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Abstract: A maximum entropy copula is the copula associated with the joint distribution, with
prescribed marginal distributions on [0, 1], which maximizes the Tsallis–Havrda–Chavát entropy
with q = 2. We find necessary and sufficient conditions for each maximum entropy copula to be a
copula in the class introduced in Rodríguez-Lallena and Úbeda-Flores (2004), and we also show that
each copula in that class is a maximum entropy copula.
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1. Introduction

In thermodynamics, entropy is a measure of randomness or disorder, and in statistics, entropy
is a measure of uncertainty in a probability distribution. During the past one and a half centuries, a
number of such measures have been proposed. In terms of a continuous bivariate distribution with
density f (x, y), three well known entropies are the following:

B( f ) = −
∫ ∫

f (x, y) ln( f (x, y))dxdy [Boltzmann–Gibbs–Shannon (BGS)];

Rq( f ) =
1

1− q
log2

( ∫ ∫
f (x, y)qdxdy

)
, q ≥ 0, q 6= 1 [Rényi];

Tq( f ) =
1

q− 1

(
1−

∫ ∫
f (x, y)qdxdy

)
, q ≥ 0, q 6= 1 [Tsallis–Havrda–Chavát (THC)].

These measures are related to one another. For example, the limit as q approaches 1 of the THC
entropy (see [1]) is the BGS entropy; and the THC and Rényi entropies for a common value of q are
monotone functions of each other.

One objective in the study of entropy is to identify the joint distributions that maximize
entropy subject to given margins, and to identify the copulas associated with those distributions.
In [2] Pougaza and Mohammad-Djafari use Lagrange multipliers to show that when the support
of f (x, y) is I2, I = [0, 1], the joint probability density function that maximizes BGS entropy is
f (x, y) = f1(x) f2(y), the product of the two marginal probability density functions. Thus, in the
case of BGS entropy, every joint distribution maximizing BGS entropy has the same copula, namely
the independence copula.

Pougaza and Mohammad-Djafari [2] also identified the joint distributions that maximize THC
entropy in the case q = 2 (a case of interest since it coincides with Simpson’s diversity index [3]).
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In [4] the authors construct several families of copulas by considering the THC entropy with index
q = 2 and particular expressions for the marginals. Our goal in this paper is to study the copulas
associated with those joint distributions. We show that the family of maximum entropy copulas (in
the THC q = 2 sense) coincides with the family of copulas studied previously by Rodríguez-Lallena
and Úbeda-Flores [5]. In practical terms, this result guarantees that researchers using maximum
entropy copulas (in the THC q = 2 sense) can find in [5] all the relevant properties of the copulas in [2].

We proceed as follows. In the next section we review the maximization of THC entropy in the
case q = 2. Since not every solution to the Lagrange multiplier optimization in [2] yields a proper
bivariate distribution, in Section 3 we establish necessary and sufficient conditions for the solutions
to be proper bivariate distributions and identify the associated copulas. We illustrate the results with
several examples.

2. Preliminaries

Consider the bivariate probability density function f (x, y) with (x, y) ∈ I2, I=[0, 1], which
maximizes the THC entropy T2( f ), given by

T2( f ) = 1−
∫ 1

0

∫ 1

0
f 2(x, y)dxdy, (1)

with the following constraints ∫ 1

0
f (x, y)dy = f1(x), ∀x ∈ I, (2)

∫ 1

0
f (x, y)dx = f2(y), ∀y ∈ I, (3)

∫ 1

0

∫ 1

0
f (x, y)dxdy = 1. (4)

We use the notations T2( f ) and T2(F) to refer to the THC ([1]) entropy of the density f and the
entropy of the cumulative distribution F, respectively.

We note that distributions with the same copula but different marginals (hence different
joint densities) may have different entropies (1). For example, consider the following cases,
all with the product copula and different margins: F1(x, y) = xy, x, y ∈ I, T2(F1) = 0;
F2(x, y) = x2y2, x, y ∈ I, T2(F2) = − 7

9 ; and F3(x, y) =
√

xy, x, y ∈ I, T2(F3) = −∞.
According to [2] for absolutely continuous distribution functions F1(x) and F2(y), the joint

density and distribution functions f (x, y) and F(x, y) on I2 with maximum entropy given by
Equation (1), under the constraints (2)–(4) are f (x, y) = f1(x) + f2(y)− 1 and

F(x, y) = yF1(x) + xF2(y)− xy, x, y ∈ I (5)

for appropriate functions F1 and F2, and with a maximum entropy (ME) copula

C(u, v) = uF−1
2 (v) + vF−1

1 (u)− F−1
2 (v)F−1

1 (u), u, v ∈ I. (6)

Not every choice of cumulative distribution functions F1 and F2 in (5) yields a bivariate
distribution function F. For example, let F1(x) = x3 and F2(y) = y3. Then f (x, y) = 3x2 + 3y2 − 1,
which equals − 1

3 when x = y = 1
3 .

Since the only maximum entropy copula for BGS entropy is the product copula, the entropy (1)
identifies models of greater flexibility in terms of dependence structure than models derived from
BGS entropy.

Given real functions f , g : I→ R, define

α = inf{ f ′(u) : u ∈ A}, β = sup{ f ′(u) : u ∈ A}, where A = {u ∈ I : f ′(u) exists }, (7)
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γ = inf{g′(v) : v ∈ B}, δ = sup{g′(v) : v ∈ B}, where B = {v ∈ I : g′(v) exists }, (8)

and consider the function C given by

C(u, v) = uv + f (u)g(v), for all u, v ∈ I. (9)

According to Theorem 2.3 in [5], C in (9) is a copula, if and only if (i) f (0) = f (1) = g(0) =

g(1) = 0; (ii) f and g are absolutely continuous and (iii) min{αδ, βγ} ≥ −1, where α, β, γ and δ are
introduced in Equations (7) and (8). Furthermore, in such a case, C is absolutely continuous. We call
a copula given by Equation (9) a RU (Rodríguez-Lallena and Úbeda-Flores) copula.

3. Results

We initiate this section with a result, showing that every ME copula (Equation (6)) has the
form of a RU copula (Equation (9)). Since each inverse cumulative distribution function F−1

i is
absolutely continuous and nondecreasing on its domain I, the inverse Fi of F−1

i is an absolutely
continuous distribution function on I. We find necessary and sufficient conditions on the functions
F1 and F2 (in terms of the derivatives of their inverses) for the ME copula in Equation (6) to be a
RU copula. These conditions also insure that the functions F1 and F2 yield a proper joint distribution
function in (5).

Theorem 1.

i Every ME copula has the functional form of a RU copula.
ii Let F−1

1 (u) and F−1
2 (v) be inverse distribution functions on I, and set A = {u ∈ I : d

du F−1
1 (u) exists},

B = {v ∈ I : d
dv F−1

2 (v) exists}, m1 = inf{ d
du F−1

1 (u) : u ∈ A}, M1 = sup{ d
du F−1

1 (u) : u ∈ A},
m2 = inf{ d

dv F−1
2 (v) : v ∈ B}, M2 = sup{ d

dv F−1
2 (v) : v ∈ B}. Then the function C(u, v) in Equation (6)

is a copula-in fact a RU copula-if and only if max{(M1 − 1)(M2 − 1), (m1 − 1)(m2 − 1)} ≤ 1.

Proof.

i Equation (6) is equivalent to

C(u, v) = uv + [u− F−1
1 (u)][F−1

2 (v)− v], (10)

which has the form of a RU copula with f (u) = u− F−1
1 (u) and g(v) = F−1

2 (v)− v.

ii Since f ′(u) = 1 − d
du F−1

1 (u) and g′(v) = d
dv F−1

2 (v) − 1, α = 1 − M1 = inf{ f ′(u) : u ∈ A},
β = 1 − m1 = sup{ f ′(u) : u ∈ A}, γ = m2 − 1 = inf{g′(v) : v ∈ B}, and δ = M2 − 1 =

sup{g′(v) : v ∈ B}. The condition min{αδ, βγ} ≥ −1 given in Theorem 2.3 [5] is equivalent to
max{(M1 − 1)(M2 − 1), (m1 − 1)(m2 − 1)} ≤ 1, and the conclusion follows.

Example 1. Consider the function C(u, v) = vua+1 + uvb+1 − ua+1vb+1 for a, b ≥ 0, which has
the form of Equation (6) with F−1

1 (u) = ua+1 and F−1
2 (v) = vb+1. It follows from differentiation

that m1, m2 = 0 or 1, M1 = a + 1 and M2 = b + 1. Hence C is a copula if and only if ab ≤ 1. C also has
the form uv[1− (1− ua)(1− vb)], a generalized Farlie–Gumbel–Morgenstern copula.

Example 2. Let F−1
1 (u) = 3u2 − 2u3 and F−1

2 (v) = (1 + θ)v − θ(3v2 − 2v3) on I, with
θ ∈ [−1, 2]. Here m1 = 0, M1 = 3

2 . In addition m2 = 0, M2 = 3, since g′(v) = θ f ′(v)
(see Proof of Theorem 1) and for −1 ≤ θ ≤ 2 the supremum and the infimum of g′(v) will
occur when θ = −1 or θ = 2. So m2 = 1 + min{− f ′(0),− f ′(1), 2 f ′( 1

2 )} = 1 + (−1) = 0 and
M2 = 1 + max{− f ′( 1

2 ), 2 f ′(0), 2 f ′(1)} = 1 + 2 = 3. Hence max{(M1 − 1)(M2 − 1), (m1 − 1)(m2 −
1)} = 1. In this case the functions C in Equation (10) are C(u, v) = uv + θuv(1 − u)(1 −
v)(1− 2u)(1− 2v), copulas with cubic sections in Example 3.15 in [6].
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We now state and prove a converse of Theorem 1 by showing that every RU copula is a
ME copula.

Theorem 2. Let C(u, v) = uv + f (u)g(v) be a RU copula. Then there exists a constant k > 0 such that
setting F−1

1 (u) = u− k f (u) and F−1
2 = 1

k g(v) + v yields the ME copula C(u, v) = uF−1
2 (v) + vF−1

1 (u)−
F−1

2 (v)F−1
1 (u).

Proof. Let C(u, v) = uv + f (u)g(v) be a RU copula. We need to show that there exists a k > 0 such
that G1(u) = u− k f (u) and G2(v) = 1

k g(v) + v are inverse distribution functions on I. Clearly, from
Theorem 2.3 in [5], G1(0) = G2(0) = 0 and G1(1) = G2(1) = 1, so it suffices to show that
G′1(u) = 1 − k f ′(u) ≥ 0 and G′2(v) = 1

k g′(v) + 1 ≥ 0 for some k > 0. Since min{αδ, βγ} ≥ −1
from Theorem 2.3 in [5], both αδ ≥ −1 and βγ ≥ −1. But β > 0 and γ < 0 imply that 0 < −γ ≤ 1

β ,

hence there exists a k > 0 such that −γ ≤ k ≤ 1
β . Thus f ′(u) ≤ β implies that k f ′(u) ≤ kβ ≤ 1,

and hence G′1(u) ≥ 0. Similarly g′(v) ≥ γ implies that 1
k g′(v) ≥ 1

k γ ≥ −1, and hence G′2(v) ≥ 0.
Thus G1(u) and G2(v) are inverse distribution functions on I. A similar result follows from αδ ≥ −1
setting G1(u) = k f (u) + u and G2(v) = v− 1

k g(v).

Example 3. The function C(u, v) = uv − uv(1−u)(1−v)
(1+u)(1+v) is a RU copula with f (u) = − u(1−u)

1+u and

g(v) = v(1−v)
1+v , with α = −1, β = 1

2 , γ = − 1
2 , and δ = 1. Setting k = 1 yields F−1

1 (u) = u− f (u) = 2u
1+u

and F−1
2 (v) = v + g(v) = 2v

1+v . Thus F1(x) = x
2−x , F2(y) =

y
2−y , and the maximum entropy bivariate

cumulative distribution function F(x, y) with margins F1(x) and F2(y), is F(x, y) = xy(x+y−xy)
(2−x)(2−y) (see

Equation (5)) with T2(F) = − 1
3 . As a point of comparison, in the independence case we have

T2(F1F2) = − 13
36 < − 1

3 . The functions F1(x) and F2(y) are not unique. If we set F−1
1 (u) = u + f (u) =

2u2

1+u and F−1
2 (v) = v− g(v) = 2v2

1+v we obtain F1(x) = 1
4 (x +

√
x2 + 8x), F2(y) = 1

4 (y +
√

y2 + 8y),
and a different F(x, y) with T2(F) = −∞.

Example 4. Let F−1
1 (u) = u + a2u(1 − u) and F−1

2 (v) = v − av(1 − v) on I with a ∈ [−1, 1].
Then the copula C in Equation (6) with maximum entropy is C(u, v) = uv + a3uv(1− u)(1− v), a
Farlie–Gumbel–Morgenstern copula with parameter θ = a3. Note that m1 = 1 − a2, M1 = 1 + a2,
m2 = min{1− a, 1 + a}, and M2 = max{1− a, 1 + a}. The joint distribution F given by Equation (5)

has entropy T2(F) = 2 − 1
2a2 ln

(
1+a2

(1+a)1−a(1−a)1+a

)
for a 6= 0, and T2(F) = 0 for a = 0, where

F1(x) = 1+a2−
√

1+2a2+a4−4a2x
2a2 , f1(x) = 1√

1+2a2+a4−4a2x
and F2(y) =

a−1+
√

(a−1)2+4ay
2a ,

f2(y) = 1√
1−2a+a2+4ay

.

The next example is an application to real data. We use a Farlie–Gumbel–Morgenstern copula
to model the dependence between two indicators, under this model we test the independence
assumption between such indicators, since it is the solution indicated by the BGS entropy.
The probability density function in the Farlie–Gumbel–Morgenstern copula case is c(u, v) = 1 +

θ(1− 2u)(1− 2v), u, v ∈ I with θ ∈ [−1, 1]. The Farlie–Gumbel–Morgenstern copulas are solutions
that maximize THC entropy in certain cases (see Example 4). Because we use a data set with moderate
sample size, to test the independence, we apply the Full Bayesian Significance Test (FBST) [7], a
Bayesian approach especially designed to test precise hypothesis. The aim of this application is to use
the family of ME (or RU) copulas derived from THC entropy in Example 4 to test the hypothesis of
the independence assumption.

Example 5. The database is composed by paired observations {(xi, yi)}n
i=1 coming from the bivariate

vector (X, Y). The observations are taken from each one of the 50 American states and the District of
Columbia. The observations of X are “Gonorrhea Rates per 100,000 Population” collected for each of
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the n=51 units by the Centers for Disease Control and Prevention in 2011. The data can be obtained
from Table 14 in [8]. See also [9]. The observations of Y are records of poverty “400% FPL and
over” records the upper section of the distribution of the total population by Federal Poverty Level
(FPL) for the 51 units, in 2011. The data can be obtained from the Kaiser Family Foundation [10].
The hypothesis of independence in the case of Farlie–Gumbel–Morgenstern copula is translated to
test θ = 0, which leads naturally to apply the procedure FBST as follows: H0 : θ = 0 versus
H1 : θ 6= 0, compute Ev = 1 −

∫
T g(θ|D)dθ, where T = {θ : −1 ≤ θ ≤ 1 and g(θ|D) > g(0|D)}

and D := {(ui, vi)}n
i=1, ui =

rank(xi)
n , vi =

rank(yi)
n , i = 1, . . . , n, with posterior density on θ given by

g(θ|D), θ ∈ [−1, 1]. In FBST, H0 is rejected when Ev is small, for details about this methodology
see [11]. In order to explore some possibilities we compare the results using a prior density on θ

proportional to ( 1+θ
2 )a−1( 1−θ

2 )b−1 with a and b hyperparameters of the distribution. We fixed the
hyperparameters to consider five settings (i) uniform distribution on [−1, 1], (ii) prior density with a
mode on θ = 0, (iii) prior density with a mode on θ = −0.5, (iv) prior density with a mode on θ = 0.5,
(v) prior density with a mode near to θ = −1. This last setting is included in concordance with the
Spearman’s coefficient observed in the data, ρs = −0.32113, that indicates a θ value near to −0.96.

According to our results (Table 1), we have evidence to reject the independence assumption
under the Farlie–Gumbel–Morgenstern copula model, except in a setting as (iv), in which the prior
distribution on θ and the likelihood of the data expose some conflict of information, allowing us to
disregard this case.

Table 1. Evidence against H0 : θ = 0, prior density on θ ∝ ( 1+θ
2 )a−1( 1−θ

2 )b−1.

Setting a b Ev

(i) 1 1 0.02686
(ii) 2 2 0.05580
(iii) 2 4 0.01702
(iv) 4 2 0.28670
(v) 2 10 0.00050

4. Conclusions

In [2], Pougaza and Mohammad-Djafari studied bivariate distributions with maximum entropy
(in the Tsallis–Havrda–Chavát sense with q = 2) for the purpose of generating new families
of copulas, which we call ME copulas. In this paper we show that every ME copula coincides
with a member of a family studied by Rodríguez-Lallena and Úbeda-Flores in [5], copulas we
call RU copulas. Furthermore, we show that every RU copula is a ME copula, and provide
illustrative examples.
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