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Abstract:



A maximum entropy copula is the copula associated with the joint distribution, with prescribed marginal distributions on [image: there is no content] which maximizes the Tsallis–Havrda–Chavát entropy with [image: there is no content] We find necessary and sufficient conditions for each maximum entropy copula to be a copula in the class introduced in Rodríguez-Lallena and Úbeda-Flores (2004), and we also show that each copula in that class is a maximum entropy copula.
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1. Introduction


In thermodynamics, entropy is a measure of randomness or disorder, and in statistics, entropy is a measure of uncertainty in a probability distribution. During the past one and a half centuries, a number of such measures have been proposed. In terms of a continuous bivariate distribution with density [image: there is no content] three well known entropies are the following:


B(f)=−∫∫f(x,y)ln(f(x,y))dxdy[Boltzmann-Gibbs-Shannon(BGS)];Rq(f)=11−qlog2∫∫f(x,y)qdxdy,q≥0,q≠1[Rényi];Tq(f)=1q−11−∫∫f(x,y)qdxdy,q≥0,q≠1[Tsallis-Havrda-Chavát(THC)].











These measures are related to one another. For example, the limit as q approaches 1 of the THC entropy (see [1]) is the BGS entropy; and the THC and Rényi entropies for a common value of q are monotone functions of each other.



One objective in the study of entropy is to identify the joint distributions that maximize entropy subject to given margins, and to identify the copulas associated with those distributions. In [2] Pougaza and Mohammad-Djafari use Lagrange multipliers to show that when the support of [image: there is no content] is [image: there is no content], [image: there is no content] the joint probability density function that maximizes BGS entropy is [image: there is no content] the product of the two marginal probability density functions. Thus, in the case of BGS entropy, every joint distribution maximizing BGS entropy has the same copula, namely the independence copula.



Pougaza and Mohammad-Djafari [2] also identified the joint distributions that maximize THC entropy in the case [image: there is no content] (a case of interest since it coincides with Simpson’s diversity index [3]). In [4] the authors construct several families of copulas by considering the THC entropy with index [image: there is no content] and particular expressions for the marginals. Our goal in this paper is to study the copulas associated with those joint distributions. We show that the family of maximum entropy copulas (in the THC [image: there is no content] sense) coincides with the family of copulas studied previously by Rodríguez-Lallena and Úbeda-Flores [5]. In practical terms, this result guarantees that researchers using maximum entropy copulas (in the THC [image: there is no content] sense) can find in [5] all the relevant properties of the copulas in [2].



We proceed as follows. In the next section we review the maximization of THC entropy in the case [image: there is no content] Since not every solution to the Lagrange multiplier optimization in [2] yields a proper bivariate distribution, in Section 3 we establish necessary and sufficient conditions for the solutions to be proper bivariate distributions and identify the associated copulas. We illustrate the results with several examples.




2. Preliminaries


Consider the bivariate probability density function [image: there is no content] with [image: there is no content]I=[image: there is no content] which maximizes the THC entropy [image: there is no content] given by


[image: there is no content]



(1)




with the following constraints


∫01f(x,y)dy=f1(x),∀x∈I,



(2)






∫01f(x,y)dx=f2(y),∀y∈I,



(3)






[image: there is no content]



(4)







We use the notations [image: there is no content] and [image: there is no content] to refer to the THC ([1]) entropy of the density f and the entropy of the cumulative distribution [image: there is no content] respectively.



We note that distributions with the same copula but different marginals (hence different joint densities) may have different entropies (1). For example, consider the following cases, all with the product copula and different margins: F1(x,y)=xy,x,y∈I,T2(F1)=0; F2(x,y)=x2y2,x,y∈I,T2(F2)=−79; and F3(x,y)=xy,x,y∈I,T2(F3)=−∞.



According to [2] for absolutely continuous distribution functions [image: there is no content] and [image: there is no content] the joint density and distribution functions [image: there is no content] and [image: there is no content] on [image: there is no content] with maximum entropy given by Equation (1), under the constraints (2)–(4) are [image: there is no content] and


F(x,y)=yF1(x)+xF2(y)−xy,x,y∈I



(5)




for appropriate functions [image: there is no content] and [image: there is no content] and with a maximum entropy (ME) copula


C(u,v)=uF2−1(v)+vF1−1(u)−F2−1(v)F1−1(u),u,v∈I.



(6)







Not every choice of cumulative distribution functions [image: there is no content] and [image: there is no content] in (5) yields a bivariate distribution function [image: there is no content] For example, let [image: there is no content] and [image: there is no content] Then [image: there is no content] which equals [image: there is no content] when [image: there is no content]



Since the only maximum entropy copula for BGS entropy is the product copula, the entropy (1) identifies models of greater flexibility in terms of dependence structure than models derived from BGS entropy.



Given real functions [image: there is no content] define


α=inf{f′(u):u∈A},β=sup{f′(u):u∈A},whereA={u∈I:f′(u)exists},



(7)






γ=inf{g′(v):v∈B},δ=sup{g′(v):v∈B},whereB={v∈I:g′(v)exists},



(8)




and consider the function C given by


C(u,v)=uv+f(u)g(v),forallu,v∈I.



(9)







According to Theorem 2.3 in [5], C in (9) is a copula, if and only if (i) [image: there is no content]; (ii) f and g are absolutely continuous and (iii) [image: there is no content] where [image: there is no content] and δ are introduced in Equations (7) and (8). Furthermore, in such a case, C is absolutely continuous. We call a copula given by Equation (9) a RU (Rodríguez-Lallena and Úbeda-Flores) copula.




3. Results


We initiate this section with a result, showing that every ME copula (Equation (6)) has the form of a RU copula (Equation (9)). Since each inverse cumulative distribution function [image: there is no content] is absolutely continuous and nondecreasing on its domain I, the inverse [image: there is no content] of [image: there is no content] is an absolutely continuous distribution function on I. We find necessary and sufficient conditions on the functions [image: there is no content] and [image: there is no content] (in terms of the derivatives of their inverses) for the ME copula in Equation (6) to be a RU copula. These conditions also insure that the functions [image: there is no content] and [image: there is no content] yield a proper joint distribution function in (5).



Theorem 1. 


	i

	
Every ME copula has the functional form of a RU copula.




	ii

	
Let [image: there is no content] and [image: there is no content] be inverse distribution functions on I, and set A={u∈I:dduF1−1(u)exists},B={v∈I:ddvF2−1(v)exists},[image: there is no content][image: there is no content][image: there is no content][image: there is no content] Then the function [image: there is no content] in Equation (6) is a copula-in fact a RU copula-if and only if [image: there is no content]











Proof. 


	i

	
Equation (6) is equivalent to


[image: there is no content]



(10)




which has the form of a RU copula with [image: there is no content] and [image: there is no content]




	ii

	
Since [image: there is no content] and [image: there is no content]α=1−M1=inf{f′(u):u∈A},[image: there is no content][image: there is no content] and [image: there is no content] The condition [image: there is no content] given in Theorem 2.3 [5] is equivalent to [image: there is no content] and the conclusion follows.






 ☐





Example 1. 

Consider the function [image: there is no content] for [image: there is no content] which has the form of Equation (6) with [image: there is no content] and [image: there is no content] It follows from differentiation that [image: there is no content] or [image: there is no content][image: there is no content] and [image: there is no content] Hence C is a copula if and only if [image: there is no content]C also has the form [image: there is no content] a generalized Farlie–Gumbel–Morgenstern copula.





Example 2. 

Let [image: there is no content] and [image: there is no content] on [image: there is no content] with [image: there is no content] Here [image: there is no content][image: there is no content] In addition [image: there is no content][image: there is no content] since [image: there is no content] (see Proof of Theorem 1) and for [image: there is no content] the supremum and the infimum of [image: there is no content] will occur when [image: there is no content] or [image: there is no content] So [image: there is no content] and [image: there is no content] Hence [image: there is no content] In this case the functions C in Equation (10) are [image: there is no content] copulas with cubic sections in Example 3.15 in [6].





We now state and prove a converse of Theorem 1 by showing that every RU copula is a ME copula.



Theorem 2. 

Let [image: there is no content] be a RU copula. Then there exists a constant [image: there is no content] such that setting [image: there is no content] and [image: there is no content] yields the ME copula [image: there is no content]





Proof. 

Let [image: there is no content] be a RU copula. We need to show that there exists a [image: there is no content] such that [image: there is no content] and [image: there is no content] are inverse distribution functions on I. Clearly, from Theorem 2.3 in [5], [image: there is no content] and [image: there is no content] so it suffices to show that [image: there is no content] and [image: there is no content] for some [image: there is no content] Since [image: there is no content] from Theorem 2.3 in [5], both [image: there is no content] and [image: there is no content] But [image: there is no content] and [image: there is no content] imply that [image: there is no content] hence there exists a [image: there is no content] such that [image: there is no content] Thus [image: there is no content] implies that [image: there is no content] and hence [image: there is no content] Similarly [image: there is no content] implies that [image: there is no content] and hence [image: there is no content] Thus [image: there is no content] and [image: there is no content] are inverse distribution functions on I. A similar result follows from [image: there is no content] setting [image: there is no content] and [image: there is no content] ☐





Example 3. 

The function [image: there is no content] is a RU copula with [image: there is no content] and [image: there is no content] with [image: there is no content][image: there is no content][image: there is no content] and [image: there is no content] Setting [image: there is no content] yields [image: there is no content] and [image: there is no content] Thus [image: there is no content][image: there is no content] and the maximum entropy bivariate cumulative distribution function [image: there is no content] with margins [image: there is no content] and [image: there is no content] is [image: there is no content] (see Equation (5)) with [image: there is no content] As a point of comparison, in the independence case we have [image: there is no content] The functions [image: there is no content] and [image: there is no content] are not unique. If we set [image: there is no content] and [image: there is no content] we obtain [image: there is no content][image: there is no content] and a different [image: there is no content] with [image: there is no content]





Example 4. 

Let [image: there is no content] and [image: there is no content] on I with [image: there is no content] Then the copula C in Equation (6) with maximum entropy is [image: there is no content] a Farlie–Gumbel–Morgenstern copula with parameter [image: there is no content] Note that [image: there is no content][image: there is no content] and [image: there is no content] The joint distribution F given by Equation (5) has entropy [image: there is no content] for [image: there is no content] and [image: there is no content] for [image: there is no content], where [image: there is no content][image: there is no content] and [image: there is no content][image: there is no content]





The next example is an application to real data. We use a Farlie–Gumbel–Morgenstern copula to model the dependence between two indicators, under this model we test the independence assumption between such indicators, since it is the solution indicated by the BGS entropy. The probability density function in the Farlie–Gumbel–Morgenstern copula case is c(u,v)=1+θ(1−2u)(1−2v),u,v∈I with [image: there is no content] The Farlie–Gumbel–Morgenstern copulas are solutions that maximize THC entropy in certain cases (see Example 4). Because we use a data set with moderate sample size, to test the independence, we apply the Full Bayesian Significance Test (FBST) [7], a Bayesian approach especially designed to test precise hypothesis. The aim of this application is to use the family of ME (or RU) copulas derived from THC entropy in Example 4 to test the hypothesis of the independence assumption.



Example 5. 

The database is composed by paired observations [image: there is no content] coming from the bivariate vector [image: there is no content] The observations are taken from each one of the 50 American states and the District of Columbia. The observations of X are “Gonorrhea Rates per 100,000 Population” collected for each of the n=51 units by the Centers for Disease Control and Prevention in 2011. The data can be obtained from Table 14 in [8]. See also [9]. The observations of Y are records of poverty “400% FPL and over” records the upper section of the distribution of the total population by Federal Poverty Level (FPL) for the 51 units, in 2011. The data can be obtained from the Kaiser Family Foundation [10]. The hypothesis of independence in the case of Farlie–Gumbel–Morgenstern copula is translated to test [image: there is no content] which leads naturally to apply the procedure FBST as follows: [image: there is no content] versus [image: there is no content] compute [image: there is no content] where T={θ:−1≤θ≤1andg(θ|D)>g(0|D)} and D:={(ui,vi)}i=1n,ui=rank(xi)n,vi=rank(yi)n,i=1,…,n, with posterior density on θ given by g(θ|D),θ∈[−1,1]. In FBST, [image: there is no content] is rejected when [image: there is no content] is small, for details about this methodology see [11]. In order to explore some possibilities we compare the results using a prior density on θ proportional to [image: there is no content] with a and b hyperparameters of the distribution. We fixed the hyperparameters to consider five settings (i) uniform distribution on [image: there is no content] (ii) prior density with a mode on [image: there is no content] (iii) prior density with a mode on [image: there is no content] (iv) prior density with a mode on [image: there is no content] (v) prior density with a mode near to [image: there is no content] This last setting is included in concordance with the Spearman’s coefficient observed in the data, [image: there is no content] that indicates a θ value near to −0.96.





According to our results (Table 1), we have evidence to reject the independence assumption under the Farlie–Gumbel–Morgenstern copula model, except in a setting as (iv), in which the prior distribution on θ and the likelihood of the data expose some conflict of information, allowing us to disregard this case.



Table 1. Evidence against [image: there is no content] prior density on θ [image: there is no content]







	
Setting

	
a

	
b

	
Ev






	
(i)

	
1

	
1

	
0.02686




	
(ii)

	
2

	
2

	
0.05580




	
(iii)

	
2

	
4

	
0.01702




	
(iv)

	
4

	
2

	
0.28670




	
(v)

	
2

	
10

	
0.00050











4. Conclusions


In [2], Pougaza and Mohammad-Djafari studied bivariate distributions with maximum entropy (in the Tsallis–Havrda–Chavát sense with [image: there is no content]) for the purpose of generating new families of copulas, which we call ME copulas. In this paper we show that every ME copula coincides with a member of a family studied by Rodríguez-Lallena and Úbeda-Flores in [5], copulas we call RU copulas. Furthermore, we show that every RU copula is a ME copula, and provide illustrative examples.
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The following abbreviations are used in this manuscript:







	BGS
	
Boltzmann–Gibbs–Shannon





	THC
	
Tsallis–Havrda–Chavát





	ME
	
maximum entropy





	RU
	
Rodríguez-Lallena and Úbeda-Flores





	FBST
	
Full Bayesian Significance Test
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