooth wall and when this is the case, which degree of roughness performs best. The idea behind this optimization approach is the option that a better mixing of the fluid by wall roughness may decrease the exergy loss due to heat conduction such that it outweighs the increase of exergy loss due to increased frictional losses.



In [13] details of such an analysis (exemplified for the case Re = 17,000, Pr = 7, [image: there is no content] can be found in terms of the local entropy generation in the flow and in the temperature fields.



Figure 3 shows the friction factor f, the Nusselt number Nu and the energy devaluation number [image: there is no content] for roughness parameter values [image: there is no content] between 0% (smooth wall) and 5%. These results are based on friction factor and Nusselt number correlations which take into account the influence of wall roughness (Equations (11) and (12) in Ref. [13]). [image: there is no content] is determined by an evaluation of [image: there is no content] based on that Nusselt number correlation (see Equation (14) in [13]). Here [image: there is no content] is a nondimensional sand roughness height. The friction factor f here is the head loss coefficient K according to Equation (4) multiplied by D/L. For L = D both are equal.


Figure 3. Fully developed pipe flow with wall roughness (a) Friction factor and Nusselt number for rough walls referred to the smooth wall values and the thermo-hydraulic performance parameter [image: there is no content](b) Energy devaluation number, see Equation (30).



[image: Entropy 18 00198 g003 1024]






With increasing [image: there is no content] there is a monotonous increase of f and Nu. Both parameters can be combined in a so-called thermo-hydraulic performance parameter proposed in [14] which here is:


[image: there is no content]



(33)







This parameter also increases monotonously with increasing [image: there is no content] and thus does not indicate an optimum with respect to the [image: there is no content]-range under consideration.



From Figure 3b which shows the energy devaluation number [image: there is no content] we can conclude that about 3% of the entropic potential is used in this heat transfer process and that an optimum with respect to [image: there is no content] occurs at [image: there is no content].



Example 3. 

Convective heat transfer in a passage within a plate heat exchanger





Figure 4 shows a more complex geometry compared to the previous examples. It is a stripe out of a channel formed by two corrugated plates (sinusoidal fish-bone pattern, 45° corrugation angle) which by setting periodic boundary conditions is representative for the whole channel (without entrance and exit effects).


Figure 4. Geometry of the plate heat exchanger passage in [15]. Shown in grey is a cyclic element in which the flow and temperature field is determined numerically. Periodic boundary conditions are set in order to determine the entropy generation rates occurring in the flow and temperature fields.



[image: Entropy 18 00198 g004 1024]






In [15] the CFD solutions are described in detail for a range of Reynolds numbers and a fixed value of [image: there is no content]Figure 5 shows how the entropy generation rates due to dissipation and conduction vary with Re and that the sum of both has a minimum at Re ≈ 2000.


Figure 5. Entropy generation rates [image: there is no content] and [image: there is no content] according to Equations (11) and (18) for the cyclic element shown in Figure 4, their combination and implementation in the energy devaluation number. (a) Entropy generation rates by dissipation and conduction and the sum of both, referred to the minimum value at Re = 2000; (b) Energy devaluation number, see Equation (30).



[image: Entropy 18 00198 g005 1024]






According to the definition of the energy devaluation number this also is the Reynolds number for which [image: there is no content] has the lowest value of [image: there is no content] indicating that in the stripe under consideration ≈[image: there is no content] of the entropic potential is used. This kind of information is missing completely when only the Nusselt number in such a situation is known.





7. Discussion and Conclusions


Convective heat transfer situations are often characterized by the nondimensional group Nu which combines the heat flux [image: there is no content] and a characteristic temperature difference [image: there is no content]. Often the only reasonable interpretation of Nu is that the heat transfer is improved somehow when Nu increases. When, however, thermodynamic considerations are added to the analysis and interpretation of convective heat transfer situations, substantive statements and conclusions are available. For example it turns out, that

	
the temperature level on which the heat transfer occurs is important (c.f. Example 1, Table 4). This information is not included in the Nusselt number.



	
the quality of heat transfer can be quantified by the energy devaluation number [image: there is no content] according to Equation (30) in percent-consumption of the entropic potential (c.f. again Example 1, Table 4, Example 2, Figure 3b or Example 3, Figure 5b). This information is not included in the Nusselt number.








The Nusselt number, however, is neither directly nor indirectly (in terms of a relative entropy generation) related to the entropy generation. Instead it is a combination of the quality, given by the entropy generation, and the quantity of heat transfer, given by the heat flux involved. The alternative approach of our study can be summarized as follows:



Nondimensional groups can be determined in an extended dimensional analysis that separately account for the quantity and the quality of an energy transfer process under consideration. The quantitative aspect of that transfer is then covered by [image: there is no content] according to Equation (27) which basically is the nondimensional heat flux. The qualitative aspect is accounted for by [image: there is no content] (Equation (14), quality of heat transfer) or by the energy devaluation number [image: there is no content] according to Equation (28) or Equation (30). Based on the concept of the entropic potential of an energy it determines how much of that potential is used in the transfer process under consideration.



When a convective heat transfer situation has to be assessed as a whole, i.e., including the entropy generation in the flow field, further considerations are necessary with details given in [11].



Finally for one case it should be shown that detailed information is available when the alternative approach is used:



In the second example in Section 6.1 it was shown that wall roughness can be beneficial for convective heat transfer, even though fluid friction may increase considerably.



From the Nusselt number perspective there seems to be no fundamental difference for the two conditions [image: there is no content] and [image: there is no content] in the smooth and rough wall cases. The interpretation with [image: there is no content] and [image: there is no content], however, shows an important difference.



For increasing Nu number and [image: there is no content] kept the same, [image: there is no content] is the same and [image: there is no content] according to Equation (14) decreases with [image: there is no content] getting smaller (increasing Nu). From Equation (25) it then follows that the entropy generation rate [image: there is no content] also goes down. With [image: there is no content] being increased in the rough wall case there will be an optimum in terms of [image: there is no content] being minimal.



For increasing Nu numbers and [image: there is no content] kept the same, however, [image: there is no content] goes up (increasing Nu) and according to Equation (22) also [image: there is no content] or [image: there is no content] goes up. Then, however, there is no optimum of [image: there is no content] since both are increased with increasing wall roughness.



This is one more example showing that an in depth analysis of convective heat transfer problems needs more than the Nusselt number. The author is well aware of the fact, however, that heat transfer problems are often solved by practitioners without sympathy for something as abstract as entropy.



This, however, may change over times, especially when the entropy concept is included in students education as early as possible. May be this study can help on the way to such a more fundamentally oriented education.
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Abbreviations


The following abbreviations are used in this manuscript:



	[image: there is no content]
	transfer area (m2)



	[image: there is no content]
	heat capacity (J/kgK)



	D
	diameter (m)



	Ec
	Eckert number, Equation (6)



	f
	friction factor



	[image: there is no content]
	heat transfer coefficient (W/m2K)



	[image: there is no content]
	thermal conductivity (W/mK)



	[image: there is no content]
	head loss coefficient, Equation (4)



	[image: there is no content]
	characteristic length (m)



	[image: there is no content]
	energy devaluation number, Equation (28)



	[image: there is no content]
	quantity of heat transfer, Equation (13)



	[image: there is no content]
	temperature ratio, Equation (15)



	[image: there is no content]
	quality of heat transfer, Equation (14)



	Nu
	Nusselt number, Equation (2)



	[image: there is no content]
	Pressure



	Pr
	Prandtl number, Equation (5)



	[image: there is no content]
	heat transfer rate (W)



	[image: there is no content]
	exergy part of [image: there is no content]



	[image: there is no content]
	loss of the exergy part of [image: there is no content]



	[image: there is no content]
	wall heat flux (W/m2)



	[image: there is no content]
	exergy part of [image: there is no content]



	[image: there is no content]
	loss of the exergy part of [image: there is no content]



	Re
	Reynolds number, Equation (3)



	[image: there is no content]
	entropy transfer rate (W/K)



	[image: there is no content]
	overall entropy generation rate by conduction (W/K)



	[image: there is no content]
	overall entropy generation rate per wall area (W/m2K)



	[image: there is no content]
	overall entropy generation rate by dissipation (W/K)



	[image: there is no content]
	local entropy generation rate by dissipation (W/m3K)



	[image: there is no content]
	local entropy generation rate by conduction (W/m3K)



	[image: there is no content]
	temperature (K)



	[image: there is no content]
	temperature difference (K)



	[image: there is no content]
	bulk temperature (K)



	[image: there is no content]
	wall temperature (K)



	[image: there is no content]
	Cartesian velocity components (m/s)



	[image: there is no content]
	average velocity (m/s)



	[image: there is no content]
	volume (m3)



	[image: there is no content]
	Cartesian coordinates (m)



	[image: there is no content]
	Carnot factor, Equation (16)



	[image: there is no content]
	dynamic viscosity (kg/ms)



	[image: there is no content]
	density (kg/m3)
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