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Abstract: In this paper, our concern is to design some criteria for deterministic remote state
preparation for preparing an arbitrary three-particle state via a genuinely entangled six-qubit state.
First, we put forward two schemes in both the real and complex Hilbert space, respectively. Using an
appropriate set of eight-qubit measurement basis, the remote three-qubit preparation is completed
with unit success probability. Departing from previous research, our protocol has a salient feature in
that the serviceable measurement basis only contains the initial coefficients and their conjugate values.
By utilizing the permutation group, it is convenient to provide the permutation relationship between
coefficients. Second, our ideas and methods can also be generalized to the situation of preparing an
arbitrary N-particle state in complex case by taking advantage of Bell states as quantum resources.
More importantly, criteria satisfied conditions for preparation with 100% success probability in
complex Hilbert space is summarized. Third, the classical communication costs of our scheme are
calculated to determine the classical recourses required. It is also worth mentioning that our protocol
has higher efficiency and lower resource costs compared with the other papers.

Keywords: criteria; deterministic remote state preparation; entangled six-qubit state;
permutation group

1. Introduction

With the rapid development of quantum information processing, many difficult tasks have been
successfully solved by using entanglement resources. One of great discoveries is quantum teleportation
(QT) [1] in this research filed. The QT, first proposed by Bennett, has enabled the transmission of
quantum state between remote places without sending the state itself. In a typical QT protocol, the
sender makes a collective measurement and informs the receiver through classical communications.
The receiver can then perform proper unitary operations on his particle to reconstruct the initial
quantum state. When the state is completely known to the sender previously, another economical
scheme, called remote state preparation (RSP) [2–4]. The RSP, which was firstly introduced by Lo [5],
also deals with the remote transmission of quantum state. Hence there is the trade-off of resources
in RSP. Pati [6] showed that the preparation of the state of polar great circles or equatorial line needs
only one classical bit, smaller than the cost in QT. However, with states of a generic set considered,
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the cost in RSP is equal to that in QT [5,7]. The research of RSP has been a popular direction in
quantum communications, including joint remote state preparation (JRSP) protocols [8–10], controlled
remote state preparation (CRSP) protocols [11–13] and deterministic remote state preparation (DRSP)
protocols [14,15]. There have also been experimental studies of RSP [16,17], they can be applied to
some encryption schemes [18–22].

Among all aspects of RSP, DRSP is starting to attract substantial attention. Many researchers
have focused on this branch, finding a special set of states that can be remotely prepared with
certainty. Pati [6] focused on the states chosen from equatorial or polar great circles on a Bloch sphere.
Zeng et al. [23] generalized Pati’s protocol to higher dimensions. They proved that deterministic
RSP in real Hilbert space can only be implemented in two, four, or eight dimensions. They also
studied the RSP protocol of equatorial state, where RSP can be generalized to arbitrary dimension case.
Liu et al. [24] considered the arbitrary two and three-qubit RSP cases using nonmaximally entangled
states, i.e., an remote preparation of arbitrary quantum pure states of two and three qubits with
different success probabilities. By using a six-qubit maximally entangled state as the quantum channel,
Zhang et al. [25] proposed a theoretical scheme for bidirectional remote state preparation. Yan et al. [26]
constructed the complex orthogonal bases by using the two-particle state, under which the success
probability of the RSP protocol is 1/2. They showed that RSP can be done deterministically if the
coefficients are all real. Wang et al. [27] presented a protocol to prepare a class of three-qubit states

|uy “ α |000y ` β |111y ` γ |001y ` δ |110y (1)

Here, α is real, β, γ, δ are complex and satisfy |α|2 ` |β|2 ` |γ|2 ` |δ|2 “ 1. By using three
Einstein–Podolsky–Rosen (EPR) pairs as the quantum channel, their protocol can be successfully
realized with 1/4 probability.

There is an intriguing question: if the coefficients α, β, γ, δ are some special values, can the initial
state |uy be prepared with a higher probability? Very recently, some researchers were interested in
these coefficients which have an effect on the success probability. Wang et al. [27] classified them into
four simple types, which they believed to be final optimal conditions. Similarly, Pan [28] drew the same
conclusion by using the Bell state and asymmetric W state as the quantum channel. Sheng et al. [29]
provided a protocol of deterministic entanglement purification, and completed nonlocal Bell-state
analysis with hyper entanglement. Zhan [30] studied a deterministic RSP of preparing an arbitrary
two-qubit pure state by using two bipartite partially entangled states as the quantum channel.
Wang [31] presented a bipartite scheme for remotely preparing an arbitrary three-qubit state with a
four-qubit cluster state and EPR state as the shared quantum channel. Ma et al. [32] proposed several
RSP schemes of arbitrary two- and three-qubit states via the χ state as the entangled resource, and
discussed the success probability of real and complex coefficients for the two cases.

The rest of our paper is organized as follows: Related literatures are overviewed in Section 2.
In Section 3, we investigate two schemes to remotely prepare an arbitrary three-particle state in
eight-dimensional Hilbert space by using the six-particle entangled state as the quantum channel.
In Section 4, we generalize our research into remote state preparation of an arbitrary N-particle
state which used Bell states as quantum resources. The classical communication cost (CCC) of
the present scheme is calculated in Section 5, while discussion and conclusions are given in
Sections 6 and 7, respectively.

2. Related Works

There exists a number of studies on genuinely entangled six-qubit state, whose basic settings are
related to this paper. We provide a brief overview below.

In 2007, the usefulness of the genuinely entangled six-qubit state that had been introduced by
Borras et al. [33] was investigated for the quantum teleportation of an arbitrary three-qubit state.
The state is a genuinely entangled six-qubit state which is not decomposable into pairs of Bell states.
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Choudhury et al. [34] reported that it is also difficult to disentangle this state by performing local
operations, and entanglement still prevails after three local measurements. It has been shown that
entanglement of |ψ6y decays more slowly than that of the Greenberger–Horne–Zeilinger (GHZ) state.
Further, it has been shown that the entanglement of |ψ6y is robust against the depolarizing channel.

Recently, the entangled six-qubit state was widely used in the field of quantum cryptography.
Zha et al. [35] presented two schemes for the remote preparation of a four-qubit W state and calculated
the success probability of the RSP scheme in general. Li et al. [36] proposed a scheme for state sharing
of an arbitrary single-qubit state by using this state as the quantum channel. Sun et al. [37] presented a
scheme of bidirectional quantum controlled teleportation in which a six-qubit maximally entangled
state quantum channel was initially shared by the Alice, Bob, and supervisor Charlie. Sun et al. [38]
gave a multi-party quantum key agreement protocol utilized the state. However, to our best knowledge,
up to now, there have been no protocols for how to generate DRSP of an arbitrary three-qubit state
with this entangled six-qubit state as the shared quantum channel. These factors give us motivation to
investigate this six-qubit entangled channel for the above mentioned DRSP.

So, the quantum channel by us can be expressed as follows:

|ψ6y “
1
2
r|F0y |φ´y ` |F1y |φ`y ` |F2y |ψ´y ` |F3y |ψ`ys123456 (2)

Here,
|F0y “

1?
2
p|0000y ` |1111yq, |F1y “

1?
2
p|0011y ` |1100yq,

|F2y “
1?
2
p|0110y ` |1001yq, |F3y “

1?
2
p|0101y ` |1010yq.

(3)

|φ˘y “
1
?

2
p|00y ˘ |11yq , |ψ˘y “

1
?

2
p|01y ˘ |10yq (4)

3. Remote State Preparation of an Arbitrary Three-Particle State

In this section, we focus on the remote state preparation in eight dimensions, i.e. the initial
states with three particles. Suppose that Alice wants to help Bob prepare an arbitrary three-particle
state remotely

|Ψy “ α0 |000y ` α1 |001y ` α2 |010y ` α3 |011y ` α4 |100y ` α5 |101y ` α6 |110y ` α7 |111y (5)

Here, the coefficients satisfy the normalization condition
ři“7

i“0 |αi|
2
“ 1. Alice knows these

coefficient completely, but Bob does not know them at all. We suppose Alice and Bob share a entangled
six-particle state |ψ6y which is shown in Equation (2) as the quantum channel. Here, Alice and Bob
possess the particles 1, 2, 3, and 4, 5, 6, respectively.

We will first discuss the prepared states in the real Hilbert space in Section 3.1. More importantly,
the initial state |Ψywith complex coefficients is considered in Section 3.2.

3.1. The Coefficients Are Real

Suppose that αi p0 ď i ď 7q is an arbitrary real number. Using Equations (3) and (4), the entangled
six-particle state |ψ6y in Equation (2) can be rewritten

|ψ6y123456 “ 1
2
?

2
¨ 1?

2
rp|0000y ` |1100yq1234 |00y56 ` p|0110y ` |1010yq1234 |01y56 ` p´ |0110y ` |1010yq1234 |10y56

`p´ |0000y ` |1100yq1234 |11y56 ` p|1111y ` |0011yq1234 |00y56 ` p|1001y ` |0101yq1234 |01y56
`p´ |1001y ` |0101yq1234 |10y56 ` p´ |1111y ` |0011yq1234 |11y56s

“ 1
2
?

2
¨ 1?

2
rp|000y ` |110yq123 |000y456 ` p|011y ` |101yq123 |001y456 ` p´ |011y ` |101yq123 |010y456

`p´ |000y ` |110yq123 |011y456 ` p|111y ` |001yq123 |100y456 ` p|100y ` |010yq123 |101y456
`p´ |100y ` |010yq123 |110y456 ` p´ |111y ` |001yq123 |111y456s

(6)
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First, Alice makes a three-particle projective measurement on her particles 1, 2, 3. A set of mutually
orthogonal basis {|µ1y, |µ2y, |µ3y, |µ4y, |µ5y, |µ6y, |µ7y, |µ8y} with all real coefficients are given as

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝
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˛
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where the real coefficients Ai (0 ď i ď 7) are given as

A0 “
1?
2
pα0 ´ α3q , A1 “

1?
2
pα1 ´ α2q , A2 “

1?
2
pα1 ` α2q , A3 “

1?
2
pα0 ` α3q ,

A4 “
1?
2
pα4 ´ α7q , A5 “

1?
2
pα5 ´ α6q , A6 “

1?
2
pα5 ` α6q , A7 “

1?
2
pα4 ` α7q .

(8)

Using Equation (8), the whole system will be rewritten in terms of this measurement basis as
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2
?

2
r|µ1y pα0 |000y ` α1 |001y ` α2 |010y ` α3 |011y ` α4 |100y ` α5 |101y ` α6 |110y ` α7 |111yq456

` |µ2y pα1 |000y ´ α0 |001y ` α3 |010y ´ α2 |011y ` α5 |100y ´ α4 |101y ` α7 |110y ´ α6 |111yq456
` |µ3y pα2 |000y ´ α3 |001y ´ α0 |010y ` α1 |011y ` α6 |100y ´ α7 |101y ´ α4 |110y ` α5 |111yq456
` |µ4y pα3 |000y ` α2 |001y ´ α1 |010y ´ α0 |011y ´ α7 |100y ´ α6 |101y ` α5 |110y ` α4 |111yq456
` |µ5y pα4 |000y ´ α5 |001y ´ α6 |010y ` α7 |011y ´ α0 |100y ` α1 |101y ` α2 |110y ´ α3 |111yq456
` |µ6y pα5 |000y ` α4 |001y ` α7 |010y ` α6 |011y ´ α1 |100y ´ α0 |101y ´ α3 |110y ´ α2 |111yq456
` |µ7y pα6 |000y ´ α7 |001y ` α4 |010y ´ α5 |011y ´ α2 |100y ` α3 |101y ´ α0 |110y ` α1 |111yq456
` |µ8y pα7 |000y ` α6 |001y ´ α5 |010y ´ α4 |011y ` α3 |100y ` α2 |101y ´ α1 |110y ´ α0 |111yq456s

From the above equation, it is transparent that a process of entanglement swapping happens
after Alice’s three-particle projective measurement on the particles 1, 2, 3, under the basis
{|µiy pi “ 1, 2, ¨ ¨ ¨ , 8q}, and a new entanglement is established among particles 4, 5, 6. Suppose three
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classical bit strings m1m2m3 “ 000 „ 111 correspond to the measurement result |µiy pi “ 1, 2, ..., 8q.
Then Alice tells Bob the measurement result through a classical channel. Whatever Alice’s measurement
outcomes are, Bob can always obtain the prepared state on his particles by performing an appropriate
unitary operation (shown in Table 1).

Table 1. The recovery operations for Bob. The measurement result of Alice on particles 1, 2, 3 is
AMR123, and the counterpart classical message is m1m2m3. Bob’s appropriate unitary operation is
defined as BAUO.

AMR123 m1m2m3 The State on the Particles 4, 5, 6 BAUO

|µ1y 000 α0 |000y ` α1 |001y ` α2 |010y ` α3 |011y
`α4 |100y ` α5 |101y ` α6 |110y ` α7 |111y I4 b I5 b I6

|µ2y 001 α1 |000y ´ α0 |001y ` α3 |010y ´ α2 |011y
`α5 |100y ´ α4 |101y ` α7 |110y ´ α6 |111y I4 b I5 b σxz

6

|µ3y 010 α2 |000y ´ α3 |001y ´ α0 |010y ` α1 |011y
`α6 |100y ´ α7 |101y ´ α4 |110y ` α5 |111y I4 b σxz

5 b σz
6

|µ4y 011 α3 |000y ` α2 |001y ´ α1 |010y ´ α0 |011y
´α7 |100y ´ α6 |101y ` α5 |110y ` α4 |111y σ4

z b σxz
5 b σx

6

|µ5y 100 α4 |000y ´ α5 |001y ´ α6 |010y ` α7 |011y
´α0 |100y ` α1 |101y ` α2 |110y ´ α3 |111y σxz

4 b σz
5 b σz

6

|µ6y 101 α5 |000y ` α4 |001y ` α7 |010y ` α6 |011y
´α1 |100y ´ α0 |101y ´ α3 |110y ´ α2 |111y σxz

4 b I b σx
6

|µ7y 110 α6 |000y ´ α7 |001y ` α4 |010y ´ α5 |011y
´α2 |100y ` α3 |101y ´ α0 |110y ` α1 |111y σxz

4 b σx
5 b σz

6

|µ8y 111 α7 |000y ` α6 |001y ´ α5 |010y ´ α4 |011y
`α3 |100y ` α2 |101y ´ α1 |110y ´ α0 |111y σx

4 b σxz
5 b σx

6

In this scheme, we can see that Alice can help Bob remotely prepare the specified state with 100%
success probability. For clearness, the schematic demonstration and quantum circuit diagram of our
RSP scheme have been shown in Figures 1 and 2, respectively.
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Figure 2. The quantum circuit diagram. In the circuit, the single lines are denoted as the quantum
channels, while the double lines represent the classical channels. The element µ123 indicates making
a three-particle projective measurement on particles 1, 2, 3; Uipi “ 4, 5, 6q indicates performing an
appropriate unitary operation on corresponding particles.
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3.2. The Coefficients Are Complex

In this scenario, the new measurement basis is constructed in an eight-dimensional complex
Hilbert space. They only contain the initial coefficients and their conjugate values, so it is convenient for
us to further investigate the permutation relationship between coefficients. A criterion for deterministic
RSP is given, to determine which states can be prepared with 100% success probability. For clarity,
an example is given to show that such special set of states really exists.

Now we further consider the remote preparation of a more general arbitrary three-particle state

|Ψy “ α0 |000y ` α1 |001y ` α2 |010y ` α3 |011y ` α4 |100y ` α5 |101y ` α6 |110y ` α7 |111y (9)

where the coefficients satisfy the normalization condition
ři“7

i“0 |αi|
2
“ 1. Here, αi (0 ď i ď 7) is an

arbitrary complex number. We still assume Alice knows this state |Ψy, but Bob does not.
Likewise, Alice first performs a three-qubit projective measurement on her three particles 1, 2, 3,

under eight mutual orthogonal measurement bases |η1y, |η2y, |η3y, |η4y, |η5y, |η6y, |η7y and |η8y, which
are given by

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

|η1y

|η2y
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˛

‹
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˚

˚

˚
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˚

˝

α˚0 α˚1 α˚2 α˚3 α˚4 α˚5 α˚6 α˚7

λα˚0 ´
α˚

1
λ ´

α˚
2
λ λα˚3 λα˚4 ´

α˚
5
λ ´

α˚
6
λ λα˚7

α3 α2 ´α1 ´α0 α7 α6 ´α5 ´α4

λα3 ´
α2
λ

α1
λ ´λα0 λα7 ´

α6
λ

α5
λ ´λα4

α˚4 α˚5 α˚6 α˚7 α˚0 α˚1 α˚2 α˚3

λα˚4 ´
α˚

5
λ ´
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6
λ λα˚7 λα˚0 ´
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1
λ ´
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2
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λ
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˚

˚
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A˚4 A˚3 A˚2 A˚5 A˚1 A˚6 A˚7 A˚0
λA˚4 λA˚3 ´

A˚
2

λ ´
A˚

5
λ ´
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1

λ ´
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6
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A7 ´A0 ´A1 A6 A2 ´A5 ´A4 A3

λA7 ´λA0
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‹
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‹

‚

(10)

Here, * denotes the conjugate of a matrix, the complex coefficients Ai (0 ď i ď 7) are the same as
Equation (8), and the coefficient λ is

λ “

b

|A1|
2
` |A2|

2
` |A5|

2
` |A6|

2

b

|A0|
2
` |A3|

2
` |A4|

2
` |A7|

2
“

b

|α1|
2
` |α2|

2
` |α5|

2
` |α6|

2

b

|α0|
2
` |α3|

2
` |α4|

2
` |α7|

2
(11)

Considering the orthogonality, the coefficients should satisfy the following conditions

α0α4
˚ ` α4α0

˚ ` α3α7
˚ ` α7α3

˚ “ 0
α1α5

˚ ` α5α1
˚ ` α2α6

˚ ` α6α2
˚ “ 0

(12)
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Using Equation (8), the whole system will be rewritten in terms of this measurement basis as

|ψ6y123456 “
1

2
?

2

¨
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˚
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˚
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2
?

2
r|η1y pα0 |000y ` α1 |001y ` α2 |010y ` α3 |011y ` α4 |100y ` α5 |101y ` α6 |110y ` α7 |111yq456

` |η2y pλα0 |000y ´ α1
λ |001y ´ α2

λ |010y ` λα3 |011y ` λα4 |100y ´ α5
λ |101y ´ α6

λ |110y ` λα7 |111yq456
` |η3y pα3

˚ |000y ` α2
˚ |001y ´ α1

˚ |010y ´ α0
˚ |011y ` α7

˚ |100y ` α6
˚ |101y ´ α5

˚ |110y ´ α4
˚ |111yq456

` |η4y pλα3
˚ |000y ´ α2

˚

λ |001y ` α1
˚

λ |010y ´ λα0
˚ |011y ` λα7

˚ |100y ´ α6
˚

λ |101y ` α5
˚

λ |110y ´ λα4
˚ |111yq456

` |η5y pα4 |000y ` α5 |001y ` α6 |010y ` α7 |011y ` α0 |100y ` α1 |101y ` α2 |110y ` α3 |111yq456
` |η6y pλα4 |000y ´ α5

λ |001y ´ α6
λ |010y ` λα7 |011y ` λα0 |100y ´ α1

λ |101y ´ α2
λ |110y ` λα3 |111yq456

` |η7y pα7
˚ |000y ` α6

˚ |001y ´ α5
˚ |010y ´ α4

˚ |011y ` α3
˚ |100y ` α2

˚ |101y ´ α1
˚ |110y ´ α0

˚ |111yq456

` |η8y pλα7
˚ |000y ´ α6

˚

λ |001y ` α5
˚

λ |010y ´ λα4
˚ |011y ` λα3

˚ |100y ´ α2
˚

λ |101y ` α1
˚

λ |110y ´ λα0
˚ |111yq456s

From the above equation, suppose three classical bit strings m1m2m3 “ 000 „ 111 correspond to
the measurement result |ηiy pi “ 1, 2, ..., 8q. After the measurement, Alice sends the classical bits to Bob.
For the states with arbitrary complex coefficients, Bob can recover the prepared state only when the
measurement result is 000 (100). The recovery operations performed by him is I4b I5b I6(σx

4 b I5b I6),
respectively. Otherwise, he cannot find a recovery operation independent of the coefficients. So, in this
case the success probability is 2/8 = 25%.

However, if the coefficients are of some special values, Bob may reconstruct the initial state
successfully with higher probability. To achieve this, we suppose the coefficient λ “ 1. This may set
restrictions to the coefficients of the initial state, because:

λ “ 1 Õ |α0|
2
` |α3|

2
` |α4|

2
` |α7|

2
“ |α1|

2
` |α2|

2
` |α5|

2
` |α6|

2 (13)

Now, Bob can recover the prepared initial state successfully when the measurement result of
Alice is 001 (101). It is easy to see that the success probability will be raised to 4/8=50%. The recovery
operations performed by Bob are I4 b σz

5 b σz
6 and σx

4 b σz
5 b σz

6 , respectively.
Furthermore, if the coefficients meet certain relationships between {α0, α1, ¨ ¨ ¨ , α7} and

{α˚0 , α˚1 , ¨ ¨ ¨ , α˚7 }, we can further increase the success probability.
We now introduce the permutation group S8, which contains the set of 8! permutations for the

eight coefficients {α0, α1, ¨ ¨ ¨ , α7}.

S8 “ tp1q, p12q, p13q, ..., p1234qp5678q, ..., p123456qp78q, ..., p12345678q, ...u (14)

In Appendix, we partially give some permutations in S8 and the corresponding recovery
operations, not the whole outcomes.

Criterion 1. The arbitrary three-particle state Equation (9) can be remotely prepared with 100% success
probability if the coefficients {α0, α1, ¨ ¨ ¨ , α7} satisfy

(i) α0α4
˚ ` α4α0

˚ ` α3α7
˚ ` α7α3

˚ “ 0,
(ii) α1α5

˚ ` α5α1
˚ ` α2α6

˚ ` α6α2
˚ “ 0,

(iii) |α0|
2
` |α3|

2
` |α4|

2
` |α7|

2
“ |α1|

2
` |α2|

2
` |α5|

2
` |α6|

2,
(iv) pα˚0 , α˚1 , ¨ ¨ ¨ , α˚7 q “ λggpα0,˘α1, ¨ ¨ ¨ ,˘α7q.

Here, λg is a global constant that depends on the permutation g P S8.
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A natural question would be: Is there a quantum state that satisfies all the above conditions?
To show its existence, we now give an example

α0 “
1

4
?

2
, α1 “

?
3

4
?

2
ei 3

4 π , α2 “
1

4
?

2
eiπ , α3 “

?
3

4
?

2
ei 1

4 π ,

α4 “
1
4 eiπ , α5 “

1
4 ei 7

4 π , α6 “
1
4 , α7 “

1
4 ei 5

4 π .
(15)

It is easy to verify that the above coefficients satisfy the conditions (i), (ii), (iii). The permutation
relationships are

α0
˚

α2
“

α1
˚

α3
“

α2
˚

α0
“

α3
˚

α1
“

α4
˚

α6
“

α5
˚

α7
“

α6
˚

α4
“

α7
˚

α5
“ eiπ (16)

No matter what measurement result Alice gets, Bob can always find the recovery operations to
reconstruct the initial state. The detailed recovery operations are summarized in Table 2.

Table 2. The recovery operations for Bob. The measurement result of Alice on particles 1, 2, 3 is
AMR123, and the counterpart classical message is m1m2m3. Bob’s appropriate unitary operation is
defined as BAUO.

AMR123 m1m2m3 The State on the Particles 4, 5, 6 BAUO

|η1y 000 α0 |000y ` α1 |001y ` α2 |010y ` α3 |011y
`α4 |100y ` α5 |101y ` α6 |110y ` α7 |111y I4 b I5 b I6

|η2y 001 λα0 |000y ´ pα1{λq |001y ´ pα2{λq |010y ` λα3 |011y
`λα4 |100y ´ pα5{λq |101y ´ pα6{λq |110y ` λα7 |111y I4 b σz

5 b σz
6

|η3y 010 α3
˚ |000y ` α2

˚ |001y ´ α1
˚ |010y ´ α0

˚ |011y
`α7

˚ |100y ` α6
˚ |101y ´ α5

˚ |110y ´ α4
˚ |111y I4 b σz

5 b σx
6

|η4y 011 λα3
˚ |000y ´ pα2

˚{λq |001y ` pα1
˚{λq |010y ´ λα0

˚ |011y
`λα7

˚ |100y ´ pα6
˚{λq |101y ` pα5

˚{λq |110y ´ λα4
˚ |111y I4 b σz

5 b σxz
6

|η5y 100 α4 |000y ` α5 |001y ` α6 |010y ` α7 |011y
`α0 |100y ` α1 |101y ` α2 |110y ` α3 |111y σx

4 b I5 b I6

|η6y 101 λα4 |000y ´ pα5{λq |001y ´ pα6{λq |010y ` λα7 |011y
`λα0 |100y ´ pα1{λq |101y ´ pα2{λq |110y ` λα3 |111y σx

4 b σz
5 b σz

6

|η7y 110 α7
˚ |000y ` α6

˚ |001y ´ α5
˚ |010y ´ α4

˚ |011y
`α3

˚ |100y ` α2
˚ |101y ´ α1

˚ |110y ´ α0
˚ |111y σx

4 b σz
5 b σx

6

|η8y 111 λα7
˚ |000y ´ pα6

˚{λq |001y ` pα5
˚{λq |010y ´ λα4

˚ |011y
`λα3

˚ |100y ´ pα2
˚{λq |101y ` pα1

˚{λq |110y ´ λα0
˚ |111y σx

4 b σz
5 b σxz

6

4. Remote State Preparation of an Arbitrary N-Particle State

In the previous section, we have discussed the deterministic RSP of an arbitrary three-particle state
using the entangled six-particle state |ψ6y as the quantum channel. We first consider the preparation of
states with all real coefficients. Second, a criterion is proposed for the RSP in complex Hilbert space
with 100% success probability. Different from previous literatures, we introduce the permutation group
S8, which generates the complete set of states for deterministic RSP. It is natural to ask whether our
criterion can be generalized to higher dimensions. One should note that deterministic RSP cannot be
realized in real Hilbert space when the dimension is larger than eight. As for complex coefficients, the
answer is “yes”, as long as a proper set of orthogonal bases is constructed.

Alice wants to help Bob prepare an arbitrary N-particle state

|Ψy “ α0 |00 ¨ ¨ ¨ 0y ` α1 |00 ¨ ¨ ¨ 1y ` ¨ ¨ ¨ ` αM´1 |11 ¨ ¨ ¨ 1y (17)

where M “ 2N . The generalized Bell states are used as quantum resources, which are shared between
Alice and Bob

|ψBelly “
1
?

M

˜

M´1
ÿ

i“0

|iy b |iy

¸

(18)
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Next, a set of orthogonal basis should be constructed containing the initial coefficients and their
conjugate values

|X1y “ α˚0 |00 ¨ ¨ ¨ 0y ` α˚1 |00 ¨ ¨ ¨ 1y ` ¨ ¨ ¨ ` α˚M´1 |11 ¨ ¨ ¨ 1y
|X2y “ αM´1 |00 ¨ ¨ ¨ 0y ` αM´2 |00 ¨ ¨ ¨ 1y ´ αM´3 |00 ¨ ¨ ¨ 10y ´ αM´4 |00 ¨ ¨ ¨ 11y ` ¨ ¨ ¨
`p´1qM{2´1α1 |11 ¨ ¨ ¨ 0y ` p´1qM{2´1α0 |11 ¨ ¨ ¨ 1y
|X3y “ α˚0 |00 ¨ ¨ ¨ 0y ´ α˚1 |00 ¨ ¨ ¨ 1y ´ α˚2 |00 ¨ ¨ ¨ 10y ` α˚3 |00 ¨ ¨ ¨ 11y ¨ ¨¨
`α˚M´4 |11 ¨ ¨ ¨ 00y ´ α˚M´3 |11 ¨ ¨ ¨ 01y ´ α˚M´2 |11 ¨ ¨ ¨ 10y ` α˚M´1 |11 ¨ ¨ ¨ 1y
|X4y “ αM´1 |00 ¨ ¨ ¨ 0y ´ αM´2 |00 ¨ ¨ ¨ 1y ` αM´3 |00 ¨ ¨ ¨ 10y ´ αM´4 |00 ¨ ¨ ¨ 11y ` ¨ ¨ ¨
`p´1qM´2α1 |11 ¨ ¨ ¨ 0y ` p´1qM´1α0 |11 ¨ ¨ ¨ 1y
¨ ¨ ¨ ¨ ¨¨

(19)

Here, the other M-4 bases are omitted.
Now, the criterion for deterministic RSP in higher dimensions is naturally drawn. Similar to the

previous section, we introduce the permutation group SM. So, we generalize Criterion 1 to

Criterion 2. The N-particle state Equation (17) can be remotely prepared with 100% success probability
if the coefficients {α0, α1, ..., αM´1} satisfy

(1) The normalization condition,
(2) pα˚0 , α˚1 , ..., α˚M´1q “ λggpα0,˘α1, . . . ,˘αM´1q.

Here, λg is a global constant that depends on the permutation g P SM.
If the coefficients satisfy the conditions in Criterion 2, the proper recovery operations can always

be found for the receiver Bob. Thus, the deterministic RSP of N-particle state can be realized.

5. Classical Communication Cost

In this section, we calculate the CCC which is very important to reflect the classical resources
required in our RSP.

Consider our scheme in Section 3, in fact, the total measurement result is |µiy pi “ 1, 2, ..., 8q, and
each of them can be obtained with the probability 1

8 . Therefore, the CCC is

8ˆ
1
8

log28 “ 3cbits

6. Discussion

In this section, in order to better illustrate the current research work, we summarize the
comparison for two cases. One is to use the same quantum channel to achieve DRSP, the other is use
the different quantum channels to realize an arbitrary three-particle state. Clear lists are presented in
Tables 3 and 4.

Table 3. The comparison for using the same quantum channel to achieve DRSP.

Zha’s Protocol [35] Our Protocol

Entanglement resource Entangled six-qubit state |ψ6y Entangled six-qubit state |ψ6y

Prepared state Four-particle W state Arbitrary three-particle state
The number of parameters 4 8

Qubits 6 6
Cbits 2 3

Qubit efficiency 100% 100%
Success probability 100% (Non-deterministic) 100% (Deterministic)
Recovery operation U Pauli operations
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Table 4. The comparison for using the different quantum channels to realize an arbitrary three-particle
state for DRSP.

Entanglement Resource Qubits Cbits
(General Case)

Success
Probability

Zhan’s protocol [30] Three GHZ states 9 6 100%
Wang’s protocol [31] Four-qubit cluster state + EPR pair 6 3 50%

Ma’s protocol [32] χ state 6 4 50%
Our protocol Entangled Six-qubit state |ψ6y 6 3 100%

Table 3 presents the comparison for using the same quantum channel |ψ6y to achieve DRSP.
Comparing to Zha’s protocol in Reference [35], we have more advantages in the following three
aspects despite using the same quantum. First, there are eight parameters in the prepared state,
which need to construct a 8ˆ8 matrix in eight-dimensional Hilbert space. More parameters means
more complexity and difficulty of computing. Second, our success probability is deterministic and can
reach 100% if the coefficients meet certain relationships. Third, Bob’s recovery operations are easier
than Zha’s scheme. We just use simple Pauli operations instead of complex unitary transformation.

Table 4 shows the comparison for using the different quantum channels to realize an arbitrary
three-particle state for DRSP. On the one hand, it is worth noting that six quantum resources are all
consumed in our scheme and References [31,32], but the initial state can only be prepared with the
probability 50% by theirs, whereas our scheme can achieve 100%. On the other hand, comparing to
Reference [30], although the success of probability can reach 100% in this protocol, it sacrifices more
quantum and classical resources to achieve recovery of the quantum state.

7. Conclusions

In summary, we have proposed two new criteria for DRSP. Using the entangled six-particle state
|ψ6y, we investigate the DRSP that deals with real and complex coefficients in eight-dimensional
Hilbert space. In the first case, we focus on the coefficients as real numbers. With the result of Alice’s
three-particle projective measurement, Bob can obtain the initial state with 100% success probability
deterministically. For the latter, we make a discussion and find that Bob also can recover the initial state
with a certain probability or even 1 according to our criterion if the coefficients satisfy some constraints.

Compared with previous studies, the feature of our protocol has the following distinct advantages:
First, the initial state to be remotely prepared is an arbitrary three-qubit state, which is neither
single-qubit state nor two-qubit state. So the projective measurement performed by Alice is in Hilbert
spaces of eight dimensions (neither two nor four). Second, the serviceable measurement basis contains
only the initial coefficients and their conjugate values. By utilizing the permutation group, it is
convenient to provide the permutation relationship between coefficients. The scenarios of the state and
corresponding recovery operations performed by the receiver are only partially listed in Appendix 7
because the number of permutations is enormous. Third, it is important that we present two perfect
criteria to determine which states can be prepared with 100% success probability. Furthermore, our
ideas and methods can also be generalized to the higher dimension state by taking advantage of the
related operations of the permutation group and Bell states as quantum resources.
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the final manuscript.
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Appendix

Table A1. Partial permutations of S8 in complex coefficient case.

SN Special Type Permutation Norm, Phase Factor BAUO Example

1
α˚

0
α0
“

α˚
1

α1
“

α˚
2

α2
“

α˚
3

α3

“
α˚

4
α4
“

α˚
5

α5
“

α˚
6

α6
“

α˚
7

α7

p1q θ0 “ θ1 “ θ2 “ θ3 “

θ4 “ θ5 “ θ6 “ θ7 “ 0 I

α0 “ 1{6, α1 “
?

2{6,
α2 “

?
3{6, α3 “ 2{3,

α4 “
?

5{6, α5 “
?

6{6,
α6 “

?
7{6, α7 “

?
2{3.

2
α˚

0
α1
“

α˚
1

α2
“

α˚
2

α3
“

α˚
3

α0

“
α˚

4
α5
“

α˚
5

α6
“

α˚
6

α7
“

α˚
7

α4

p1234qp5678q

|α0| “ |α1| “ |α2| “ |α3| ,
|α4| “ |α5| “ |α6| “ |α7|

θ0 “ θ2 “ 0, θ4 “ θ6
θ1 “ θ3 “ θ4 ` θ5, θ5 “ θ7

P1234P5678

α0 “
1
4 , α1 “

1
4 ei π

2 ,
α2 “

1
4 , α3 “

1
4 ei π

2 ,
α4 “

?
3

4 ei 3π
8 , α5 “

?
3

4 ei π
8 ,

α6 “
?

3
4 ei 3π

8 , α7 “
?

3
4 ei π

8 .

3
α˚

0
α1
“

α˚
1

α2
“

α˚
2

α3
“

α˚
3

α4

“
α˚

4
α5
“

α˚
5

α0
“

α˚
6

α7
“

α˚
7

α6

p123456qp78q

|α0| “ |α1| “ |α2| “ |α3|

“ |α4| “ |α5| , |α6| “ |α7|

θ0 “ θ2 “ θ4=0,
θ1 “ θ3 “ θ5 “ θ6 ` θ7

P123456P78

α0 “ α2 “ α4 “
1
3 ,

α1 “ α3 “ α5 “
1
3 ei π

4 ,
α6 “

?
6

6 ei π
16 , α7 “

?
6

6 ei 3π
16 .

4
α˚

0
α1
“

α˚
1

α2
“

α˚
2

α3
“

α˚
3

α4

“
α˚

4
α5
“

α˚
5

α6
“

α˚
6

α7
“

α˚
7

α0

p12345678q

|α0| “ |α1| “ |α2| “ |α3| “ |α4|

“ |α5| “ |α6| “ |α7| “ 1{2
?

2,
θ0 “ θ2 “ θ4 “ θ6 “ 0,
θ1 “ θ3 “ θ5 “ θ7

P12345678
α0 “ α2 “ α4 “ α6 “

1
2
?

2
,

α1 “ α3 “ α5 “ α7 “
1

2
?

2
ei π

4 .
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