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Abstract: Accurately determining dependency structure is critical to understanding a complex
system’s organization. We recently showed that the transfer entropy fails in a key aspect
of this—measuring information flow—due to its conflation of dyadic and polyadic relationships.
We extend this observation to demonstrate that Shannon information measures (entropy and mutual
information, in their conditional and multivariate forms) can fail to accurately ascertain multivariate
dependencies due to their conflation of qualitatively different relations among variables. This has
broad implications, particularly when employing information to express the organization
and mechanisms embedded in complex systems, including the burgeoning efforts to combine complex
network theory with information theory. Here, we do not suggest that any aspect of information
theory is wrong. Rather, the vast majority of its informational measures are simply inadequate
for determining the meaningful relationships among variables within joint probability distributions.
We close by demonstrating that such distributions exist across an arbitrary set of variables.

Keywords: stochastic process; transfer entropy; causation entropy; partial
information decomposition; network science
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1. Introduction

Information theory is a general, broadly applicable framework for understanding a system’s
statistical properties [1]. Due to its focus on probability distributions, it allows one to compare
dissimilar systems (e.g., species abundance to ground state configurations of a spin system)
and has found many successes in the physical, biological and social sciences [2–19] far outside its
original domain of communication. Often, the issue on which it is brought to bear is discovering
and quantifying dependencies [20–25]. Here, we define a dependency to be any deviation
from statistical independence. It is possible for a single multivariate distribution to consist of many,
potentially overlapping, dependencies. Consider the simple case of three variables X, Y, Z, where X
and Y are coin flips and Z is their concatenation. We would say here that there are two dependencies: an
XZ dependency and a YZ dependency. It is important to note that, though there are some similarities,
this notion of a dependency is distinct from that used within the Bayesian network community.

The past two decades, however, produced a small, but important body of results detailing
how standard Shannon information measures are unsatisfactory for determining some aspects
of dependency and shared information. Within information-theoretic cryptography, the conditional
mutual information has proven to be a poor bound on secret key agreement [26,27]. The conditional
mutual information has also been shown to be unable to accurately measure information flow ([28]
and references therein). Finally, the inability of standard methods of decomposing the joint entropy
to provide any semantic understanding of how information is shared has motivated entirely new
methods of decomposing information [29,30]. Common to all these is the fact that conditional mutual
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information conflates intrinsic dependence with conditional dependence. To be clear, the conditional
mutual information between X and Y given Z cannot distinguish the case where X and Y are related
ignoring Z (intrinsic dependence) from the case where X and Y are related due to the influence of Z
(conditional dependence).

Here, we demonstrate a related, but deeper issue: Shannon information measures—entropy,
mutual information and their conditional and multivariate versions—can fail to distinguish joint
distributions with vastly differing internal dependencies.

Concretely, we start by constructing two joint distributions, one with dyadic sub-dependencies
and the other with strictly triadic sub-dependencies. From there, we demonstrate that no standard
Shannon-like information measure, and exceedingly few nonstandard methods, can distinguish
the two. Stated plainly: when viewed through Shannon’s lens, these two distributions are erroneously
equivalent. While distinguishing these two (and their internal dependencies) may not be relevant
to a mathematical theory of communication, it is absolutely critical to a mathematical theory
of information storage, transfer and modification [31–34]. We then demonstrate two ways in which
these failures generalize to the multivariate case. The first generalizes our two distributions
to the multivariate and polyadic case via “dyadic camouflage”. The second details a method
of embedding an arbitrary distribution into a larger variable space using hierarchical dependencies,
a technique we term “dependency diffusion”. In this way, one sees that the initial concerns
about information measures can arise in virtually any statistical multivariate analysis. In this short
development, we assume a working knowledge of information theory, such as found in standard
textbooks [35–38].

2. Development

We begin by considering the two joint distributions shown in Table 1. The first represents
dyadic relationships among three random variables X, Y, and Z. Additionally, the second, the triadic
relationships among them. (This distribution was first considered as RDNXOR in [39], though for
other, but related reasons.) These appellations are used for reasons that will soon be apparent. How
are these distributions structured? Are they structured identically or are they qualitatively distinct? It
is clear from inspection that they are not identical, but a lack of isomorphism is less obvious.

We can develop a direct picture of underlying dependency structure by casting the random
variables’ four-symbol alphabet used in Table 1 into composite binary random variables, as displayed
in Table 2. It can be readily verified that the dyadic distribution follows three simple rules: X0 = Y1,
Y0 = Z1 and Z0 = X1; in particular, three dyadic rules. The triadic distribution similarly follows
simple rules: X0 + Y0 + Z0 = 0 mod 2 (the XOR relation [40], or equivalently, any one of them is
the XOR of the other two), and X1 = Y1 = Z1; two triadic rules.

While this expansion to binary sub-variables is not unique, it is representative of the distributions.
One could expand the dyadic distribution, for example, in such a way that some of the sub-variables
would be related by XOR. However, those same sub-variables would necessarily be involved in other
relationships, limiting their expression in a manner similar to that explored in [41]. This differs from
our triadic distribution in that its two sub-dependencies are independent. That these binary expansions
are, in fact, representative and that the triadic distribution cannot be written in a way that relies only
on dyadic relationships can be seen in the connected information explored later in the section. For the
dyadic distribution, there is no difference between the maximum entropy distribution constraining
pairwise interactions from the distribution itself. However, the maximum entropy distribution obtained
by constraining the pairwise interactions in the triadic distribution has a larger entropy than the triadic
distribution itself, implying that there is structure that exists beyond the pairwise interactions.
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Table 1. The (a) dyadic and (b)triadic probability distributions over the three random variables X, Y
and Z that take values in the four-letter alphabet {0, 1, 2, 3}. Though not directly apparent from their
tables of joint probabilities, the dyadic distribution is built from dyadic (pairwise) sub-dependencies,
while the triadic from triadic (three-way) sub-dependencies.

(a) Dyadic (b) Triadic

X Y Z Pr X Y Z Pr

0 0 0 1/8 0 0 0 1/8
0 2 1 1/8 1 1 1 1/8
1 0 2 1/8 0 2 2 1/8
1 2 3 1/8 1 3 3 1/8
2 1 0 1/8 2 0 2 1/8
2 3 1 1/8 3 1 3 1/8
3 1 2 1/8 2 2 0 1/8
3 3 3 1/8 3 3 1 1/8

Table 2. Expansion of the (a) dyadic and (b) triadic distributions. In both cases, the variables
from Table 1 were interpreted as two binary random variables, translating, e.g., X = 3 into
(X0, X1) = (1, 1). In this light, it becomes apparent that the dyadic distribution consists of the
sub-dependencies X0 = Y1, Y0 = Z1 and Z0 = X1, while the triadic distribution consists of
X0 + Y0 + Z0 = 0 mod 2 and X1 = Y1 = Z1. These relationships are pictorially represented in
Figure 1.

(a) Dyadic (b) Triadic

X Y Z X Y Z

X0 X1 Y0 Y1 Z0 Z1 Pr X0 X1 Y0 Y1 Z0 Z1 Pr

0 0 0 0 0 0 1/8 0 0 0 0 0 0 1/8
0 0 1 0 0 1 1/8 0 1 0 1 0 1 1/8
0 1 0 0 1 0 1/8 0 0 1 0 1 0 1/8
0 1 1 0 1 1 1/8 0 1 1 1 1 1 1/8
1 0 0 1 0 0 1/8 1 0 0 0 1 0 1/8
1 0 1 1 0 1 1/8 1 1 0 1 1 1 1/8
1 1 0 1 1 0 1/8 1 0 1 0 0 0 1/8
1 1 1 1 1 1 1/8 1 1 1 1 0 1 1/8

These dependency structures are represented pictorially in Figure 1. Our development
from this point on will not use any knowledge of these structures, but rather, it will attempt
to distinguish the structures using only information measures.

What does an information-theoretic analysis say? Both the dyadic and triadic distributions
describe events over three variables, each with an alphabet size of four. Each consists of eight joint
events, each with a probability of 1/8. As such, each has a joint entropy of H [X, Y, Z] = 3 bit (The SI
standard unit for time is the second, and its symbol is s; analogously, the standard (IEC 60027-2,
ISO/IEC 80000-13) unit for information is the bit, and its symbol is bit. As such, it is inappropriate
to write 3 bits, just as it would be inappropriate to write 3 ss). Our first observation is that any
entropy—conditional or not—and any mutual information—conditional or not—will be identical
for the two distributions. Specifically, the entropy of any variable conditioned on the other two vanishes:
H [X | Y, Z] = H [Y | X, Z] = H [Z | X, Y] = 0 bit; the mutual information between any two variables
conditioned on the third is unity: I [X : Y | Z] = I [X : Z | Y] = I [Y : Z | X] = 1 bit; and the three-way
co-information also vanishes: I [X : Y : Z] = 0 bit. These conclusions are compactly summarized
in the form of the information diagrams (I-diagrams) [42,43] shown in Figure 2. This diagrammatically
represents all of the possible Shannon information measures (I-measures) [43] of the distribution:
effectively, all the multivariate extensions of the standard Shannon measures, called atoms. It is
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important to note that the analogy between information theory and set theory should not be taken
too far: while set cardinality is strictly nonnegative, information atoms need not be; see [38] for more
details. The values of the information atoms are identical between the two distributions.

As a brief aside, it is of interest to note that it has been suggested (e.g., in [44,45], among others)
that zero co-information implies that at least one variable is independent of the others; that is, in this
case, a lack of three-way interactions. Krippendorff [46] early on demonstrated that this is not the case,
though these examples more clearly exemplify this fact.

We now turn to the implications of the two information diagrams, Figure 2a,b, being identical.
There are measures [20,22,44,47–53] and expansions [54–56] purporting to measure or otherwise
extract the complexity, magnitude or structure of dependencies within a multivariate distribution.
Many of these techniques, including those just cited, are sums and differences of atoms in these
information diagrams. As such, they are unable to differentiate these distributions.
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Figure 1. Dependency structure for the (a) dyadic and (b) triadic distributions. Here,∼ denotes that two
or more variables are distributed identically, and⊕ denotes the enclosed variables form the XOR relation.
Note that although these dependency structures are fundamentally distinct, their information diagrams
(Figure 2) are identical.
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Figure 2. Information diagrams for the (a) dyadic and (b) triadic distributions. For the three-variable
distributions depicted here, the diagram consists of seven atoms: three conditional entropies (each
with value 0 bit), three conditional mutual information (each with value 1 bit) and one co-information
(0 bit). Note that the two diagrams are identical, meaning that although the two distributions are
fundamentally distinct, no standard information-theoretic measure can differentiate the two.

To drive home the point that the concerns raised here are very broad, Table 3 enumerates the result
of applying a great many information measures to this pair of distributions. It is organized from top
to bottom into four sections: entropies, mutual information, common information and other measures.

None of the entropies, dependent only on the probability mass function of the distribution,
can distinguish the two distributions. Nor can any of the mutual information, as they are functions
of the information atoms in the I-diagrams of Figure 2.

The common information, defined via auxiliary variables satisfying particular properties,
can potentially isolate differences in the dependencies. Though only one of them—the Gács–Körner
common information K [•] [57,58], involving the construction of the largest “subrandom variable”
common to the variables—discerns that the two distributions are not equivalent because the triadic
distribution contains the subrandom variable X1 = Y1 = Z1 common to all three variables.

Finally, only two of the other measures identify any difference between the two. Some fail because
they are functions of the probability mass function. Others, like the TSE complexity [59] and erasure
entropy [60], fail since they are functions of the I-diagram atoms. Only the intrinsic mutual information
I [• ↓ •] [26] and the reduced mutual information I [• ⇓ •] [27] distinguish the two since the dyadic
distribution contains three dyadic sub-variables each of which is independent of the third variable,
whereas in the triadic distribution, the conditional dependence of the XOR relation can be destroyed.
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Table 3. Suite of information measures applied to the dyadic and triadic distributions, where: H [•] is
the Shannon entropy [35], H2 [•] is the order-2 Rényi entropy [61], Sq [•] is the Tsallis entropy [62], I [•]
is the co-information [44], T [•] is the total correlation [47], B [•] is the dual total correlation [48,63], J [•]
is the CAEKL mutual information [49], II [•] is the interaction information [64], K [•] is the Gács–Körner
common information [57], C [•] is the Wyner common information [65,66], G [•] is the exact
common information [67], F [•] is the functional common information,a M [•] is the MSS common
information,b I [• ↓ •] is the intrinsic mutual information [26],c I [• ⇓ •] is the reduced intrinsic mutual
information [27],c ,d X [•] is the extropy [68], R [•] is the residual entropy or erasure entropy [60,63],
P [•] is the perplexity [69], D [•] is the disequilibrium [51], CLMRP [•] is the LMRP complexity [51]
and TSE [•] is the TSE complexity [59]. Only the Gács–Körner common information and the intrinsic
mutual information, highlighted, are able to distinguish the two distributions; the Gács–Körner
common information via the construction of a sub-variable (X1 = Y1 = Z1) common to X, Y and Z and
the intrinsic mutual information via the relationship X0 = Y1 being independent of Z.

Measures Dyadic Triadic

H [X, Y, Z] 3 bit 3 bit
H2 [X, Y, Z] 3 bit 3 bit
S2 [X, Y, Z] 0.875 bit 0.875 bit

I [X : Y : Z] 0 bit 0 bit
T [X : Y : Z] 3 bit 3 bit
B [X : Y : Z] 3 bit 3 bit
J [X : Y : Z] 1.5 bit 1.5 bit
II [X : Y : Z] 0 bit 0 bit

K [X : Y : Z] 0 bit 1 bit
C [ X : Y : Z] 3 bit 3 bit
G [X : Y : Z] 3 bit 3 bit

F [X : Y : Z] a 3 bit 3 bit
M [X : Y : Z] b 3 bit 3 bit

I [X : Y ↓ Z] c 1 bit 0 bit
I [X : Y ⇓ Z] c,d 1 bit 0 bit

X [X, Y, Z] 1.349 bit 1.349 bit
R [X : Y : Z] 0 bit 0 bit
P [X, Y, Z] 8 8
D [X, Y, Z] 0.761 bit 0.761 bit

CLMRP [X, Y, Z] 0.381 bit 0.381 bit
TSE [X : Y : Z] 2 bit 2 bit

a F [{Xi}] = min
⊥⊥Xi |V

V= f ({Xi})

H [V], where ⊥⊥ Xi |V means that the Xi are conditionally independent given V.

b M [{Xi}] = H
[
∨(Xi ↘ Xi)

]
, where X ↘ Y is the minimal sufficient statistic [35] of X about Y, and ∨

denotes the informational union of variables. c Though this measure is generically dependent on which
variable(s) is chosen to be conditioned on, due to the symmetry of the dyadic and triadic distributions,
the values reported here are insensitive to permutations of the variables. d The original work [27] used
the slightly more verbose notation I [• ↓↓ •].

Figure 3 demonstrates three different information expansions—that, roughly speaking, group
variables into subsets of difference sizes or “scales”—applied to our distributions of interest. The first
is the complexity profile [55]. At scale k, the complexity profile is the sum of all I-diagram atoms
consisting of at least k variables conditioned on the others. Here, since the I-diagrams are identical,
so are the complexity profiles. The second profile is the marginal utility of information [56], which
is a derivative of a linear programming problem whose constraints are given by the I-diagram, so
here, again, they are identical. Finally, we have Schneidman et al.’s connected information [70], which
comprise the differences in entropies of the maximum entropy distributions whose k- and k− 1-way
marginals are fixed to match those of the distribution of interest. Here, all dependencies are detected
once pairwise marginals are fixed in the dyadic distribution, but it takes the full joint distribution to
realize the XOR sub-dependency in the triadic distribution.
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Figure 3. Suite of information expansions applied to the dyadic and triadic distributions:
the complexity profile [55], the marginal utility of information [56] and the connected information [70].
The complexity profile and marginal utility of information profiles are identical for the two distributions
as a consequence of the information diagrams (Figure 2) being identical. The connected information,
quantifying the amount of dependence realized by fixing k-way marginals, is able to distinguish
the two distributions. Note that although each of the x-axes is a scale, exactly what that means depends
on the measure. Furthermore, while the scale for both the complexity profile and the connected
information is discrete, the scale for the marginal utility of information is continuous.

While it is well known that causality cannot be determined from probability distributions
alone [71], here we point out a related, though different issue. While causality is, in some sense,
the determination of the precedence within a dependency, the results above demonstrate that
many measures of Granger-like causality are insensitive to the order (dyadic, triadic, etc.) of a
dependency (Note that here we do not demonstrate that the order of a dependency cannot be
determined from the probability distribution, as Pearl has done for causality [71]. Rather, our
demonstration is limited to Shannon-like information measures.). Neither the transfer entropy [20],
the transinformation [53], the directed information [52], the causation entropy [22], nor any of their
generalizations based on conditional mutual information differentiate between intrinsic relationships
and those induced by the variables they condition on (As discussed there, the failure of these measures
stems from the possibility of conditional dependence, whereas the aim for these directed measures is
to quantify the information flow from one time series to another excluding the influences of the second.
In this light, we propose T′X→Y = I

[
Xt

0 : Yt ↓ Yt
0
]

[26] as an incremental improvement over the transfer
entropy). This limitation underlies prior criticisms of these functions as measures of information
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flow [28]. Furthermore, separating out these contributions to the transfer entropy has been discussed
in the context of the partial information decomposition in [72].

A promising approach to understanding informational dependencies is the partial information
decomposition (PID) [29]. This framework seeks to decompose a mutual information of the form
I [(I0, I1) : O] into four nonnegative components: the information R that both inputs I0 and I1

redundantly provide the output O, the information U0 that I0 uniquely provides O, the information
U1 that I1 uniquely provides O and, finally, the information S that both I0 and I1 synergistically or
collectively provide O.

Under this decomposition, our two distributions take on very different characteristics
(Here, we quantified the partial information lattice using the best-in-class technique of [73], though
calculations using three other techniques [74–76] match. There is a recent debate suggesting
that the measure of Bertschinger et al. is not in fact correct, but it is likely, due to the agreement
among these measures, that any “true” measure of redundancy would result in the same decomposition.
The original PID measure Imin, however, assigns both distributions: 1 bit of redundant information
and 1 bit of synergistic information.). For both, the decomposition is invariant as far as which variables
are selected as I0, I1 and O. For the dyadic distribution, PID identifies both bits in I [(I0, I1) : O]

as unique, one from each input Ii, corresponding to the dyadic sub-dependency shared by Ii and O.
Orthogonally, for the triadic distribution PID identifies one of the bits as redundant, stemming
from X1 = Y1 = Z1, and the other as synergistic, resulting from the XOR relation among X0, Y0 and Z0.
These decompositions are displayed pictorially in Figure 4.

1 10

0
I [(X, Y ) : Z]

I [X : Z] I [Y : Z]

(a) Dyadic

0 01

1
I [(X, Y ) : Z]

I [X : Z] I [Y : Z]

(b) Triadic

Figure 4. Partial information decomposition diagrams for the (a) dyadic and (b) triadic distributions.
Here, X and Y are treated as inputs and Z as output, but in both cases, the decomposition is invariant
to permutations of the variables. In the dyadic case, the relationship is realized as 1 bit of unique
information from X to Z and 1 bit of unique information from Y to Z. In the triadic case, the relationship
is quantified as X and Y providing 1 bit of redundant information about Z while also supplying 1 bit of
information synergistically about Z.
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Another somewhat similar approach is that of integrated information theory [77].
However, this approach requires a known dynamic over the variables and is, in addition, highly
sensitive to the dynamic. Here, in contrast, we considered only simple probability distributions without
any assumptions as to how they might arise from the dynamics of interacting agents. That said, one
might associate an integrated information measure with a distribution via the maximal information
integration over all possible dynamics that give rise to the distribution. We leave this task for a
later study.

3. Discussion

The broad failure of Shannon information measures to differentiate the dyadic and polyadic
distributions has far-reaching consequences. Consider, for example, an experiment where a practitioner
places three probes into a cluster of neurons, each probe touching two neurons and reporting zero when
they are both quiescent, one when the first is excited but the second quiescent, two when the second is
excited, but the first quiescent, and three when both are excited. Shannon-like measures—including
the transfer entropy and related measures—would be unable to differentiate between the dyadic
situation consisting of three pairs of synchronized neurons, the triadic situation consisting of a trio
of synchronized neurons and a trio exhibiting the XOR relation, a relation requiring nontrivial sensory
integration. Such a situation might arise when probing the circuitry of the Drosophila melanogaster
connectome [78], for instance.

Furthermore, while partitioning each variable into sub-variables made the dependency structure
clear, we do not believe that such a refinement should be a necessary step in discovering such a structure.
Consider that we demonstrated that refinement is not strictly needed, since the partial information
decomposition (as quantified using current techniques) was able to discover the distribution’s internal
structure without it.

These results, observations and the broad survey clearly highlight the need to extend Shannon’s
theory. In particular, the extension must introduce a fundamentally new measure, not merely sums
and differences of the standard Shannon information measures. While the partial information
decomposition was initially proposed to overcome the interpretational difficulty of the (potentially
negative valued) co-information, we see here that it actually overcomes a vastly more fundamental
weakness with Shannon information measures. While negative information atoms can subjectively
be seen as a flaw, the inability to distinguish dyadic from polyadic relations is a much deeper
and objective issue.

This may lead one to consider the partial information decomposition as the needed extension
to Shannon theory. As it currently stands, we do not. The partial information decomposition
depends on interpreting some random variables as “inputs” and others as “outputs”. While this
may be perfectly natural in some contexts, it is not satisfactory in general. It is possible that,
were an agreeable multivariate partial information measure to be developed, the decomposition
of, e.g., I [(X0, X1, X2) : X0X1X2] could lead to a satisfactory symmetric decomposition. In any case,
there has been longstanding interest in creating a symmetric decomposition analogous to the partial
information decomposition [46] with some recent progress [79–81].

4. Dyadic Camouflage and Dependency Diffusion

The dyadic and triadic distributions we analyzed thus far were deliberately chosen to have
small dimensionality in an effort to make them and the failure of Shannon information measures
as comprehensible and intuitive as possible. Since a given dataset may have exponentially many
different three-variable subsets, even just the two distributions examined here represent hurdles that
information-based methods of dependency assessment must overcome. However, this is simply
a starting point. We will now demonstrate that there exist distributions of arbitrary size whose
k-way dependencies are masked, meaning the k-way co-information (k ≥ 3) are all zero, and so,
from the perspective of Shannon information theory, are indistinguishable from a distribution
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of the same size containing only dyadic relationships. Furthermore, we show how any such distribution
may be obfuscated over any larger set of variables. This likely mandates a search over all partitions
of all subsets of a system, making the problem of finding such distributions in the EXPTIME
computational complexity class [82], meaning such a procedure will take time exponential in the
size of the distribution.

Specifically, consider the four-variable parity distribution consisting of four binary variables such
that X0 + X1 + X2 + X3 = 0 mod 2. This is a straightforward generalization of the XOR distribution
used in constructing the triadic distribution. We next need a generalization of the “giant bit” [63], which
we call dyadic camouflage, to mix with the parity, informationally “canceling out” the higher-order
mutual information even though dependencies of such orders exist in the distribution. An example
dyadic camouflage distribution for four variables is given in Figure 5.

W X Y Z Pr

0 0 0 0 1/8
0 1 3 1 1/8
1 0 2 2 1/8
1 1 1 3 1/8
2 2 3 3 1/8
2 3 0 2 1/8
3 2 1 1 1/8
3 3 2 0 1/8

(a) Distribution

0

0 0

0

0

0

0

0

0

0

1

11

1

-1

W

X Y

Z

(b) I-diagram

Figure 5. Dyadic camouflage distribution: This distribution, when uniformly and independently
mixed with the four-variable parity distribution (in which each variable is the parity of the other
three), results in a distribution whose I-diagram incorrectly implies that the distribution contains
only dyadic dependencies. The atoms of the camouflage distribution are constructed so that they
cancel out the “interior” atoms of the parity distribution (whose I [W : X : Y|Z] = I [W : X : Z|Y] =
I [W : Y : Z|X] = I [X : Y : Z|W] = −1 and I [W : X : Y : Z] = 1), leaving just the parity distribution’s
pairwise conditional atoms: I [W : X|YZ], I [W : Y|XZ], I [W : Z|XY], I [X : Y|WZ], I [X : Z|WY],
and I [Y : Z|WX], all equal to one, while all others are zero.

Generically, consider an n-variable parity distribution, that is a distribution where ∑ Xi = 0
mod 2. It has an associated n-variable dyadic camouflage distribution with an alphabet size

for each random variable of 2n−2, and the entire joint distribution consists of 2
(n−2)·(n−1)

2 equally
likely outcomes, both numbers determined due to entropy considerations. Specifically, in a parity
distribution, each variable has 1 bit of entropy, and when mixed with its camouflage, it should
have n− 1 bits. Therefore, each variable in the camouflage distribution needs n− 2 bits of entropy
and needs, with uniform probability over those outcomes, 2n−2 characters in the alphabet.
Furthermore, since the parity distribution itself has n− 1 bits total, while its camouflaged form will
have n choose two (=(n − 2) · (n − 1)/2) bits and, again with uniform probability, there must be
2(n−2)·(n−1)/2 outcomes. The distribution is constrained such that any two variables are completely
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determined by the remaining n− 2. Moreover, each m-variable (m < n) sub-distribution consists of m
mutually independent random variables.

The goal, then, is to construct such a distribution. One method of doing so is to begin by writing
down one variable in increasing lexicographic order such that it has the correct number of outcomes;
e.g., column W in Figure 5a. Then, find n− 1 permutations of this column such that any two columns
are determined from the remaining n− 2. While such a search may be difficult, a distribution with these
properties provably exists [83].

Finally, one can obfuscate any distribution by embedding it in a larger collection of random
variables. Given a distribution D over n variables, associate each random variable i of D
with a k-variable subset of a distribution D′ in such a way that there is a mapping from the k-outcomes
in the subset of D′ to the outcome of the variable i in D. For example, one can embed the XOR

distribution over X, Y, Z into six variables X0, X1, Y0, Y1, Z0, Z1 via X0 ⊕ X1 = X, Y0 ⊕ Y1 = Y
and Z0 ⊕ Z1 = Z. In other words, the parity of (Z0, Z1) is equal to the XOR of the parities
of (X0, X1) and (Y0, Y1). In this way, one must potentially search over all partitions of all subsets
of D′ in order to discover the distribution D hiding within. We refer to this method of obfuscation
as dependency diffusion.

The first conclusion is that the challenges of conditional dependence can be found in joint
distributions over arbitrarily large sets of random variables. The second conclusion, one that heightens
the challenge to discovery, is that even finding which variables are implicated in polyadic dependencies
can be exponentially difficult. Together, the camouflage and diffusion constructions demonstrate how
challenging it is to discover, let alone work with, multivariate dependencies. This difficulty strongly
implies that the current state of information-theoretic tools is vastly underpowered for the types
of analyses required of our modern, data-rich sciences.

It is unlikely that the parity plus dyadic camouflage distribution discussed here is the only
example of Shannon measures conflating the arity of dependencies and thus producing an information
diagram identical to that of a qualitatively distinct distribution. This suggests an important challenge:
find additional, perhaps simpler, joint distributions exhibiting this phenomenon.

5. Conclusions

To conclude, we constructed two distributions that cannot be distinguished using conventional
(and many non-conventional) Shannon-like information measures. In fact, of the more than two dozen
measures we surveyed, only five were able to separate the distributions: the Gács–Körner common
information, the intrinsic mutual information, the reduced intrinsic mutual information, the connected
information and the partial information decomposition.

The failure of the Shannon-type measures is perhaps not surprising: nothing in the standard
mathematical theories of information and communication suggests that such measures should be able
to distinguish these distributions [84]. However, distinguishing dependency structures such as dyadic
from triadic relationships is of the utmost importance to the sciences; consider for example determining
multi-drug interactions in medical treatments. Critically, since interpreting dependencies in random
distributions is traditionally the domain of information theory, we propose that new extensions
to information theory are needed.

These results may seem like a deal-breaking criticism of employing information theory
to determine dependencies. Indeed, these results seem to indicate that much existing empirical
work and many interpretations have simply been wrong and, worse even, that the associated methods
are misleading while appearing quantitatively consistent. We think not, though. With the constructive
and detailed problem diagnosis given here, at least we can see this issue. It is now a necessary step to
address it. This leads us to close with a cautionary quote:

“The tools we use have a profound (and devious!) influence on our thinking habits, and,
therefore, on our thinking abilities” (Edsger W. Dijkstra [85]) .
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Appendix A. A Python Discrete Information Package

Hand calculating the information quantities used in the main text, while profitably done for a few
basic examples, soon becomes tedious and error prone. We provide a Jupyter notebook [86] making
use of dit (“Discrete Information Theory”) [87], an open source Python package that readily calculates
these quantities.
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