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Abstract: Within the Bayesian framework, we utilize Gaussian processes for parametric studies
of long running computer codes. Since the simulations are expensive, it is necessary to exploit the
computational budget in the best possible manner. Employing the sum over variances —being
indicators for the quality of the fit—as the utility function, we establish an optimized and automated
sequential parameter selection procedure. However, it is also often desirable to utilize the parallel
running capabilities of present computer technology and abandon the sequential parameter selection
for a faster overall turn-around time (wall-clock time). This paper proposes to achieve this by
marginalizing over the expected outcomes at optimized test points in order to set up a pool of starting
values for batch execution. For a one-dimensional test case, the numerical results are validated with
the analytical solution. Eventually, a systematic convergence study demonstrates the advantage of
the optimized approach over randomly chosen parameter settings.
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1. Introduction

The generation of optimal simulation input points is of particular interest for long running
computer codes. As in the field of plasma–wall interactions of fusion plasmas, the running time of the
simulation codes is in the order of months, so the input parameter settings should better be chosen
well. Though considerable parallelization efforts have been spent to accelerate the code, the speed-up
is limited to a certain margin, from which point on it is futile to utilize more and more processor cores.
Apart from this drawback, one would still have to wait for a sequential execution of one parameter
setting after the other, since the next best set of input parameters depends on the previous result.
This paper overcomes this by proposing several most promising parameter setups which are obtained
by marginalizing over optimal input points. The pool of such independent starting sets enables the
parallel execution of the original simulation code.

The problem of predicting function values in a multi-dimensional space supported by given data
is a regression problem for a non-trivial function of unknown shape. Given n input data vectors xi
of dimension Ndim (with matrix X = (x1, x2, ..., xn)) and corresponding target data y = (y1, ..., yn)T

blurred by Gaussian noise of variance σ2
d , the sought quantity is the target value f∗ at test input vector

x∗. The latter would be generated by a function f (x)

y = f (x) + ε , (1)

Entropy 2017, 19, 84; doi:10.3390/e19020084 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://www.mdpi.com/journal/entropy


Entropy 2017, 19, 84 2 of 12

where 〈ε〉 = 0 and 〈ε2〉 = σ2
d . Since we are completely ignorant about a model describing function, our

ansatz is to employ the Gaussian process method, with which any uniformly continuous function may
be represented. As a statistical process, it is fully defined by its covariance function and called Gaussian,
because any collection of random variables produced by this process has a Gaussian distribution.

The Gaussian process method defines a distribution over functions. One can think of the analysis
as taking place in a space of functions (function-space view), which is conceptually different from the
familiar view of solving the regression problem of, for instance, the standard linear model (SLM)

f SLM(x) = xTw , (2)

in the space of the weights w (weight-space view). At this point, it is instructive to restate the results
for the latter: the predictive distribution depending on mean f̄∗ and variance for a test input data point
x∗ is given by

p( f SLM
∗ |X, y, x∗) ∝ N

(
f̄ SLM
∗ , var( f SLM

∗ )
)

, (3)

with

f̄ SLM
∗ =

1
σ2

d
xT
∗

[
σ−2

d XXT + Σ−1
p

]−1
Xy , (4)

var( f SLM
∗ ) = xT

∗

[
σ−2

d XXT + Σ−1
p

]−1
x∗ . (5)

Σp is the covariance in a Gaussian prior on the weights. In the next section, these results will be
transferred to the function-space view of the Gaussian process method.

The Gaussian process method has been greatly appreciated in the fields of neural networks
and machine learning [1–5]. Residing on this, further work showed the applicability of active data
selection via variance-based criteria [6,7]. In general, for unknown functions that are costly to evaluate,
Bayesian optimization [8] was deployed with either sequential [9,10] or batch design [11], and recently
in combination of both [12,13]. All these approaches draw the next-best data points from a surrogate
model function provided by Gaussian processes in order to optimize the description of this unknown
function. Our paper addresses a different question, since we ask for the next best parameter set after
next for which this costly function should be evaluated; i.e., without having the knowledge of the
result for the next best point already at hand. Additionally, it differs fundamentally in the handling
of results of the surrogate model. This papers proposes a marginalization approach which integrates
over all possible surrogate model values at the next-best point to measure at, while former approaches
add the Gaussian process data to the data pool, constituting the basis for the succeeding analysis.

The paper is organized at follows. Sections 2 and 3 restate the results of the analysis in Chapters
2.2, 2.3, and 5.4 of the book of Rasmussen and Williams [14], the notation of which we follow, apart
from small amendments. Section 4 together with Appendix B show an autonomous optimization
algorithm for sequential selection of further parameter sets, as known from literature (e.g., [9]).
In order to accomplish an efficient batch design, we propose a marginalization approach in Section 5,
which is validated for a one-dimensional example in Section 6. Section 7 is independent from the
marginalization approach, and studies the convergence behaviour of the optimization algorithm of
Section 4. A compilation of the variable names may be found in Appendix A.

2. Prediction of Function Values

As stated above, the defining quantity of the Gaussian process method is the covariance function.
Its choice is decisive for the inference we want to apply. It is where we incorporate all the properties
that we would like our (hidden) function describing our problem to have in order to influence the result.
For example, the neighbourhood of two input data vectors xp and xq should be of relevance for the
smoothness of the result. This shall be expressed by a length scale λ which represents the long-range
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dependence of the two vectors. For the covariance function itself, we employ a Gaussian-type exponent
with the negative squared value of the distance between two vectors xp and xq

k(xp, xq) = σ2
f exp

{
−1

2

∣∣∣∣ xp − xq

λ

∣∣∣∣2
}

. (6)

σ2
f is the signal variance. If one is ignorant about this value, literature proposes to set it to one

as default value (Chapters 2.3 and 5.4 in [14]). However, in probability theory, we consider it as a
hyper-parameter to be marginalized over (see next chapter). To avoid lengthy formulae, we abbreviate
the covariance matrix of the input data as (K)ij = k(xi, xj) and the vector of covariances between test
point and input data as (k∗)i = k(x∗, xi).

Moreover, we consider the degree of information which the data contain by a term σ2
n∆ to be

composed of an overall variance σ2
n accounting that the data are noisy and the matrix ∆ with the

variances σ2
d of the given input data on its diagonal, and zero otherwise. While σ2

n is a hyper-parameter,
the matrix entry (σd)i is the relative uncertainty estimation of a single data point yi and is provided by
the experimentalist. If no uncertainties of the input data are given, ∆ is set to the identity matrix. It can
be shown (Chapter 2.2 in [14]) that in analogy to Equation (3) for given λ, σf and σn the probability
distribution for a single function value f∗ at test input x∗ is

p( f∗|X, y, x∗) ∝ N
(

f̄∗, var( f∗)
)

, (7)

with mean
f̄∗ = kT

∗

(
K + σ2

n∆
)−1

y (8)

and variance
var( f∗) = k(x∗, x∗)− kT

∗

(
K + σ2

n∆
)−1

k∗ . (9)

3. Marginalizing the Hyper-Parameters

The hyper-parameters θ = (λ, σf , σn)T determine the result of the Gaussian process method. Since
we do not know a priori which setting is useful, we marginalize over them later on in order to get the
target values f ∗ for test inputs X∗. Their moments are

〈θm〉 = 1
Z

∫
dθ θm p(θ|y) = 1

Z

∫
dθ θm p(y|θ)p(θ) , Z =

∫
dθ p(θ|y), (10)

where our special interest is the first (expectation value) and second central (variance or rather square
root thereof; i.e., standard deviation) moment listed in all subsequent tables.

For the choice of the prior, not much is to be expected. A sensible choice would be to assume
them in the order of one with a variance of the same size, but confined to be positive

p(θi) ∝ N (1, 1) ∀ θi ≥ 0 , and p(θi) = 0 otherwise. (11)

Depending on the application, one should check on these assumptions and be cautious that the
prior of the hyper-parameters should not influence the result.

The marginal likelihood p(y|θ) is obtained by

p(y|θ) =
∫

d f p(y| f , θ)p( f |θ). (12)
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As we deal with the Gaussian process, the probability functions are of Gaussian type, with the
likelihood as p(y| f , θ) ∝ N ( f , σn∆) and the prior for f as p( f |θ) ∝ N (0, K) (end of Chapter 2.2 in [14]).
Thus, the integration in Equation (12) yields

log p(y|θ) = const− 1
2

yT
[
K(θ) + σ2

n∆
]−1

y− 1
2

log
∣∣∣K(θ) + σ2

n∆
∣∣∣ . (13)

The expectation value for the targets f ∗ at test inputs X∗ employs the marginal likelihood and
priors for the hyper-parameters from above

〈 f ∗〉 =
∫

dθ f̄ ∗
p(y|θ)p(θ)∫

dθ′ p(y|θ′)p(θ′)
, (14)

where the fraction contains the sampling density in Markov chain Monte Carlo.
Rescaling of the input data and whitening of the output is performed in order to do the analysis

unhampered by large scales or biased from a linear trend. All data has been back-transformed
for display.

4. Closed Loop Optimization Scheme

With the help of the formulas in Equations (8) and (9), we can ask for an arbitrary target value and
its variance within some region of interest (ROI) substantiated by existing data. In order to determine
the next-best points at which to perform an expensive experiment or to run a long-term computer code,
we propose the following autonomous optimization algorithm for sequential parameter selection [15].

Since the variance in Equation (7) depends only on the input X and not on the target data, we
can immediately evaluate the utility of a further datum without the need to marginalize over the
(unknown) target outcome. To achieve this, one has to iterate within a region of interest I set by the
experimentalist over each grid point ξ ∈ I , which is tentatively handled as being part of the pool of
input data vectors. Then, for all test inputs x∗ ∈ I , the resulting variances var′ have to be determined
according to Equation (7), but with changed (N + 1)× (N + 1) covariance matrix K′ of the expanded
input X ′ = {X, ξ}. Summing up the variances var′ over all grid points in I provides a measure for the
utility U(ξ) of a target data obtained at input vector ξ:

U(ξ) = − ∑
x∗∈I

var′( f∗). (15)

The minus sign in Equation (15) reflects the fact that a smaller sum over the variances is connected
with a higher utility of the additional datum. The goal is to find ξmax with the largest utility:

ξmax = arg max
{ξ}

U(ξ). (16)

At the obtained ξmax, the next measurement is most informative. If the target data is produced by
a computer code, one can set up an autonomously running procedure which invokes the computer
code at ξmax to add the next target outcome to the data pool, with which the search for the next
most informative point is performed. This scheme would be repeated in an iterative manner, until
the increase in information from an additional target datum drops below some predefined level or
becomes insignificant.

5. Marginalizing Test Points

The above iterative algorithm proposes further input settings for future evaluations by an
automated but sequential procedure. For applications with long running computer codes, it would
be desirable to exploit the parallel capabilities of modern multi-processor systems in order to
accelerate this process. We propose the creation of different onsets for batch operation by invoking a
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marginalization procedure that simply marginalizes successively over as many test points as batch
processors are available. The first processor would be fed the original problem with the already
obtained Nstart = N input points. For the second processor, we marginalize over the target value f1 at
a first test input vector x̂1 chosen by the estimation criterion of the previous section; i.e., which test
point lowers the variance of the full system the most according to Equations (15) and (16). The optimal
input vector xopt = ξmax found is then identified with the input vector x̂1, for which the target value
has to marginalized. Then, the probability distribution of the next test point f1∗ is given by the
marginalization rule

p( f1∗|X, y, x1∗) =
∫

d f1 p( f1∗, f1|X, y, x1∗, x̂1)

=
∫

d f1 p( f1∗|X, y, x1∗, x̂1, f1)p( f1|X, y, x̂1), (17)

where
p( f1∗|X, y, x1∗, x̂1, f1) ∝ N

(
f̄1∗, var( f1∗)| f1

)
, (18)

p( f1|X, y, x̂1) ∝ N
(

f̄1, var( f1)
)

. (19)

We now rewrite Equation (8) by f̄1∗ = κT
1∗y1, with κT

1∗ = kT
1
(
K + σ2

n∆
)−1 and yT

1 = (yT , f1).
For the calculation of Equation (17), it is expedient to separate the last entry in the κ-vector:
κT

1∗ = (κ̂T
1∗, (κ1∗)N+1). The marginalization integral only has to handle Gaussians, and readily results

in the predictive distribution for the Gaussian process regression for one marginalized test point f1

p( f1∗|X, y, x1∗) ∝ N
(

κT
1∗ȳ1, var( f1∗)| f1

)
, (20)

with ȳT
1 = (yT , f̄1) and the marginalized variance

var( f1∗)| f1 = var( f1∗) + (κ1∗)
2
N+1var( f1). (21)

While the vector multiplication for the mean in Equation (20) is just the result without
marginalization enlarged by the expectation of the marginalized value, the variance has acquired
an additional term in Equation (21) compared to the case without marginalization var( f̄1∗). This is
reasonable because the target data pool has increased by an expectation value f̄1 based on the very
same data pool, so the lack of new information can only result in a larger variance.

The whole marginalization procedure is easily extended to obtain the successive points f2 to
fNmarg to be marginalized over. As we intend to use the marginalization procedure to create a pool
of parameter setups to start a long running simulation code in parallel—but for the “most valuable”
setups only—the order of the successively created setups is of importance.

var( f2∗)| f1, f2 = var( f2∗) + (κ2∗)
2
N+1var( f2)| f1 ,

...

var( fNmarg∗)| f1,..., fNmarg
= var( fNmarg∗) + (κNmarg∗)

2
N+1var( f(Nmarg−1)∗)| f1,..., fNmarg−1 . (22)

Once the variances are calculated, the largest utility can be obtained by using Equations (15)
and (16).

6. Validation in One Dimension

In order to examine the dependence of the result on the marginalized points, we simulate a
one-dimensional test case that is analytically accessible.
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For an input data set consisting of a single point at x1 with target value y1, the expectation value
at test point x∗ is

f̄∗ =
σ2

f

σ2
f + σ2

nσ2
d1

exp

{
−1

2

∣∣∣∣ x1 − x∗
λ

∣∣∣∣2
}

y1 (23)

with variance

var( f∗) = σ2
f −

σ2
f

σ2
f + σ2

nσ2
d1

exp

{
−
∣∣∣∣ x1 − x∗

λ

∣∣∣∣2
}

y1. (24)

This is plotted in Figure 1a with x1 = 0. The y-value is taken from the sinusoidal model shown
(a cos-function with decreasing amplitude), however subjected to whitening, which results in this
simple case of one point to the assignment of a zero value. The back-transformation to the scale of the
input target value leads to the horizontal line titled “Prediction” (marked by small white circles). As can
be seen from Equation (24), the variance increases with the distance from the data point. The utility
according to Equation (15) was scaled and normalized to fit within the range [−3,−2] of each graph.
It produces the result of xopt = 0.775 for the next best point to measure at. Without marginalization,
this would be the input datum returning the results of Figure 1b for our simple one-dimensional model.
After ten iterations, the prediction is—within the gray uncertainty region—almost pinned down to the
model generating function (see Figure 1c).

To run the whole process on a second processor, one would take the first optimal point at
x̂1 = 0.775 for the marginalization step; i.e., its target value f1 does not enter the data base.
The prediction can also be done analytically to give

f̄1∗ =
σ2

f

σ2
f + σ2

nσ2
d1

exp

{
−1

2

∣∣∣∣ x1 − x1∗
λ

∣∣∣∣2
}

y1 +
σ2

f

σ2
f + σ2

nvar( f̄∗)
exp

{
−1

2

∣∣∣∣ x∗ − x1∗
λ

∣∣∣∣2
}

f̄∗, (25)

with variance

var( f1∗) = σ2
f

−

(
σ2

f + σ2
nvar( f̄∗)

)
e−
∣∣∣ x1−x1∗

λ

∣∣∣2 − 2σ2
f e−

(x∗−x1∗)
2+(x1−x∗)2+(x1−x1∗)

2

2λ2 +
(

σ2
f + σ2

nσ2
d1

)
e−
∣∣∣ x∗−x1∗

λ

∣∣∣2
(

σ2
f + σ2

nσ2
d1

) (
σ2

f + σ2
nvar( f̄∗)

)
/σ4

f − e−
∣∣∣ x∗−x1

λ

∣∣∣2 . (26)

As can be seen in Figure 1d, the marginalized target point does not affect the prediction much
(both y1 and f̄∗ are zero after whitening, and yield a zero line according to Equation (25)). Moreover,
the standard deviation of the marginalized point,

√
var( f1∗) = 0.3895, is nearly four times higher than

the inputted measurement uncertainty of σd1 = 0.1, which emphasizes the fact that the marginalized
point is of less importance. The utility in Figure 1d gives rise to the next best point for a measurement at
xopt,1 = −0.8, but after obtaining the target value, the next utility in Figure 1e already has its maximum
at xopt,2 = 0.7, close to the position of the marginalized point xmarg = 0.775. Together with further
points obtained by the optimization procedure, this eventually concludes to a close similarity of the
predicted curve with the model (see Figure 1f). The marginalized point is of no importance, as should
be the case.
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Figure 1. One-dimensional test case: Expectation values of the target function (Prediction) from
Markov chain Monte Carlo (MCMC)-calculation where the grey-shaded area represents the uncertainty
range. The utility (scaled and normalized) is plotted at the bottom of each figure. Its maximum
Umax(xopt) shows the next input vector added to the pool of data. Top to bottom: increasing number of
optimized points in input data pool. (a–c) without marginalized point. (d–f) with marginalized point
at x̂1 = 0.775.

7. Convergence Study

In this final section, we investigate the convergence behaviour of the results produced by the
employed Gaussian process method as a function of an increasing data pool. The quantity to be
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studied is the total difference between the target values f∗ at all test input vectors ξ in the region of
interest I and the model outcome for these points

deviation =
1

NROI
∑

NROI

| f∗ − f (ξ)|. (27)

To begin with, we show that the marginalization procedure does not affect the result based on the
increasing input data pool. This is supported by Figure 2, depicting the deviation of the prediction from
the model as a function of the number of optimized points in the input data. Both batch runs—with
and without marginalization—show the same quadratic descent.

1 5 10 20 302 73 4 14

N
opt

10
−1

10
0

10
1

d
e

v
ia

ti
o

n

w/o marg.

w marg.

~N
opt

−2

Figure 2. Deviation of the Gaussian process results from the exact model outcome as function of the
number Nopt of obtained data at optimized parameter settings. Dotted line: without marginalized
input values; dashed line: with one marginalized input value. Both show quadratic decay behaviour.

To demonstrate the advantage of the optimized approach over randomly chosen parameter
settings, we run two test cases in one and two dimensions (see Figures 3 and 4) with different choices
of the data uncertainties ranging from 10% over 1% to 0.1% of the total amplitude. Test case one
consists of a simple Gaussian with a broad structure, test case two of a damped cosine function sitting
on an inclined plane. To avoid artefacts originating from symmetry, the model function was shifted by
a value of 0.2 from the center of the ROI. Of interest is the reduction of the variance with the number
of acquired data points.

Let us first examine the one-dimensional case shown in Figure 3. The top row shows the two
model functions (thin line), and the result of the Gaussian process method obtained after (a) Nopt = 5
and (d) Nopt = 15 data points were added to the data pool either as the result of the optimization
procedure stated in Section 4 (thick line) or just by randomly chosen parameter settings (dashed line).
The result from the optimized approach already covers all features of the respective model function,
and is in good agreement with it. The random approach apparently did not choose an input vector
close to one in Figure 3d, and misses the damped progress to the right.

The four Figure 3b,c,e,f show the convergence behaviour of the deviation Equation (27). Since the
hyper-parameters λ, σf , and σn determine the outcome of the Gaussian process method (see Section 3)
and vary a lot in the starting phase of the data acquisition, one has to wait until they have settled. They
are plotted in the top of each graph. We restrain from showing σf , because it hardly varies for the
test cases used. One finds that the hyper-parameters stabilize at about 30 data values added for the
damped cosine model, and about 20 for the broad Gaussian. From thereon, the decay of the deviation
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with the increasing data pool clearly shows square root behavior, while up to this settlement, higher
power laws are in charge. The actual values of these higher powers for the decay seem to be somewhat
arbitrary, but they are still substantial over all test cases to claim that the optimized approach for
finding the best next parameter settings is much more fruitful than to set it up randomly.
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Figure 3. Two test cases for one-dimensional input vectors, NROI=81. (a–c) Gaussian model;
(d–f) damped cosine model. Top row (a,d): model (solid line), initial input data value (filled circle),
optimized approach (dotted line) vs. randomly chosen parameter settings (dashed line). Panels (b,c,e,f)
with number of added points to the right: in the top of each figure, hyper-parameters λ and σn;
in the bottom, total difference between target and model for σd = 0.1 (dotted line), σd = 0.01 (dashed
line), σd = 0.001 (dot-dashed line). Middle row (b,e): optimized approach. Bottom row (c,f): random
parameter setting. The solid lines represent dedicated decay powers.
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Figure 4. Two test cases for two-dimensional input vectors, NROI = 21 × 21 (ROI: region of interest).
(a–c): Gaussian model; (d–f): damped cosine model. Top row (a,d): model, five initial input vectors
(plus signs in base). Panels (b,c,e,f) with number of added points to the right: in the top of each figure,
hyper-parameters λ and σn; in the bottom, total difference between target and model for σd = 0.1
(dotted line), σd = 0.01 (dashed line), σd = 0.001 (dot-dashed line). Middle row (b,e): optimized
approach. Bottom row (c,f): random parameter setting. The solid lines represent dedicated decay
powers. The small inset in (e) shows the deviations of target and model for σd = 0.01 and σd = 0.001,
which settles on a square root behavior around 400 points.

The two-dimensional test cases in Figure 4 confirm the findings above. Since the small “waves”
surrounding the large hump at the center of the damped cosine (Figure 4d) are much harder to resolve
in two dimensions than is the case for the broad structure of the Gaussian (Figure 4a), the settlement of
the hyper-parameters is shifted to higher numbers of acquired data. Again, the optimized approach
surpasses the random choice.
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8. Summary and Conclusions

A marginalization procedure was proposed to obtain different starting conditions for the batch
execution of Gaussian processes in order to exploit parallel computing power. By investigating
a one-dimensional test case, the implementation of the procedure (algorithm, computer program,
Markov chain Monte Carlo results) was validated with analytic calculations. A marginalized input
point was shown to become insignificant during the calculation procedure, thereby demonstrating
the marginalization procedure being not harmful for the final result. Eventually, the convergence
behaviour of the total difference of target and model was studied. It turned out that the result settles
when the decay resembles a square root power law. Therefore, the onset of this behaviour may serve
as a stopping criterion for the need of acquiring additional data points in the region of interest.

Acknowledgments: This work has been carried out within the framework of the EUROfusion Consortium and
has received funding from the Euratom research and training programme 2014–2018 under grant agreement
No. 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

Author Contributions: All authors contributed substantially to each step of the work. All authors have read and
approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Notation Table

N number of input data vectors
Ndim number of elements in the input data vector
Nmarg number of marginalized test data
Nopt number of points added to the data pool by optimization
Nrnd number of points added to the data pool chosen randomly
NROI number of test points in the region of interest
x∗ test input vector
x̂1 first test input vector, for which the target value is marginalized
xopt test input vector found by the utility criterion
x1∗ test input vector after first marginalized test input vector was found
xi = (xi1, ..., xiNdim

) i-th input data vector
X = (x1, x2, ..., xN) N × Ndim matrix with input data vectors as columns
X ′ = {X, ξ} matrix of the input data vectors expanded by the vector of grid points
ξ vector of grid points within region of interest I
ξmax grid point with largest utility
f∗ target value at test input vector x∗
f (x) function of input data to describe target data
f1 first target value, to be marginalized
f1∗ target value at test point, obtained after marginalization of a first target value
y = (y1, ..., yN)T vector of the N target data
ε uncertainty of the target data
σd

2
i variance of the i-th target data

∆ij = σd
2
i δij ij-th element of the N × N matrix of the variances of target data

λ length scale to set up the notion of distance between input data vectors
σ2

f signal variance of the distribution over functions f
σ2

n overall noise in the data
θ = (λ, σf , σn) vector of the hyper-parameters
k(xp, xq) covariance of two input data vectors
(k∗)i = k(x∗, xi) short notation for the i-th element of the vector of covariances between test

input vector and input data vector
Kpq = k(xp, xq) pq-th element of the N × N covariance matrix of the input data vectors
K′ (N + 1)× (N + 1) covariance matrix of the expanded input X ′

I region of interest to run Gaussian processes
U(ξ) utility of a target data obtained at input vector ξ
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Appendix B. Algorithm for Computer Simulation

We briefly describe an algorithm for a computer simulation employing the batch approach
introduced. The field of application will be the prediction of particle transport and plasma-wall
interaction in the scrape-off layer in fusion plasma experiments. Up to now, a data base with the
outcome for about 1500 parameter settings has been established [16]. The usual running time for
obtaining the outcome for one set of parameters is on the order of months, so the particular setups
have to be chosen well.

1. Compose input data vector from data base;
2. Set up batch run with Nproc processors;
3. Processor #1: code running without any marginalized point;

Processor #(i + 1): code running for i marginalized points;
4. Return outcome; i.e., Nproc most promising parameter settings for the long running simulation

code ready for batch execution.
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