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Abstract: Multiscale entropy (MSE) profiles of heart rate variability (HRV) in patients with
atrial fibrillation (AFib) provides clinically useful information for ischemic stroke risk assessment,
suggesting that the complex properties characterized by MSE profiles are associated with ischemic
stroke risk. However, the meaning of HRV complexity in patients with AFib has not been clearly
interpreted, and the physical and mathematical understanding of the relation between HRV dynamics
and the ischemic stroke risk is not well established. To gain a deeper insight into HRV dynamics in
patients with AFib, and to improve ischemic stroke risk assessment using HRV analysis, we study
the HRV characteristics related to MSE profiles, such as the long-range correlation and probability
density function. In this study, we analyze the HRV time series of 173 patients with permanent AFib.
Our results show that, although HRV time series in patients with AFib exhibit long-range correlation
(1/f fluctuations)—as observed in healthy subjects—in a range longer than 90 s, these autocorrelation
properties have no significant predictive power for ischemic stroke occurrence. Further, the probability
density function structure of the coarse-grained times series at scales greater than 2 s is dominantly
associated with ischemic stroke risk. This observation could provide valuable information for
improving ischemic stroke risk assessment using HRV analysis.
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1. Introduction

Biosignal time series often exhibit multiscale complexity, as characterized by 1/f power spectra
(also called 1/f fluctuation or long-range correlation) [1,2]. Moreover, the loss of this complexity is a
common feature of pathological dynamics in biological systems [3,4]. Thus, detailed characterizations
of biosignal complexity have potentially important applications in evaluating bedside diagnostics.
To measure this complexity, Costa et al. developed a multiscale entropy (MSE) analysis, in which
sample entropy proposed by Richman and Moorman [5] is estimated at multiple coarse-grained
scales [2,6]. Applying this analysis method to human heart rate variability (HRV), they demonstrated
that MSE profiles (i.e., the scale dependence of the sample entropy) identified pathological states
(congestive heart failure and atrial fibrillation (AFib)); significant decreases in MSE occurred as the
scale increased, indicating a lower degree of complexity compared with healthy controls [2].

Recently, using MSE analysis, Watanabe et al. [7] explored the relationship between the MSE
profiles of HRV in patients with permanent AFib and ischemic stroke risk, and showed that MSE in
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the range of 90–300 s is a significant and useful risk stratification measure of ischemic stroke during
long-term follow-up. In patients with AFib, the sinus node working as the pacemaker of the heart loses
its ability to govern the ventricular response, and the atrium is depolarized by irregular spatiotemporal
behavior [8]. Therefore, HRV time series defined by the interventricular responses in the AFib state can
be considered to exhibit white-noise-like behavior induced by irregular atrial pacing. The HRV analysis
results reported by Costa et al. [2] rather suggested the similarity of MSE profiles between HRV in
patients with AFib and white noise time series. However, during AFib, HRV is not completely random.
For instance, long-term variation in HRV displays a circadian pattern [9,10] and 1/f fluctuation [11],
as observed in the variation of normal heart rhythms. In the case of AFib, such fluctuations can be
attributed mainly to modulation of the electrophysiological properties of the atrioventricular node,
mediated by the autonomic nervous system [9]. Thus, HRV in patients with AFib still contains useful
prognostic information concerning the risk of mortality [10] and ischemic stroke [7].

It is important to note that complexity is not the same as the irregularity and unpredictability
that can be quantified by entropy measures. Complexity is not only the degree of unpredictability
(irregularity), but also the degree of adaptability to changing environmental demands [2,6,12]. In the
framework of MSE analysis, the appearance of 1/f fluctuations is the criterion for complexity. Because
1/f fluctuation has a scale-invariant fractal structure [13], complexity related to 1/f fluctuation can be
evaluated by a non-decreasing MSE profile. In contrast, for a completely random (uncorrelated white
noise) signal, the MSE profile converges to zero monotonically as the coarse graining scale increase [2].

MSE profiles provide a possible characterization of the biosignal complexity. However,
MSE profiles are affected not only by correlation properties, but also by other aspects, such as
probability density function characteristics [14]. Therefore, the interpretation of MSE profiles of
HRV in patients with AFib is still unclear, and the physical and mathematical understanding of
the relationship between HRV dynamics in patients with AFib and ischemic stroke risk is not well
established. In this paper, to gain a better understanding of HRV dynamics in patients with AFib,
we study HRV properties related to MSE profiles. Through the analysis of HRV time series from
173 patients with permanent AFib, we demonstrate that, although the HRV time series in patients with
AFib exhibit 1/f long-range correlation in the range greater than 90 s, autocorrelation properties have
no predictive power for ischemic stroke incidence and the probability density function structure of the
coarse-grained (locally averaged) times series at scales of 2 s or longer dominantly contributes to risk
assessments of ischemic stroke occurrence.

2. Data and Methods

2.1. Patients and HRV Time Series

We studied 173 patients with permanent AFib who underwent 24-h Holter Electrocardiographies
(ECGs) from April 2005 to December 2006 at Fujita Health University Hospital in Aichi, Japan.
ECG signals were digitalized at 125 Hz and 12 bits. Permanent AFib was defined as AFib lasting
longer than one year in patients with no evidence of intervening sinus rhythm (normal heart rhythm)
and in whom there was no plan to restore sinus rhythm. During a mean follow-up period of
3.8 years, 22 patients developed an ischemic stroke. The clinical details of the patients with AFib are
summarized in Table 1 [7]. The study was approved by Fujita Health University’s ethics committee
and conformed to the principles outlined in the Declaration of Helsinki. All patients provided their
written informed consent.

HRV time series (RR intervals) were extracted automatically from the 24-h Holter ECG recording,
and any errors in automatic R-wave detection were edited manually. In this analysis, HRV time series
were interpolated linearly and resampled at 2 Hz.
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Table 1. Baseline clinical characteristics of the patients.

Clinical Characteristics Ischemic Stroke (n = 22) Non-Ischemic Stroke (n = 151) p-Value

Age 71 ± 8 69 ± 11 0.35
Female, n (%) 7 (32) 43 (28) 0.26

Underlying disease, n (%) - - -
Congestive heart failure 9 (41) 56 (37) 0.72

Hypertension 15 (68) 88 (58) 0.38
Diabetes 1 (5) 14 (9) 0.46

Stroke or TIA 9 (41) 40 (26) 0.16
Vascular disease 2 (9) 15 (10) 0.90

Medications, n (%) - - -
Beta-blocker 4 (18) 24 (16) 0.79

Digitalis 8 (36) 65 (43) 0.55
Ca-channnel blocker 7 (32) 35 (23) 0.38

ACE inhibitor 9 (41) 37 (25) 0.47
Diuretics 5 (23) 56 (37) 0.75
Warfarin 10 (45) 83 (55) 0.40

Ischemic stroke: patients who developed a stroke during the follow-up; No ischemic stroke: patients who remained
ischemic stroke free during the follow up; TIA: transient ischemic attack; ACE: angiotensin II converting enzyme.
Data represent the mean ± standard deviation (SD) or frequency.

2.2. Multiscale Entropy (MSE) Analysis

The MSE analysis procedure is summarized as follows [2,6]: (1) coarse-graining (local averaging)
of the observed time series {x1, x2, · · · , xN} into different time scales; and (2) quantification of the
randomness (or lack of predictability) in each coarse-grained time series using sample entropy [5].
In the first step, given a one-dimensional time series {xi}, we calculate the mean values {y(s)j } in each
nonoverlapping segment with scale s, as

y(s)j =
1
s

js

∑
i=(j−1)s+1

xi, 1 ≤ j ≤ N
s

. (1)

In the second step, we consider the m-length vectors u(s)
i (m) = (y(s)i , y(s)i+1, · · · , y(s)i+m−1) and count

the number of vectors u(s)
j (m) (i 6= j) that satisfies d[u(s)

i (m), u(s)
j (m)] ≤ r, where d is the distance given

by the maximum absolute differences. Let this number be denoted by n(s)
i (m, r). Sample entropy S(s)

E
is estimated by

S(s)
E

(
m, r, N

)
= ln

∑N−m
i=1 n(s)

i (m, r)

∑N−m
i=1 n(s)

i (m + 1, r)
, (2)

where N is the length of {y(s)i }. S(s)
E

(
m, r, N

)
measures the degree of randomness of a time series [5].

In the analysis, {xi} in the above definition is given by the resampled HRV time series.
The coarse-graining scale s is represented in units of seconds and not beat number. In the calculation
of SE, we used the same values as in previous studies: m = 2 and r = 0.15σx, where σx is the
standard deviation of the resampled HRV time series [2,7]. Note that σx is not the standard deviation
of coarse-grained time series {y(s)j }.

2.3. Multiscale Characterizations of Time Series

In general, the estimated sample entropy of the time series reflects both the autocorrelation
properties and the probability density function characteristics. To interpret information associated
with MSE profiles, we estimated the autocorrelation coefficient at lag τ = 1, the variance
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ratio, and the distribution-based (Shannon) entropy of each coarse-grained time series {y(s)j }.
Autocorrelation coefficient was estimated using

R̂(s)(τ) =
1(

N − τ
)
σ2

s

N−τ

∑
i=1

(
y(s)i − µs

)(
y(s)i+τ − µs

)
, (3)

where µs and σ2
s are, respectively, the sample mean and sample variance of {y(s)i }. The variance ratio

between the coarse-grained time series {y(s)j } and the original time series {xi} was calculated by σ2
s /σ2

x .
The distribution-based entropy was estimated by

H(s)
D = −

ns

∑
i=1

p(s)i ln p(s)i , (4)

where probabilities {pi} were estimated using the histogram-based probability density function of {y(s)j }
with a fixed bin-width 0.15σx corresponding to r in our MSE analysis, and ns denotes the number of
bins with nonzero counts. Note that the value of H(s)

D depends only on the probability density function

structure of {y(s)j }.
In addition, we also evaluated long-range correlation properties using detrended fluctuation

analysis (DFA) [15,16]. DFA has become a widely used method for detecting long-range correlations
embedded in nonstationary time series. In this method, long-range correlation is evaluated by the
scaling exponent α in F(s) ~ sα, where F(s) is a square root of mean-square deviations around a
polynomial trend averaged over segments with length n of integrated time series. In our study,
we analyzed the resampled HRV time series. Thus, the scale s is represented in units of seconds.

2.4. Statistical Analysis

Differences between the ischemic stroke group and non-ischemic stroke group were evaluated
using a Mann–Whitney U-test for continuous variables. Receiver operating characteristic (ROC)
curves were estimated to test the predictive discrimination of HRV properties, and to identify its
association with ischemic strokes during the follow-up period. The ROC curve was generated by
plotting the true positive rate (sensitivity) against the false positive rate (1-specificity) at various cutoff
values. Sensitivity calculates the proportion of ischemic stroke patients that were correctly identified.
Specificity calculates the proportion of non-ischemic stroke patients that were correctly identified.
A two-tailed p-value of less than 0.05 was considered significant.

3. Results

3.1. Multiscale Characteristics of HRV in Patients with AFib

Illustrative examples of RR interval {xi} and coarse-grained time series {y(s)i } when s = 240 s in
patients with permanent AFib are shown in Figure 1. Comparing the left and right panels of Figure 1,
relatively large variations in the coarse-grained time series at a 240-s scale were observed in the patient
who developed ischemic strokes during the observation period (the right of Figure 1). Figure 2a,b
show MSE profiles and DFA results, respectively. As shown in Figure 2a, the values of SE in the
scale 90 s ≤ s ≤ 720 s were significantly greater in those who went on to experience an ischemic
stroke. In this range, we observed nonzero and nondecreasing MSE profiles. This behavior implies the
existence of a fractal scaling structure. In fact, as shown in Figure 2b, long-range correlated behaviors
were observed in the corresponding range. However, the DFA scaling exponents were not significantly
different—and, in fact, were nearly the same—between the two groups (Figure 2b).

Figure 3a–c shows the autocorrelation coefficient at lag 1, the variance ratio, and the
distribution-based entropy, respectively. Significant differences between the patients who developed
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and did not develop ischemic strokes were observed only in distribution-based entropy in ranges
greater than 2 s (Figure 3c). In the variance ratio shown in Figure 3b, the differences between the
two groups were not statistically significant.
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Figure 3. Comparison between the groups that developed (blue triangles) and did not develop (red 

circles) ischemic strokes during the observation period: (a) autocorrelation coefficient at lag 1; (b) 

variance ratio; and (c) distribution-based entropy. The unit of s is seconds in all panels. Error bars 

indicate the standard deviation. No significant differences between the two groups were observed in 

the autocorrelation coefficient at lag 1 and the variance ratio. 

Figure 1. RR interval {xi} and coarse-grained time series {y(s)i } when s = 240 s. The left panels (a) show
a patient who did not develop ischemic strokes during the observation period, and the right panels
(b) show a patient who did. The coarse-grained time series is rescaled by subtracting its mean µ(s) and
dividing the differences by the standard deviation σx of the resampled RR intervals.
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Figure 2. Comparison between the groups that developed ischemic strokes (blue triangles) and did
not develop ischemic strokes (red circles) during the observation period: (a) Multiscale entropy (MSE)

profiles of S(s)
E ; and (b) fluctuation functions F(s) estimated by detrended fluctuation analysis (DFA).

Dashed lines indicate slopes with α = 0.5 and α = 1.0. The unit of s is seconds in both panels. Error
bars indicate the standard deviation.
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Figure 3. Comparison between the groups that developed (blue triangles) and did not develop
(red circles) ischemic strokes during the observation period: (a) autocorrelation coefficient at lag 1;
(b) variance ratio; and (c) distribution-based entropy. The unit of s is seconds in all panels. Error bars
indicate the standard deviation. No significant differences between the two groups were observed in
the autocorrelation coefficient at lag 1 and the variance ratio.
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3.2. Comparison of Predictive Performance for Ischemic Stroke

Figure 4 shows ROC curves for the prediction of ischemic stroke occurrence during the observation
period. To assess the predictive performance of each variable, we calculated the area under the ROC
curve (AUC), in which an AUC of 1.0 represents perfect performance, and an AUC of 0.5 means
random performance. Among the MSE characteristics, sample entropy at a 240-s scale provided the
largest AUC (=0.65). In contrast, among the values of the distribution-based entropy, distribution-based
entropy at a 2-s scale provided the largest AUC (=0.68). Therefore, we drew the ROC curves in Figure 4
for these cases. At a 240-s scale, the AUC for the distribution-based entropy was 0.65—almost equal to
that for the sample entropy. The estimated AUCs suggested that, in a wide range of s, H(s)

D performs

comparably or better than S(s)
E when s = 240 s. In contrast, the scaling exponents given by DFA had no

predictive power for ischemic stroke occurrence (AUCs were approximately 0.5). In the autocorrelation
coefficient at lag 1, the largest AUC (=0.62) was observed at a 2-s scale, and, in the variance ratio,
the largest AUC (=0.63) was at a 6-s scale. However, note that in both measures, the Mann–Whitney U
test did not reveal statistically significant differences between groups.
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4. Discussion

Our results consistently demonstrated that the HRV in patients with AFib has multiscale
complexity exhibiting 1/f fluctuation in the ranges longer than approximately 90 s (Figure 2b).
In MSE analysis, scale-invariant properties implying 1/f fluctuation were observed in nonzero and
non-decreasing MSE profiles (Figure 2a). Similar 1/f fluctuations of HRV in patients with AFib were
already reported by Hayano et al. [11]. Using power spectral analysis, they showed that patients with
AFib display 1/f power-law scaling in the low-frequency range (below a frequency corresponding to a
period of approximately 200 s). Although the physiological origin of the 1/f fluctuations of HRV is
still under debate, it has been reported that abnormal increases in the long-term scaling exponent were
associated with a higher mortality risk in cardiac patients [17]. Therefore, estimating the long-term
scaling exponent in patients with AFib may be important for assessing mortality risk.

However, our results showed that the long-term scaling exponent estimated by DFA is not
associated with ischemic stroke risk (Figure 2b). In contrast, the values of sample entropy S(s)

E

(90 s ≤ s ≤ 720 s) and distribution-based entropy H(s)
D (2 s ≤ s ≤ 720 s) have significant association
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with ischemic stroke occurrence (Figures 2a and 3c). Our finding raises questions about the significance
of S(s)

E in the range of s ≥ 90 s as a predictive measure for the ischemic stroke risk. By introducing

H(s)
D instead of S(s)

E , significant differences between the groups that developed and did not develop

ischemic strokes were observed in a much wider range of scales—2 s ≤ s ≤ 720 s; H(s)
D at a 2-s scale

had the highest association with ischemic stroke occurrence. Because distribution-based entropy
is independent of the time development (time order) of the coarse-grained time series, our finding
suggests an association between the structure of the probability density function, as shown in Figure 5,
and ischemic stroke risk. Given that the autocorrelation coefficient at lag 1 and variance ratio of the
coarse-grained time series did differ significantly between the groups that did and did not develop
ischemic strokes (Figure 3a,b), the shape of the distribution would be dominantly associated with
ischemic stroke risk.
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Figure 5. Illustrative examples of the estimated probability density functions of coarse-grained time

series {y(s)i } at: (a) s = 2 s; and (b) s = 240 s. The coarse-grained time series is rescaled by the standard
deviation σx of the resampled RR intervals. Red bar charts represent a patient who did not develop
ischemic strokes during the observation period, and blue bar charts represent a patient who did develop
ischemic strokes.

Nevertheless, it is important to note that the distribution of the coarse-grained time series is
not independent of the temporal profile of the original RR interval time series. To confirm this,
we estimated the multiscale profiles of S(s)

E and H(s)
D using randomly shuffled RR intervals. As shown

in Figure 6a,b, compared with the original RR intervals, the entropy measures of randomly shuffled
data rapidly converged to zero. In addition, we numerically analyzed the time series of Gaussian
processes characterized by a DFA scaling exponent α. As shown in Figure 6c, the scale dependences
of H(s)

D showed different profiles depending on the value of α. If we assume a Gaussian process,

long-range correlation could be characterized by the scale dependence of H(s)
D . However, in general,

the scale dependence of H(s)
D would also depend on the deformation of non-Gaussian distributions [18].

In the bottom-right panel of Figure 1, the probability density function structure is affected
by nonstationary and low-frequency variations included in the HRV time series. In DFA, such
nonstationary variation is removed by detrending [19]. In contrast, the local averaging procedure in
the original MSE analysis cannot remove the effects of nonstationary variations. Therefore, to find
the characteristic timescale associated with ischemic stroke risk, the introduction of other appropriate
methods—such as the wavelet transformation [20] and empirical mode decomposition [21]—would be
required to generate coarse-grained time series.
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AFib is widely identified as the most common type of heart rhythm disorder, is associated with
substantial morbidity and mortality, and is known as a major modifiable factor associated with a
4–5-fold increased risk of ischemic stroke [22]. Our findings could provide valuable information for
improving ischemic stroke risk assessment based on HRV analysis. Further systematic studies with
more AFib patients are required to understand the association of multiscale HRV characteristics with
ischemic stroke risk and its physiological origin.
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