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Abstract: This article proposes a methodology for the classification of fractal signals as stationary or
nonstationary. The methodology is based on the theoretical behavior of two-parameter wavelet entropy
of fractal signals. The wavelet (q, q′)-entropy is a wavelet-based extension of the (q, q′)-entropy
of Borges and is based on the entropy planes for various q and q′; it is theoretically shown
that it constitutes an efficient and effective technique for fractal signal classification. Moreover,
the second parameter q′ provides further analysis flexibility and robustness in the sense that different
(q, q′) pairs can analyze the same phenomena and increase the range of dispersion of entropies.
A comparison study against the standard signal summation conversion technique shows that the
proposed methodology is not only comparable in accuracy but also more computationally efficient.
The application of the proposed methodology to physiological and financial time series is also
presented along with the classification of these as stationary or nonstationary.

Keywords: fractal signal classification; fractional Gaussian noise/fractional Brownian motion
(fGn/fBm) dichotomy; wavelets; non-extensive entropies; two-parameter entropies

1. Introduction

Fractal signals are ubiquitous in nature [1–6] and many aspects of these processes appear in
hardly any field of science [3,4,7–10]. An important research topic within the fractal theory concerns
the estimation of fractal signals [5,6,11,12], specifically, the fractality parameter. Within fractal signal
analysis and estimation, fractal signal classification (i.e., the classification of signals as stationary
or nonstationary) plays an important role since it determines the type of estimator to be used,
the form of important statistics such as correlations and moments and also the smoothness of sample
paths [7,10,12–14]. Some authors have even claimed that the signal classification should be considered
as the primary step for fractal signal analysis [13] and have devised methodologies for the classification
of fractal processes. Many techniques have attempted to classify fractal signals as stationary or
nonstationary. The signal summation conversion (SSC) [7,13] is a technique based on the observed
behavior of the power spectral density (PSD) estimator when estimating the fractality parameter in the
range α ∈ (−1, 3). The PSD underestimates fractal signals in a range of the fractality exponent and
therefore an additional technique is used instead (scaled window variance (SWV)). SSC is therefore a
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PSD-based technique and is described in detail in [7,13]. The fractal signal classification scheme based
on wavelet Tsallis q-entropy was first proposed in [14] and takes advantage of the particular behavior of
entropies (nonextensive Tsallis) for fractal signals. Both techniques, however, are subject to inaccuracies
in the stationary/nonstationary limit (α → 1) but unlike the SSC methodology, the wavelet Tsallis
q-entropy technique appears to be more computationally efficient [14], therefore it is more appropriate
for long signals. In this article, two-parameter nonextensive wavelet entropy is proposed for the fractal
signal classification problem. The concept of entropy, as applied to statistical mechanics, measures
the information content or uncertainty of a random signal or system [15,16]. The entropy of a signal,
in their diverse functionals, has been proposed to solve a handful of problems across the numerous
fields of science. For instance, the well-known Shannon, Rényi and Tsallis entropies have been used
in [17–19] to assess the complexities associated to random and nonlinear phenomena. The literature has
also witnessed the rise of more elaborate information theory functionals which consist of the product
of complexity/entropy measures and allow for greater flexibility and the possibility to analyze a wider
range of phenomena. Current applications of the aforementioned entropic measures include but are not
limited to the analysis of two-electron systems [20] and their extension to many electron systems [21].
Also, information planes are being applied to randomness and the localization of molecules [22] and for
the analysis of X-ray astrophysical sources [23]. With the advent of multiscale analyses, more precise
and fast information theory quantifiers have been proposed. The so-called wavelet entropy [24,25]
constitutes an extension of the Shannon entropy using a probability function obtained from the wavelet
representation of the signal. Extensions of the wavelet entropy include the wavelet q-entropy using a
Tsallis functional and the generalized wavelet Fisher’s information [26]. The analysis of a signal in
their wavelet domain has many advantages including the possibility to handle nonstationarities and to
adjust the analyses to selective signal resolutions. Wavelet information tools have found applications
in various fields including physiology, e.g., for electroencephalogram (EEG) and electrocardiogram
(ECG) signal analysis [25,27], and physics [27], among others [28]. Wavelet information tools, therefore
embody a field that is under constant development and may offer significant tools and advantages
for signal and system analysis. This article, as mentioned above, proposes a methodology that uses
the observed behavior of wavelet (q, q′)-entropies of fractal signals for the classification of these as
stationary or nonstationary. The motivation behind the use of the wavelet (q, q′)-entropy stems from
the fact that fractal signals experiment constant entropies over time while nonstationary fractal signals
display variable entropies across time. In addition, parameter q′ provides further analysis flexibility
and the ability to use different configurations of the (q, q′) pair to analyze the same phenomena.
Moreover, wavelet (q, q′)-entropy constitutes a generalization of the wavelet entropy and wavelet
q-entropy approaches and therefore, the results reported in the literature using these entropies may be
replicated with the wavelet (q, q′)-entropy. The rest of the article is organized as follows: Section 2
provides a review of some important results regarding the wavelet analysis of fractal signals and
presents some important properties of the wavelet (q, q′)-entropy as well. The signal classification
problem is also presented and a brief description of the techniques available for performing this is
given. Section 3 presents some results regarding the classification of fractal signals using the wavelet
(q, q′)-entropy and Section 4 presents a comparison study with the SSC using synthesized fractal
signals and the application of the proposed methodology in gait and financial time series. Finally
Section 5 concludes the article.

2. Materials and methods

2.1. The Representation of Fractal Signals by Wavelets

Fractal signals are ubiquitous in nature and are representative models for the phenomena
occurring in deoxyribonucleic acid (DNA) sequences [29], heart-beat time series [30], and mood
and self-steem [31], among others. The PSD is the traditional approach used in the literature to define
a fractal process. In fact, a fractal signal is defined as a process for which their PSD is:
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S( f ) ∼ c f | f |−α, f ∈ ( fa, fb), (1)

where c f is a constant, α ∈ R is the fractality parameter and fa, fb represent the lower and upper
bounds upon which (1) holds [32,33]. Many stochastic processes can be used to model the power-law
behavior of the PSD of fractal processes (as given in Equation (1)). The pure-power-law (PPL) process,
the fractional auto-regressive integrated moving-average (f-ARIMA) time series and the well-known
fractional Brownian motion (fBm) and fractional Gaussian noise (fGn) are examples of fractal stochastic
processes [34]. In this contribution, the classification of fractal signals as stationary or nonstationary is
considered. Two types of fractal stochastic processes are studied, the fGn/fBm family and the PPL
family of random signals. FBm is a Gaussian process which is self-similar and nonstationary [6,35,36].
FBm is defined in terms of two interrelated concepts, the correlation function which is given by:

EBH(t)BH(s) =
σ2

2

{
|t|2H + |s|2H − |t− s|2H

}
, (2)

with H ∈ (0, 1) and spectral density function (SDF) which satisfies the following relation:

S f Bm( f ) ∼ c| f |−(2H+1), f → 0. (3)

Equation (3) implies that the fBm is a fractal signal with α = 2H + 1 [6,36]. FGn, on the other
hand, is a differenced version of fBm and is stationary, Gaussian, self-similar and has a PSD of the
form [6,11,35–37]:

S f Gn = 4σ2
XcH sin2(π f )

∞

∑
j=−∞

1
| f + j|2H+1 , | f | < 1

2
, (4)

with H ∈ (0, 1). In the limit of f → 0, the PSD of fGn behaves as S f Gn ∼ c| f |−2H+1 and therefore is
a fractal signal with α = 2H − 1. The PPL family of stochastic processes is defined as a process for
which their PSD is:

SPPL( f ) = Cs| f |−α, f ≤ 1/2, (5)

for Cs > 0. When α < 1, the PPL process is stationary and when α ≥ 1, it is nonstationary. The fGn/fBm
and the PPL families of processes behave similarly although they differ in their PSD. Wavelet analysis,
originally proposed in geophysics [38], decomposes a signal in terms of small waves and permits to
compute the so-called multiresolution analysis [39,40]. For random signals, the wavelet spectrum [41]
permits computation of many interesting quantities such as the relative wavelet energy (RWE) which
basically represents a probability function for the signal under study [24,42]. The wavelet spectrum of
fractal signals was obtained in the work of Abry and Veitch [32,33] and can be computed using the
following relation,

Ed2
X(j, k) =

∫ ∞

−∞
SX(2−j f )|Ψ( f )|2 d f , (6)

where Ψ( f ) =
∫

ψ(t)e−j2π f t dt is the Fourier integral of the mother wavelet ψ(t), SX(.) is the PSD of
the process Xt, E the expectation operator and dX(j, k) is the discrete wavelet transform (DWT) of the
process Xt at time k and wavelet scale j [32,33]. Using the PSD of fractal signals given by Equation (1)
and substituting it into Equation (6) results in the wavelet spectrum of fractal signals,

Ed2
X(j, k) = C2jα, (7)

where C is a constant. Equation (7) has been used for the estimation of the fractality exponent α [32]
and also for computing wavelet-based information tools [14,24,25,42–44]. For further information on
wavelets and in the wavelet analysis of fractal signals refer to [32,33,39,40,45–49] and references therein.
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2.2. A Nonextensive Wavelet (q, q′)-Entropy of Fractal Signals

In this article, a methodology for the classification of fractal signals based on the behavior of
their wavelet (q, q′)-entropy is proposed. The wavelet (q, q′)-entropy is an extension (to the time-scale
domain) of the (q, q′)-entropy first proposed by Borges in [50]. In order to obtain a closed-form
expression for the wavelet (q, q′)-entropy of fractal signals, their RWE is computed. The RWE of fractal
signals was obtained in [24] using the wavelet spectrum equation of (7) and results in:

πj = 2(j−1)α 1− 2α

1− 2αN , (8)

where N ∈ Z. Note that πj in (8) for j = 1, 2, . . . , N represents a probability mass function (pmf) in the
sense that πj ∈ (0, 1), ∑j πj = 1 and therefore many information theory quantifiers can be obtained for
fractal signals using this relation. The application of (8) into the definition of (q, q′)-entropy [50] and
given by the relation,

HT
(q,q′)(πj) =

N

∑
j=1

π
q
j − π

q′
j

N1−q − N1−q′ , (9)

results in the wavelet (q, q′)-entropy of fractal signals which is given by,

HT
(q,q′)(πj) =

{(
1−2α

1−2αN

)q ( 1−2αqN

1−2αq

)
−
(

1−2α

1−2αN

)q′ ( 1−2αq′N

1−2αq′

)}
×
(

N1−q − N1−q′
)−1

, (10)

and can also be expressed as,

HT
(q,q′)(πj) =





PN−1
(

2 cosh( αq′ ln 2
2 )

)

(PN−1(2 cosh( α ln 2
2 )))

q′ −
PN−1

(
2 cosh( αq ln 2

2 )
)

(PN−1(2 cosh( α ln 2
2 )))

q

}
×
(

N1−q − N1−q′
)−1

. (11)

Equation (11) represents the wavelet (q, q′)-entropy of fractal signals and the expression
PN−1(2 cosh u) in (11) represents a polynomial of order N − 1 which for any N ∈ Z+, is given by:

PN−1(.) = (2 cosh u)N−1 − (N − 2)
1!

(2 cosh u)N−3 +
(N − 3)(N − 4)

2!
(2 cosh u)N−5 − . . . (12)

When q′ → 1, the standard (normalized) wavelet Tsallis q-entropy presented in [25,27,44] is obtained
and with q′ → 1 and q → 1, the wavelet entropy of [24] results. Therefore, with the use of wavelet
(q, q′)-entropy, the results previously obtained with wavelet entropy and wavelet Tsallis-q-entropy can
be replicated. The motivation with the use of the two-parameter entropy lies in the increased flexibility
and robustness which can be achieved by the parameter q′.

2.3. The Behaviour of Wavelet (q, q′)-Entropy for Various (q, q′) Pairs

Equation (11) is of particular importance since it allows to construct the so-called entropy planes
which permit to visualize the behavior of entropies for different q, q′, N and α. A diversity of entropy
planes can be obtained, however, they can be grouped into the following types for the case of fractal
signal classification. Figure 1 shows an entropy plane constructed by setting the parameter q = 7,
q′ = 4, using several N and α. Note from the figure that in the limit of α→ 0, entropies are small and
appear to be zero, however their true value is:

limα→0H(q,q′)(πj)
=

1
1− Nq−q′ +

1
1− Nq′−q , (13)

and therefore the well-known Gaussian noise exhibits the smallest (q, q′)-entropy. In general, whenever
q− q′ � 1, fractal signals neighboring α = 0 will also be regarded as processes experiencing small
constant entropies. Fractal signals with fractality parameter lying outside this interval will have
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a wavelet (q, q′)-entropy that differs from (1 − Nq−q′)−1 + (1 − Nq′−q)−1 and when computed in
sliding windows they lead to a signal which varies with higher dispersion over time. Therefore,
whenever q′ − q � 1 or q − q′ � 1, behavior such as that one obtained in Figure 1 is observed.
Note that for this case, the wavelet (q, q′)-entropy behaves as a whitening filter which regards signals
in a specific range as noise. The range of constant entropies can be scaled or comprised according to
q and q′, this means that by setting q′ fixed and varying q, a different region of constant entropies is
observed. Note that setting the constant region of wavelet (q, q′)-entropies in the fractality interval
α ∈ (−1, 1) allows to distinguish stationary processes from nonstationary ones simply by observing
whether their entropies are constant or varying and consequently a simple yet powerful classification
technique may be devised. A particular advantage of wavelet (q, q′)-entropy over their related
wavelet q-entropy and wavelet entropy approaches is their ability to analyze the same phenomena
using a different (q, q′) pair. This implies increased analysis flexibility and robustness. Figure 2
displays a wavelet entropy plane for fractal signals when q′ < 0 (or when q < 0). In this case, the
entropies are similar to the entropies of Figure 1, and experiment roughly two classes of behavior
in the same way as the that observed in Figure 1, the first is associated with constant entropies in
a range of the fractality parameters while the second is for varying entropies (for signals with fractality
parameter lying outside the constant range). Unlike the entropies of Figure 1, the entropies observed
in Figure 2 exhibit a faster increase outside the interval of constant entropies. The width of constant
entropies can be set with parameter q, and in the same way, can be used to classify fractal signals
as stationary or nonstationary. It is important to note that the classification of fractal signals is not
limited to the stationary/nonstationary case but can also be performed for classifying fractal signals as
short-memory and long-memory and also to classify extended fBms from fBms as well, however the
present contribution only considers the stationary/nonstationary case. Finally, a third way to classify
fractal processes as stationary or nonstationary can also be obtained when the wavelet (q, q′)-entropy
has q � 1 and q → 1. Note that this corresponds to the case of wavelet Tsallis q-entropies and the
wavelet entropy plane is identical to the one presented in [14]. Figure 3 displays the wavelet entropies
for these values of q and q′ along with their contour plots. The wavelet (q, q′)-entropy plane of Figure 3
displays constant (maximum) entropies in a range of the fractality parameter and decreasing entropies
outside this interval. This behavior can also be used for fractal signal classification, however, it is
more restricted in the sense that the range of variation of entropies is small compared to previous
(q, q′)-pairs and hence the classification is more complex. Consequently, for the problem of fractal
signal classification behavior such as that observed in Figures 1 or 2 is preferred. In the following,
the methodology based on the wavelet (q, q′)-entropy for fractal signal classification is described.
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Figure 1. Wavelet (q, q′)-entropy for fractal signals of parameter α. Parameters q and q′ are set to q = 7
and q′ = 4 respectively. Length N is given in powers of 2.
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Figure 2. Wavelet (q, q′)-entropy for fractal signals of parameter α. Parameters q and q′ are set to
q = −9 and q′ = −2 respectively. Length N is given in powers of 2.
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Figure 3. Wavelet (q, q′)-entropy for 1/ f α signals. Parameters q and q′ are set to q = 7 and q′ = 4.
Scaling index range is α ∈ (−1, 1) and the length of the signal ranges in the interval N ∈ (24, 213).

2.4. The Classification of Fractal Signals with Wavelet (q, q′)-Entropy

The theoretical wavelet (q, q′)-entropy planes obtained previously give insight into the
characteristics of entropies for fractal signals. The behavior of these entropies, for selected values of
q and q′, permit to devise a simple methodology for the classification of fractal signals as stationary
or nonstationary. However, as mentioned above, the fractal signal classification using wavelet
(q, q′)-entropies is not only limited to the stationary/nonstationary case but can also be used for
the classification of other classes of fractal processes such as long-memory and short-memory and
for fBm and extended fBm as well. Based on this, Figure 4 displays a generalization of the behavior
observed in the wavelet (q, q′)-entropies of Figures 1 and 2 and which may permit to classify fractal
processes as stationary or nonstationary. First, observe that wavelet (q, q′)-entropies are constant over
a region −αcoff < α < αcoff and fluctuate for processes whose fractality parameter lies outside this
range. For the special case in which αcoff = 1, wavelet (q, q′)-entropies distinguish stationary fractal
processes from nonstationary ones. The classification is thus based on whether the observed signal
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wavelet (q, q′)-entropy fluctuates over a given threshold or not. In order to more efficiently capture the
fluctuations of wavelet (q, q′)-entropies, these are computed in sliding windows of the form,

HT
(q,q′)(m, W, ∆) = T

{
X(tk)Π(

t−m∆
W

− 1
2
)

}
, (14)

where T {.} is the wavelet (q, q′)-entropy operator over a sample of the signal X(t) and W denotes the
window size, ∆ the sliding factor and m = 0, 1, 2, . . . , mmax. The use of sliding windows therefore
allows for highlighting the fluctuations of entropies and this variation may be captured with a standard
dispersion technique. Since the standard deviation is not robust to peaks and other anomalies within
the data, the biweight midvariance is used instead since it constitutes a robust estimator of the
dispersion within a signal. The biweight midvariance (BW) of a sample {Xi}, i ∈ N is defined
according to the following relation:

BW =
(
n′
)1/2

[
∑|ui |<1 (Xi −M)2(1− u2

i )
4
]0.5

|∑|ui |<1 (1− u2
i )(1− 5u2

i )|
(15)

where ui = (Xi −M)/(c(MAD)), c is typically 9, MAD is the usual median absolute deviation and
n′ is the number of points which satisfy the |ui < 1| condition. Wavelet (q, q′)-entropy therefore
fluctuates for nonstationary processes and remains constant for stationary ones. The estimation of
entropies by sliding windows permits to emphasize further the fluctuations and these fluctuations
can be quantified with the biweight midvariance. In theory, wavelet (q, q′)-entropies for stationary
processes are constant, however, in practice, they also fluctuate and a threshold is set in order to classify
fractal processes. Based on this, Figure 5 presents the proposed scheme for classifying fractal signals as
stationary or nonstationary using wavelet (q, q′)-entropies.

First, wavelet (q, q′)-entropies are computed in sliding windows and then the fluctuation is
estimated using the biweight midvariance technique. Finally, a decision is taken on whether the
biweight midvariance is greater or smaller than a given threshold. In case the biweight midvariance is
greater than the threshold, the process is regarded as nonstationary otherwise the process is stationary.
The advantages of the proposed scheme is that overall the process is computationally efficient and
therefore fast for classifying long fractal signals. In the following, a simulation experiment to test
the efficacy of the proposed methodology is presented together with a comparison study against the
standard SSC technique.
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Figure 4. Wavelet entropy plane when q < 0 (or q′ < 0). Constant regions are observed in
α ∈ (−αcoff, αcoff) and variable regions outside this interval.
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Wavelet
(q, q′)-entropy

Biweight mid-
variance, BW

BW (HT (πj ,W,∆))

Stationary Nonstationary

BW < thrsh BW > thrsh

Figure 5. Fractal signal classification scheme using wavelet (q, q′)-entropy and the biweight
midvariance technique.

3. Results

3.1. Experimental Results

Figure 5 presented the proposed fractal signal classification scheme based on wavelet
(q, q′)-entropies. Note from Figure 5 that a process is regarded as nonstationary whenever BW > thrsh,
otherwise, the process is stationary. To get an idea of the fluctuations experimented by the wavelet
entropies of nonstationary and stationary processes, Figure 6 displays the wavelet (q, q′)-entropies
(q = −0.99, q′ = −0.1) of two concatenated fractal signals, the first nonstationary fBm and the second
stationary fGn. Note that the fBm signal experiences a higher fluctuation with peaks while the fGn
presents a lower variation. In biweight midvariance terms, the first presents a higher BW than the
second and the scheme of Figure 5 may distinguish between these two signals straightforwardly.
The fractality parameter of the first is α = 1.05 and for the second α = 0.95. The fractal signal
classification problem has been regarded in the literature as of primary importance, however, all fractal
signal classification techniques experiment errors in the limit of α→ 1. In the following the threshold
thrsh is determined for long and short time series for fixed (q, q′) values and a comparison of the
proposed technique with the standard SSC is presented.

0 4000 8000 12000 15000
−4
−2
0
2
4

X
(t
)

XfBm(t)
⋃
XfGn(t)

0 4000 8000 12000 15000
0

100

200

300

400

Nonstationary fBm Stationary fGn

Time, t

H
T q
,q

′(
.)

Wavelet (q, q′)-entropy

Figure 6. Classification of signals as stationary or nonstationary. Top plot: concatenated nonstationary
and stationary signal, first half part is a nonstationary signal (fractional Brownian motion (fBm) with
α = 1.05) and second half corresponds to a stationary one (fractional Gaussian noise (fGn) with
α = 0.95). Bottom plot: wavelet (q, q′)-entropy of concatenated signal computed in sliding windows
with W = 2048, ∆ = 256 and (q, q′) = (−0.99,−0.1).
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3.2. The Threshold for Long and Short Fractal Time Series

In order to obtain the threshold thrsh for classifying fractal signals as stationary or nonstationary,
an experimental setup using synthesized fGn and fBm random signals was devised. In fact, for every
fractal signal with parameter α in the range (0, 2), 50 traces were generated and for each, the BW
was estimated and averaged. A plot of α versus the averaged BW can be used to select the required
threshold for the given q and q′. The threshold thrsh is determined for both long and short fractal
time series and can be used to classify fractal signals as stationary or nonstationary. Figure 7 displays
the results of the experimental setup and also the proposed value of thrsh for long and short time
series. Notice that thrsh should be set to 500 for long time series and thrsh = 100 for short ones. In the
following, a comparison of the wavelet (q, q′)-entropy based scheme for signal classification against
the standard SSC is presented.

thrsh = 500

0 0.2 0.4 0.6 0.8 1
0

200

400
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Fractality parameter α

H
(q
,q

′ )
(π

j
)

Long fractal times series

thrsh = 100

0 0.2 0.4 0.6 0.8 1 1.2
0

100

200

300

Fractality parameter α

Short fractal time series

Figure 7. Determination of the optimal threshold thrsh for long and short time series. For convenience
only the range α ∈ (0, 1.2) is shown and every plot was obtained using (q, q′) = (−0.99,−0.1) and
W = 256 and ∆ = 64.

3.3. Comparison with the Standard SSC Technique

As previously mentioned, SSC is a well-known technique for classifying fractal signals as
stationary or nonstationary. SSC refines the estimation of PSD in the limit of α → 1 and within
this limit it applies the bdSWV to enhance the estimations. In this interval, SSC basically converts a
fGn signal into a fBm and an fBm into an extended fBm via a cumulative sum. The next step in the
SSC algorithm is to obtain an estimate of H (Ĥ). When Ĥ ∈ (0, 1), the signal is regarded as stationary
and when Ĥ > 1 it is nonstationary. For further details on the SSC and some comparison with the
PSD technique refer to the work of Eke [13]. In the following, a comparison study of the SSC and
the proposed technique based on wavelet (q, q′)-entropies is presented. To perform this comparison,
exact fractal signals with known fractality parameters are synthesized. The method employed to
generate these fractal signals is known as the Davies and Harte (DHM) technique and the algorithm is
detailed further in [51]. The R package fractal includes the DHM and is used to synthesize fGn, fBm
and PPL signals with length N = 214 and N = 211, in the range of the fractality parameter 0 < α < 2
and in steps of ∆α = 0.01. For each α, 50 fractal signals are generated and classified using the SSC
and the methodology based on wavelet (q, q′)-entropies. Finally, the number of correct classifications
against the fractality parameter α is plotted and the accuracy of each methodology compared. The idea
behind the use of PPL signals and the family of fGn/fBm signals stems from the fact that PPL signals
represent fractal signals with exact power-law behavior while the fGn/fBm family are approximately
fractal. Figure 8 displays the results of both techniques (SSC and wavelet (q, q′)-entropies) using
signals of fGn/fBm type. In this experimental study, wavelet (q, q′)-entropy values were set with
(q, q′) = (−0.99,−0.1), W = 256, ∆ = 64 and the threshold with thrsh = 500 for long signals and
thrsh = 100 for short ones. Left plot corresponds to long signals (N = 214) while the plot on the right
corresponds to short-length fGn/fBm signals (N = 211). For long and short signals, the methodology
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based on wavelets tends to have a lower range of misclassifications but has a weaker behavior when
the fractality parameter approaches the α→ 1 limit.

0 0.5 1 1.5 2
0

10

20

30

40

50

Parameter α

C
or

re
ct

cl
as

si
fi

ca
ti

on
s

HT
(q,q′)(πj)
SSC

0 0.5 1 1.5 2
0

10

20

30

40

50

Parameter α

HT
(q,q′)(πj)
SSC

Figure 8. Classification of synthesized fGn and fBm signals using wavelet (q, q′)-entropy and signal
summation conversion (SSC). Left plot corresponds to signals with length N = 214 and right plot to
signals with N = 211.

Figure 9, presents the classification results of both techniques when using PPL signals of length
N = 214 (left plot) and N = 211 (right plot). For long PPL signals, the methodology based on wavelet
(q, q′)-entropies presents better performance than the SSC technique while for short PPL signals
it is slightly better but overall is statistically similar as the SSC. In summary, the technique based
on wavelet (q, q′)-entropies constitutes a fractal signal classification methodology which presents
similar classifications as those observed for the SSC, however is more robust in the sense that it
permits not only to classify stationary and nonstationary signals but can also be applied for the
long-memory/short-memory signal classification problem. In addition, the technique based on
wavelet (q, q′)-entropies is computationally efficient and can be used to classify long signals fast
and accurately.

0 0.5 1 1.5
0

10

20

30

40

50

Parameter α

C
or

re
ct

cl
as

si
fi
ca

ti
on

s

HT
(q,q′)(πj)
SSC

0 0.5 1 1.5
0

10

20

30

40

50

Parameter α

HT
(q,q′)(πj)
SSC

Figure 9. Classification of synthesized pure-power-law (PPL) signals as stationary or nonstationary
using wavelet (q, q′)-entropy and SSC. Left plot corresponds to long signals with length N = 214 and
right plot to short-length signals with N = 211.

3.4. Computational Complexity

Wavelet (q, q′)-entropy based signal classification display similar results as that of SSC for long
and short fBm/fGn and PPL fractal signals. SSC, however is slower than the proposed technique and
not recommended for long signals. As a matter of fact since the DWT is O(n) and the nonextensive
entropies within the DWT signal take O(log n), then the overall complexity of wavelet (q, q′)-entropy
is O(n log n). SSC on the other hand employs a cumulative sum which is O(n2) and an fast Fourier
transform (FFT) technique for the PSD which is O(n log n), therefore, it is extremely slow and
prohibitive for long signals.
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3.5. Application to Financial Time Series

Fractal models have been applied to several financial time series from stock market indices [52]
to stock market inefficiency [53]. In the following, classification of stock market indices either as
stationary fractal models or nonstationary ones is performed using the method based on wavelet
(q, q′)-entropy. For the classification, the parameters are set to (q, q′) = (−0.99,−0.1), W = 256, ∆ = 64
and thrsh = 100. The estimated biweight midvariances for these time series are: 120,657.5, 94,943.44,
242,874.8 and 109,040.7 for SP&500, Dow Jones, NASDAQ and Nikkei respectively (Figure 10 displays
the studied time series). As can be noted all these stock market indices are nonstationary and can be
modeled by the fBm signal.
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Figure 10. Stock market closing indices. Top left plot displays the S&P index from January 1956 to
21 April 2017. Top right plot displays the Dow Jones Industrial Average time series from February
1985 to 21 April 2017. Finally bottom left and right plots display the indices for the NASDAQ and
Nikkei indices.

3.6. Application to Physiological Time Series

Many physiological and biomedical time series are modeled by fractal time series. Gait time series
(gait dynamics) are example physiological signals for which fractal models have been applied [54].
In the following, the classification of stride interval (gait dynamics) time series using wavelet
(q, q′)-entropy is performed. For the classification, the parameters are set to (q, q′) = (−0.99,−0.1),
W = 256, ∆ = 64 and thrsh = 100. The time series consist of stride intervals of four young and
healthy subjects walking fast during an hour-long interval. The time series are plotted in Figure 11.
The biweight midvariances are 7.653119, 20.82806, 10.71886 and 2.293469 for the si01, si02, si03 and
si04 subjects and clearly indicate that these time series are stationary.
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Figure 11. Stride interval time series from four healthy, young adults walking during a period of
an hour in a 400-m oval.
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4. Discussion

Figures 8 and 9 showed the classification rates of the proposed technique and the SSC for
fGn, fBm and PPL signals. Both techniques present advantages and disadvantages. For instance,
the technique based on wavelet (q, q′)-entropies have less variation range, however, it presents no
correct classifications in the limit of α → 1. Overall, both techniques present similar classifications
and can be regarded as statistically similar with respect to the number of correct classifications.
Despite these similarities, the wavelet (q, q′)-entropy technique has two additional advantages, it is
computationally efficient and can be used to classify other types of fractal processes. As a matter of fact,
the proposed technique provides a classification in a fraction of a second for long signals while the SSC
is slow. Figure 12 displays the average time required to classify a signal as stationary or nonstationary
using the SSC and the proposed technique. Note that the SSC may require almost an hour to classify
a signal with length n = 220 elements. Therefore, although both techniques are statistically similar,
the technique based on wavelet (q, q′)-entropies permits to classify signals more rapidly. This accurate
and fast classification is important is fields such as computer networking, physics among others.
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Figure 12. Average times for obtaining a classification using the proposed technique based on wavelet
(q, q′)-entropies and the SSC. Left plot displays a comparison between these techniques while the plot
on the right shows the classification times of SSC.

5. Conclusions

In this article, a methodology for the classification of fractal signals as stationary or nonstationary
was proposed. The proposed methodology is based on two-parameter wavelet entropy which operates
as a preprocessing technique, and the biweight midvariance which measures the fluctuations observed
in the wavelet (q, q′) entropies. Theoretical wavelet information planes for these (q, q′) entropies were
obtained and based on these, a classification scheme was devised to regard fractal signals as stationary
or nonstationary. In fact, it was shown that nonstationary fractal signals experience fluctuations
that are higher than those observed for stationary fractal signals and that this rationale can be used
for the fractal signal classification problem. Experimental results using synthesized fractal signals
demonstrate that the technique based on wavelet (q, q′)-entropies is not only comparable in accuracy
to the SSC but is also computationally efficient, making it useful for the analysis of long fractal signals.
Moreover, it was shown that unlike the SSC, the technique based on wavelet (q, q′)-entropies is more
versatile in the sense that can be used for the classification of other types of fractal processes such as
long-memory and short-memory. Furthermore, by setting q′ → 1 (and also q → 1 and q′ → 1), the
results obtained with wavelet Tsallis q-entropies and wavelet entropies can also be replicated with the
wavelet (q, q′)-entropy. Finally, the application of the wavelet (q, q′)-entropy to real physiological and
stock market time series indicated that the former are stationary while the latter are best modeled by
nonstationary fractal processes.
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