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Abstract: In recent work, we have illustrated the construction of an exploration geometry on free
energy surfaces: the adaptive computer-assisted discovery of an approximate low-dimensional
manifold on which the effective dynamics of the system evolves. Constructing such an exploration
geometry involves geometry-biased sampling (through both appropriately-initialized unbiased
molecular dynamics and through restraining potentials) and, machine learning techniques to organize
the intrinsic geometry of the data resulting from the sampling (in particular, diffusion maps, possibly
enhanced through the appropriate Mahalanobis-type metric). In this contribution, we detail a
method for exploring the conformational space of a stochastic gradient system whose effective free
energy surface depends on a smaller number of degrees of freedom than the dimension of the phase
space. Our approach comprises two steps. First, we study the local geometry of the free energy
landscape using diffusion maps on samples computed through stochastic dynamics. This allows
us to automatically identify the relevant coarse variables. Next, we use the information garnered
in the previous step to construct a new set of initial conditions for subsequent trajectories. These
initial conditions are computed so as to explore the accessible conformational space more efficiently
than by continuing the previous, unbiased simulations. We showcase this method on a representative
test system.

Keywords: stochastic differential equations; model reduction; gradient systems; data mining;
molecular dynamics

1. Introduction

In its most straightforward formulation, Molecular Dynamics (MD) consists of solving Newton’s
equations of motion for a molecular system described with atomic resolution. The goal of performing
MD simulations is twofold: on the one hand, we want to gather samples from a given thermodynamic
ensemble, while, on the other hand, we may seek to gain insight into time-dependent behavior. The first
objective leads us to equilibrium properties. The second yields kinetic properties and is the reason
why it is said that MD acts as a computational microscope. Recent success stories involving systems
having more than one million atoms [1,2] attest to the ever-growing reach of MD simulations.
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The possibility of using MD to study bigger bio-molecules at longer time scales is hindered by
the problem of time scale separation. While the processes of interest (protein folding, permeation of
cellular membranes, etc.) act on timescales of milliseconds to minutes, we are currently restricted by
limitations in available computer capabilities and algorithms to simulations spanning timescales of
microseconds. Moreover, to ensure stability when numerically integrating the equations of motion,
we need to take steps of just a few femtoseconds. The reader interested in the numerical analysis of
integration schemes in MD is referred to the excellent treatise [3] for more information.

The inherent difficulty behind the problem of timescale separation lies in the fact that many
biophysical systems display metastability. That is, the solutions of the equations of motion spend large
amounts of time trapped in the basins of attraction of local free energy minima, called metastable
states [4,5]. While visiting these regions of the conformational space, nothing remarkable happens
until the system reaches a new metastable state and, eventually, a global free energy minimum.
Many computer simulation techniques have been proposed to address this problem by accelerating
the sampling of the conformational space and enhancing the statistics of the transitions between
metastable states. An incomplete list of these schemes includes: accelerated molecular dynamics [6],
adaptive biasing force [7,8], forward flux sampling [9], locally-enhanced sampling [10], Markov state
models [11–15], metadynamics [16,17], milestoning [18,19], nudged elastic band [20–22], replica
exchange molecular dynamics [23], simulated tempering [24,25], steered molecular dynamics [26],
the string method [27,28], transition path sampling [29,30], transition interface sampling [31], umbrella
sampling [32,33], weighted ensemble [34,35], etc. We refer the reader to recent surveys [36–38] for
more complete and up-to-date overviews.

It is often possible to identify a suitable set of so-called collective or coarse variables describing
the progress of the process being studied (i.e., a “slow manifold”). The simplest such “coarse variable”
is perhaps the interatomic distance in the process of the dissociation of a diatomic molecule. In other
cases, a subset of dihedral angles on the amino acids of a peptide proves to be a good choice. In practice,
it is not always clear how to devise good coarse variables a priori, and it is necessary to rely on the
expertise of computational chemists to postulate these variables with varying degrees of success.
Of course, the quality of the coarse variables can be assessed a posteriori by methods such as the
histogram test, etc. [30,39–43]. Ideally, the dynamics of the process mapped onto the coarse variables
should be a diffusion on the potential of mean force (i.e., Smoluchowski equation) [44,45], but if the
guessed variables are not good enough, they will be poor representations of the process of interest in
that the relevant dynamics will be described instead by Generalized Langevin Equations (GLE) [46,47].
The GLE incorporates a history-dependent term that complicates computations [48].

In this paper, we present a detailed account of the iMapD [49] method. This can be used as a
basin-hopping [50] simulation technique that lends itself naturally to parallelization, and unlike most
of the methods referenced above, it does not require a priori guesses on the nature of the coarse
variables. The method works by (a) performing short simulations to obtain an ensemble of trajectories;
(b) using data mining techniques (diffusion maps) to automatically obtain an optimal set of local
coarse variables that describe the conformations sampled by these trajectories and (c) using that
knowledge to generate a new set of conformations. The new conformations become initial conditions
for a new batch of short simulations, which, by construction, are more likely to lead to the exploration
of new, previously unexplored local free energy minima. Throughout these steps, the algorithm
constructs a representation of the intrinsic geometry of the visited region of the conformational space
and identifies the points from which a new trajectory may have more chances to exit the metastable
basins already visited. It is worth stressing that, as opposed to our previous work [49], here, we use
a non-linear scheme to lift into the ambient space the extended boundary points. Moreover (and
importantly), preliminary results are also reported on an alternative manifold parameterization based
on what we will call sine-diffusion maps.

The paper is organized as follows. Section 2 provides a brief introduction to Diffusion Maps
(DMAPS) from the perspective of statistical mechanics, followed by an overview of the iMapD method,
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as well as an application of the algorithm to a model problem. Section 3 is an account of the required
mathematical tools upon which the iMapD method is built; namely, we discuss some technical aspects
of diffusion maps, boundary detection methods, out-of-sample extension using geometric harmonics,
and the use of local principal component analysis as an alternative to diffusion maps. Finally, Section 3.6
contains a more in-depth treatment of the steps involved in the iMapD algorithm, describing how
the previously introduced building blocks fit within the method and exploring factors affecting the
implementation of the method.

2. Diffusion Maps and the iMapD Algorithm

2.1. Diffusion Maps in Statistical Mechanics

Consider a mechanical system whose conformational space is denoted by Ω. For the sake of
simplicity, let us assume that Ω ⊂ Rn is a bounded, simply-connected open set and that the system
undergoes Brownian dynamics; that is, its time evolution is a solution of the Stochastic Differential
Equation (SDE):

dx = −∇U(x)dt +
√

2β−1 dW, (1)

where U = U(x) is the potential energy, β−1 > 0 is the inverse temperature and W is a standard
n-dimensional Brownian motion [51,52]. Potential energy functions in MD simulations are not smooth
in general, but equilibrium trajectories almost never visit the singular points, so it is safe to assume
that U is sufficiently smooth.

Let:
P(A, t|x) =

∫
A

p(y, t|x)dy (2)

be the probability that a trajectory of (1) started at x ∈ Ω at time t = 0 belongs to the set A ⊂ Ω at
time t ≥ 0. It is known that the time evolution of the probability density function p is governed by the
Fokker–Planck equation [53],

∂p
∂t

= ∇ · (β−1∇p + p∇U), in Ω× (0, ∞),

∂

∂n
(β−1∇p + p∇U) = 0, on ∂Ω× (0, ∞),

p(·, 0|x) = δx, on Ω× {0},

(3)

where ∂
∂n denotes the derivative in the direction of the unit normal vector to the boundary ∂Ω of the

conformational space Ω and δx is a Dirac delta function centered at x. In the context of molecular
simulation, there are other boundary conditions that are relevant such as periodic boundary conditions
or prescribed decay at infinity (i.e., lim‖x‖→+∞ p(x, t) = 0 for all t ≥ 0, useful when Ω is unbounded).

We will refer to the operator on the right-hand side of the partial differential equation in (3) by
the symbol L?. That is, L?p = ∇ ·

(
β−1∇p + p∇U

)
. By the spectral properties of the operator L? and

its adjoint L, we know [15,54] that p admits a decomposition of the form:

p(y, t|x) =
∞

∑
i=0

e−λitψi(y) e−βU(y)ψi(x), (4)

where λ0 = 0 > −λ1 ≥ −λ2 ≥ · · · are the eigenvalues of L, the sequence of eigenvalues satisfies
limn→∞ λn = ∞ and ψi(x) are the corresponding eigenfunctions. Observe that ψ0(x) = 1 for all x ∈ Ω.
In Figure 1, we show the eigenfunctions of the operator L for a simple double well potential.
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Figure 1. First eigenvalues and the corresponding eigenfunctions (represented by continuous lines) of
the operator L corresponding to the double well potential U(x) = (x2 − 1)2 (shown in the figure in
dashed lines) at temperature β−1 = 1. Observe that ψ1(x) is approximately an indicator function that
attains its maximum at one energy well, its minimum at the other, and is invertible throughout the
interval. The eigenfunctions were computed by numerically solving the eigenvalue problem associated
with (3), and the solution was obtained using the finite element method [55] with quadratic Lagrange
elements and meshing the interval [−2, 2] with 104 domain elements. (a) λ0 = 0; (b) −λ1 ≈ −0.75;
(c) −λ2 ≈ −6.0; (d) −λ3 ≈ −11.7.

For systems with time scale separation, there will arise a spectral gap; that is, λk+1 � λk for some
k ∈ N. Under such circumstances, (4) can be approximated as:

p(y, t|x) ≈ e−βU(y) +
k

∑
i=1

e−λitψi(y) e−βU(y)ψi(x),

and for a fixed value of ε ≥ λk, we can construct the mapping:

x 7→ Ψε(x) =
(

e−λ1εψ1(x), . . . , e−λkεψk(x)
)

. (5)

The components of Ψε are then, in effect, coarse variables that describe the state of the system.
Therefore, the dimensionality reduction in diffusion maps stems from the existence of a spectral gap,
and the effective dimension will be equal to k. These coarse variables are well suited to parameterize
and study the free energy of the system.

Observe that the parameter ε > 0 plays the role of time in (4) and that events occurring at a rate
smaller than ε−1 are ignored. This interpretation of ε suggests that one could use a priori knowledge of
the dynamics of the system (e.g., frequency of bond vibrations, etc.) to set its value. Frequently, however,
no such information is available. An optimal choice of ε was introduced in [56]. The optimal ε depends
on the dimension of the space of coarse variables and the geometry of the manifold, as well as on the
number of samples available.

The explicit computation of the eigenfunctions ψi is infeasible in practical applications, so
our focus naturally shifts to the numerical estimation of these eigenfunctions up to a prescribed
accuracy. Diffusion Maps (DMAPS) are a manifold learning technique that allows us to obtain these
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approximations to ψi by studying sets of points sampled from the solution of (1) at different instants
(e.g., we take y1 = x(t1), . . . , ym = x(tm) for some t1, . . . , tm ≥ 0). The procedure is as follows: we first
construct the m×m matrix:

Wij = exp

{
−‖yi − yj‖2

2ε

}
, (6)

where ‖ · ‖ is a suitable norm in Rm (the Euclidean norm or a “Mahalanobis-like” distance [57,58] are
typical choices). The next step for the construction of the diffusion map is the definition of the matrix
W̃ with entries:

W̃ij =
Wij

q1/2
i q1/2

j

, where qi = ∑
j

Wij. (7)

By multiplying W̃ by the inverse of the diagonal matrix D, with entries Dii = ∑j W̃ij, we obtain
a non-negative row-stochastic matrix, K = D−1W̃. The matrix K gives us the transition probability of
a Markov chain defined on the discrete state space {y1, . . . , ym} determined by the observed data.

The matrix L = K − I, where I is the m × m identity matrix, is known as the random walk
Laplacian [59]. It can be proven [60] that the eigenvectors of the random walk Laplacian L converge
to the eigenfunctions of the operator L. Thus, the numerical solution of the eigenproblem Lψ = λψ

yields an effective, data-driven approximation method to compute (5). For example, in the case of the
double well potential that we considered before, we obtain the eigenvectors displayed in Figure 2.
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Figure 2. Data-driven computation of the right eigenvectors of the random walk Laplacian L obtained
using a value of ε = 1

4 and a set of m = 103 data points (with inverse temperature β−1 = 1).
Compare with Figure 1. We used the BAOAB integrator [61] (this is a fourth-order accurate numerical
scheme for solving Brownian dynamics) in the high friction limit with a time step length of 10−4 to
compute a numerical solution of (1) with initial condition x0 = −1. The numerical integration was
carried out for a total of 108 steps retaining one every 105 points, and it was verified that the samples
yield a sufficiently good approximation of the exact stationary distribution by ensuring that the total
variation distance between the empirical and the exact distributions was below a threshold of 0.025.
Each subfigure corresponds to an eigenvalue: (a) λ0; (b) −λ1; (c) −λ2; (d) −λ3.

As a more realistic example, we analyze a one microsecond-long simulation of the catalytic
domain of the human tyrosine protein kinase ABL1 [62]. This is a published dataset [63] that was
generated on Folding@home [64] using OpenMM [65] 6.3.1 with the AMBER99SB-ILDNforce field [66],
the TIP3Pwater model [67] and Cl and Na ions to neutralize the charge. To solve the Langevin
dynamics equation, the stochastic position Verlet integrator [68,69] was used with a time step length of
2 fs at a temperature of 300 K with a collision rate (also known as the friction term) equal to 1 ps−1.
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To treat electrostatic interactions, the smooth particle-mesh Ewald method [70] was used with a cut off
of 1 nm and a tolerance of 5× 10−4. Pressure control was exerted by a molecular-scaling Monte Carlo
barostat [71,72] using a 1-atm reference pressure attempting Monte Carlo moves every 50 steps.

We obtain the first two coarse variables, ψ1 and ψ2, using the diffusion map method (see Figures 3
and 4 for the results).

−0.06 −0.03 0.00 0.03 0.06
ψ1

−0.06

−0.03

0.00

0.03

0.06

ψ
2

Figure 3. Joint density plot of visited points mapped onto the first two diffusion map coordinates,
ψ1 and ψ2, obtained using ε = 0.075 on a trajectory containing 4000 snapshots of a one microsecond-long
simulation of the catalytic domain of the human tyrosine protein kinase ABL1. The distances between
the data points were computed using the root mean square deviation among the alpha carbons of
different snapshots.

(a) ψ1 = −0.00146, ψ2 = −0.0036 (b) ψ1 = 0.016, ψ2 = −0.0014

Figure 4. Two particular conformations from the two local maxima shown in Figure 3. The system
visits conformations around (a) during the first part of the simulation, and it stays near (b) during the
second part.
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The previous considerations are motivated by/conform with statistical mechanics; however,
it is important to emphasize that the DMAPS method will work, in the sense that it will provide
a parameterization of the manifold, just as well with data points on the manifold not necessarily
coming from sampling the solution of (3). What is important is the geometry of the manifold and not
necessarily the dynamics of the process leading to the samples. Indeed, we have used the framework
of statistical mechanics for didactic purposes, but practical applications need not rely on it.

2.2. Overview of the iMapD Method

As we stated in the Introduction, the iMapD method is aimed at enhancing the sampling of
unexplored regions of the conformational space of a system. The method works by first running
an ensemble of independent trajectories initialized from an initial configuration for a short time
(e.g., a few nanoseconds). The points comprising the trajectories are actually samples of the local
free energy minimum to which the initial configuration belongs. Next, we perform a diffusion map
computation, giving us a set of coarse variables that parameterize the current basin of attraction, and
we locate (in DMAP coordinates) the boundary of the region that our set of points has explored so
far. By extending the boundary outwards in its normal direction, we get a new tentative boundary
whose points we realize in the original, high-dimensional conformational space (typically by resorting
to a suitable biasing potential). Finally, the new points are used as initial conditions in a new batch of
simulations. By actively restarting simulations from the extrapolated points, we enhance the ability of
the system to exit local free energy minima and to explore new regions of conformational space.

In order to illustrate the applicability of our method, we demonstrate how the algorithm works
on a simple, yet non-trivial model system, which can be studied in-depth by numerically solving the
stochastic differential equations involved.

Let:

θ(x, z) =


−π/2− arctan(z/x), if x < 0, z < 0,

π/2 + arctan(−z/x), if x > 0, z < 0,

arctan(x/z), otherwise,

and let:
γ(x, y, z) = −4 cR θ(x, z)

(
R θ(x, z)− 1

)(
R θ(x, z) + 1

)
− by,

where b = −80, c = 20 and R = 4/π. Consider the system of stochastic differential equations (SDEs):
dx =

(
−η−1 (x− R sin θ) + γ cos θ

)
dt + D

√
2 dW1,

dy = (−2ay− b R θ)dt + D
√

2 dW2,

dz =
(
−η−1 (z− R cos θ)− γ sin θ

)
dt + D

√
2 dW3,

where a = 200, D = 0.35, η = 1× 10−4 and W1, W2, W3 are independent standard Brownian motions.
The above system of SDEs exhibits the most meaningful qualitative aspect of the type of problems

that iMapD is designed for: a phase space with higher dimensionality than that of the manifold in
which the effective dynamics occurs. Indeed, our system, despite being three-dimensional, has by
construction a two-dimensional attractor located on the surface of a cylinder with radius R and axis y.
There are two metastable states (as seen in Figure 5), and trajectories starting away from the attractor
arrive at one of the metastable wells, where they remain for typically long periods of time.
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Figure 5. A trajectory “descends” from its initial condition onto the attracting manifold, the cylinder
with radius R and axis y. On the manifold, the trajectory arrives at one of the metastable states that
is near the middle of the cylinder at different values of θ. These metastable sets are depicted as the
lightest colored areas.

In order to sample the conformational space of the system, we begin by running a single trajectory
for enough time such that it gets trapped into one of the metastable sets. We process the trajectory
so that the initial transient descent is removed, and points on the manifold have a more uniform
distribution (e.g., by removing nearest neighbors that are closer than a fixed minimum distance).
We then locate the boundary of the currently sampled area by running the alpha-shapes boundary
detection method, which will be described in Section 3.3. This method is appropriate here, given that
the manifold is two-dimensional and there is a correspondence between the points lying at the edge
in the conformational space and the points at the edge in diffusion map space. Next, the boundary
points in diffusion map space are extended using extrapolation and subsequently lifted up to the
conformational space using geometric harmonics, which will be discussed in Section 3.5. Finally, the
system is reinitialized, and the process starts over again, increasing the volume (here, the area) of
explored conformational space and getting closer to the other metastable state. Figure 6 illustrates the
first few steps in this process in conformational space and DMAP space, and Figure 7 shows how the
extrapolated points approach the other basin as the algorithm marches on.

To create Figures 6 and 7, the first trajectory was started with an arbitrary initial condition of
(−1.06,−0.05, 1.50) and run until t = 0.15 using the Euler–Maruyama scheme [73] with a time step
length of 3× 10−7. In each iteration of the algorithm, and therefore each run of the molecular simulator,
the first 600 samples were discarded to increase the likelihood that the resulting cloud of points rested
on the cylindrical manifold. To make the manifold sampling more homogeneous, points were removed
such that a minimum distance of 0.04 existed between each pair of points. A maximum of 3000 points
was stored in memory at any given time; this parameter was based on the available memory of the
machine at hand and the particular implementation of the method. Points were randomly pruned if
this maximum threshold was surpassed. Once the point cloud was properly conditioned, the manifold
boundary was extended by a distance of 0.25 spatial units.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6. At each iteration, the algorithm extends the set of samples in the basin of attraction in order
to better explore the underlying manifold and increase the likelihood of exiting the metastable state
through one of the boundary points. The point cloud in conformational space is shown on the left, and
the corresponding points in Diffusion Map (DMAP) space are displayed on the right. Green points
represent the boundary of the so-far explored region. The system is reinitialized from the extended
points, shown in magenta in both DMAP and conformational space. (a) The first iteration of the
algorithm remains close to the basin of attraction. (b) The parameterization of the points formed by the
first step in DMAP space. (c) The result of the third iteration of the algorithm in conformational space.
(d) The result of the third iteration in DMAP space. (e) The result of the fifth iteration of the algorithm in
conformational space. (f) The result of the fifth iteration in DMAP space. (g) By the seventh iteration, the
point cloud escapes the initial basin of attraction. (h) The result of the seventh iteration in DMAP space.
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Figure 7. The goal of reaching the second metastable state is attained here at Step 11.

To further illustrate the expansion of the point-cloud throughout the iterative process, we show in
Table 1 the difference between the maximum and minimum angles of the set of points. This indicates
how the iterative method explores the metastable sets on the cylinder.

Table 1. Difference between maximum and minimum values of the azimuthal angle θ(x, z) for the
point-cloud at different iterations. Since the attracting set is a cylinder, this measure tells us how much
the size of the point-cloud expands as iterations proceed for a generic run of the simulation.

Iteration max θ− min θ

0 0.36
1 0.55
2 0.75
3 0.99
4 1.21
5 1.49
6 1.76
7 2.00
8 2.25
9 2.60

10 2.95
11 3.33
12 3.49
13 3.98

3. Algorithmic Building Blocks

In this section we introduce several techniques on which the iMapD method relies. Section 3.1
continues the discussion of diffusion maps started in Section 2. Here, we study the convenience of
using Neumann (reflecting) or Dirichlet (absorbing) boundary conditions in the formulation of the
eigenvalue problem for DMAPS. In Section 3.2, we present Local Principal Component Analysis
(LPCA), a simpler alternative to DMAPS that can be used in its place. Once we have charted the local
geometry of the point-cloud associated with the current trajectory via DMAPS or LPCA, we need
techniques to locate the boundary of the explored free energy basin. The purpose of Section 3.3 is to
elaborate on the choice of boundary detection methods for this purpose. The outward extension of
the current point-cloud is explained in Section 3.4. Finally, the extended points computed in DMAP
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space must be mapped into the conformational space of the system. We use geometric harmonics, as
described in Section 3.5, to lift the points from the local representation to the original conformational
space so that we can initialize new trajectories from the newly-extrapolated points.

3.1. Cosine and Sine-Diffusion Maps

As we previously mentioned, conventional diffusion maps are obtained by solving the eigenproblem
corresponding to the Laplace–Beltrami operator on a domain with reflecting (Neumann) boundary
conditions [58,74]. Neumann boundary conditions are the default conditions in the (standard) formulation
of DMAPS, as presented in Section 2. In this section, we will explore some of the implications of the
choice of boundary conditions for the extension of sets of point-samples. We begin by considering a
simple 2D strip, Ω = (0, L1)× (0, L2), on which DMAPS approximate the solution of:

∂2 ϕ

∂x2 +
∂2 ϕ

∂y2 = λϕ, in Ω,

∂ϕ

∂n
= 0, on ∂Ω,

(8)

where ∂
∂n denotes the directional derivative in the direction of the unit vector normal to the boundary

of Ω. Note that (8) is the eigenvalue problem associated with (3) with U constant and β = 1.
The eigenfunctions of (8), with eigenvalues λk1,k2 , are given by:

ϕk1,k2(x, y) = cos
(

k1πx/L1

)
cos
(

k2πy/L2

)
. (9)

The independent eigenfunctions, ϕ1,0 and ϕ0,1, are one-to-one with x and y, respectively,
and thereby parameterize the manifold Ω (see Figure 8). Note that the normal derivatives of the
eigenfunctions vanish near the boundaries by construction [75]. Recall that in iMapD, we need to be
able to extend the current set of point-samples to obtain new initial conditions for running subsequent
trajectories. We do so by using an appropriate extrapolation scheme (such as geometric harmonics,
to be discussed in Section 3.5).

Extrapolating directly in cosine-diffusion map space presents some difficulties. This is because
the parameterization near the edges of the currently explored region is flat, and extending functions
in the diffusion map coordinates gives rise to ambiguities [75]. One option to alleviate the potential
zero-derivative issue of cosine-based diffusion maps is to move the singularity inside the manifold.
This can be attained by extracting a sine-like parameterization (hence, “sine-diffusion maps”).
By solving (8) with absorbing (Dirichlet) boundary conditions instead of reflecting (Neumann) boundary
conditions, the resulting eigenfunctions are:

ψk1,k2(x, y) = sin
(

k1πx/L1

)
sin
(

k2πy/L2

)
. (10)

To approximate these eigenfunctions using the samples y1, . . . , ym ∈ Rn, we again construct
the matrix W as we did for cosine-diffusion maps. Boundary detection algorithms are then used
to locate the edge points. Absorbing boundary conditions are now imposed on the rows of these
points: if yi is a boundary point, then the corresponding entry in the matrix W becomes Wij = δij.
Alternatively, the boundary points can be duplicated, the matrix W constructed as in (6) and the rows
and columns corresponding to a single set of boundary points then removed before obtaining W̃
using (7). The eigendecomposition of W̃ results in the eigenvectors, or sine-diffusion map coordinates,
and their corresponding eigenvalues. These coordinates approximate the eigenfunctions (10). We can
see on our 2D strip example (Figure 9) how the strip is colored by the sine-coordinates.
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(a) (b)

(c) (d)

Figure 8. Cosine-diffusion maps on a 2D strip. (a,b) The first diffusion coordinate, ϕ1, parameterizes
the x direction. (c,d) The second diffusion coordinate, ϕ2, parameterizes the y direction. Functions
are cosine-like, and their normal derivative vanishes on the edges. These functions approximate ϕ1,0

and ϕ0,1, the eigenfunctions of the 2D Laplace–Beltrami operator with reflecting boundary conditions,
respectively.

(a) (b) (c)

(d) (e) (f)

Figure 9. Sine-diffusion map on a 2D plane. Solving the eigenproblem associated with the
Laplace–Beltrami operator with absorbing boundary conditions results in diffusion coordinates with
sine-like behavior. (a,b,d) Given a fixed x or y, the first sine-coordinate, ψ1, parameterizes y or x,
respectively. (c,e,f) Subsequent eigenvectors (ψ2, ψ3 and ψ4) are higher harmonics of the first.

We make two observations. First, note that only the first nontrivial sine-coordinate is of
importance: the subsequent eigenvectors are simply higher harmonics of the first. Because of this, the
parameterization of a 2D nonlinear manifold can be accomplished with one sine-coordinate and one
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cosine-coordinate. Automatic detection of higher harmonics can be carried out in a variety of ways;
here, we will just mention that we can accomplish this by studying the functional dependence between
the eigenfunctions, and we refer the reader to the treatment in [76] (Section 2.1) for more details.
In higher dimensions, the parameterization can be obtained by replacing the single cosine-coordinate
(that is, the one that becomes almost constant around the point of interest) with a sine-based one.
Second, for every sine-coordinate value and fixed x or y, there exist two potential data point candidates.
This complicates the manifold parameterization and extrapolation scheme. Additionally, the data
must be divided into groups, such that using the sine- and cosine-coordinates maintains a one-to-one
relationship within the group.

To systematically determine which cosine-coordinate is poorly behaved for each boundary
point, we examine the k-nearest neighbors of the point in question. The cosine-coordinate with
the least variance among the neighbors is the one that should be replaced with the sine-coordinate.
Parameterizing points using one sine-coordinate and one cosine-coordinate is not unique: for a fixed
cosine-coordinate value, there are multiple points with the same sine-coordinate value. Therefore, care
must be taken to maintain a one-to-one mapping throughout the entirety of the extrapolation.

Once the data are divided into groups based on which cosine-coordinate to replace and the sign of
its eigenvector, the boundary points can be extended and mapped to the original conformational space
using the same techniques as for cosine-diffusion maps. A sample manifold extended via sine-diffusion
maps with geometric harmonics is shown in Figure 10.

Figure 10. Extending and lifting using one sine-coordinate and one cosine-coordinate. Geometric
harmonics is used as the lifting technique. Blue points represent the original point cloud, while red
points depict the newly extended points.

3.2. Local Principal Component Analysis

Rather than using DMAPS coupled with geometric harmonics, one could also use LPCA to extend
the manifold. LPCA is simpler than DMAPS, but it requires a local set of collective variables for each
boundary point rather than a single, global set of collective variables for the entirety of the data.

LPCA is based on PCA, a widely-used dimensionality reduction technique [77], which aims to
find the best (in the least-squares sense) linear manifold that approximates a dataset. The method
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finds an orthogonal basis such that the first basis vector points in the direction of greatest variance
and all subsequent vectors maximize variance in orthogonal directions. The basis vectors are known
as principal components and are the linear counterpart of nonlinear diffusion coordinates. The first
principal component describes the line of best fit through the data, the first two the plane of best fit,
and so on.

Given m samples of n-dimensional data arranged in an n×m matrix X, we can find the principal
components by first considering the matrix X̃, formed by mean-centering the data, and then computing
the eigendecomposition of its covariance matrix, Y. The eigenvalues, sorted in descending order,
determine the importance of each of the principal components, which are eigenvectors of Y. In practice,
the principal components are found through the singular value decomposition of X̃T [78,79]. Indeed,
X̃T = UΣVT , and we have:

Y = X̃X̃T =
(

UΣVT
)T (

UΣVT
)
= VΣUTUΣVT = VΣ2VT .

Since Y is a symmetric and positive definite matrix, the SVD is equivalent to the eigenvalue
decomposition, so the columns of V are the eigenvectors of Y, and the square of the singular values of
X̃ are the eigenvalues of Y. Each data point in X̃ can be assigned a set of n principal scores, representing
the projection of the point onto each principal component. This change of basis is accomplished via
X̃ 7→ VTX̃.

Dimensional reduction occurs when only the first k principal components are retained. The value
of k is chosen by examining the interval spanned by the eigenvalues and locating the first spectral
gap. Thus, the original high-dimensional, noisy data are mapped into k reduced dimensions via
projection onto an appropriate linear subspace. While this technique works well for (almost) linear
data, the attracting manifolds in the systems simulated with MD are typically nonlinear. Because of
this, we restrict the use of PCA to small, local neighborhoods on the manifold that can be approximated
as locally linear (provided that the potential of mean force is smooth). The combination of these local
patches of PCA can serve as a form of nonlinear manifold learning, otherwise known as LPCA.

For use in the proposed exploration algorithm, we must first locate the edge points of the
underlying manifold. Then, to obtain a reduced description, we can perform LPCA on small “patches”
surrounding each boundary point [80,81]. Consider a single boundary point found with an appropriate
boundary detection algorithm. Its k-nearest neighbors form a small neighborhood near the edge of the
n-dimensional manifold. The outward normal of the manifold at this location can be approximated by
locating the center of mass and creating a unit vector u from this center towards the current boundary
point. By projecting u onto the linear subspace formed by the first n local principal components
found by executing PCA on the neighborhood, we reduce potential noise, skewing the outward
normal. The boundary point can be extended outward a given distance on this de-noised normal,
thereby yielding the new initial condition to be used in the simulator. This process is repeated for each
boundary point. Extension of a sample manifold using LPCA is shown in Figure 11.

Note that extended points within the manifold of Figure 11 correspond to the extension of
boundary points that do not cleanly fall on the manifold edge. This is a shortcoming of the boundary
detection algorithm rather than a problem of LPCA. However, LPCA is not without its own limitations.
The underlying linearity assumption implies that the extension should be relatively short because
the assumption will only hold in small neighborhoods of the boundary points. Further, boundary
detection must be done in the (high-dimensional) conformational space unless another nonlinear
manifold learning technique, like DMAPS, is used to reduce the entirety of the manifold to a few
coarse variables. Finally, as LPCA produces a set of local coarse variables for each boundary point,
book-keeping becomes increasingly complicated, especially as the entire exploration algorithm repeats
LPCA for each expansion of the explored region. See [82] for an approach on handling the local charts.



Entropy 2017, 19, 294 15 of 23

Figure 11. Extended manifolds using local PCA. Points extended into the manifold are a function of
the boundary detection algorithm. Blue points represent the original point cloud, while red points
depict the newly extended points.

3.3. Boundary Detection

The success of our proposed algorithm is contingent on the ability to identify the boundary of the
set of samples collected so far in the metastable state being currently visited. There exist at least two
types of boundary detection algorithms: methods to find the concave hull around the sampled points,
that is the tightest piecewise linear surface that contains all of the points; and more general methods
that attempt to appropriately classify all of the data points so as to determine which samples belong to
the boundaries. For a d-dimensional manifold embedded in a higher, n-dimensional space, the edge is
d− 1 dimensional. Algorithms of the first type generate a d− 1 dimensional polytope for data that are
d-dimensional. Therefore, for practical detection of the boundary, these procedures should be applied
to low-dimensional manifolds. Note, however, that in some instances, the boundary of the manifold in
conformational space may not always be the same as the boundary of the manifold in DMAP space;
we assume here that this is not the case. Algorithms of the second type can be performed in either
the d or n-dimensional space and provide a more robust way to determine which points lie on the
boundary of the manifold.

The first set of algorithms construct the concave hull of the dataset (an optimal polytope that
contains all points while minimizing volume) and include, e.g., the swinging arm [83] and the k-nearest
neighbors approach [84]. Both methods must be initialized at a point guaranteed to be on the boundary
(such as the farthest point in a certain direction). In the 2D setting, the first method rotates a short line
segment clockwise until a new point is hit, while the second method chooses from k-nearest neighbors
the one that makes the widest angle. These procedures are then iterated until all of the boundary points
in the dataset have been located. However, the produced concave hull can be different depending on
which initial point is chosen.

In the alpha-shapes algorithm [85–87], two points are considered boundary points if there exists
a disk (or sphere, in 3D) of user-specified radius α−1 in which (a) the points in question lie on the
disk’s perimeter and (b) the disk contains no other points. In practice, this method is executed
by computing the Delaunay triangulation. The alpha-shape is then the union of triangles whose
circumradius is less than α−1 and the boundary points that comprise the alpha-shape [88]. Though this
concave hull approach is computationally constrained to 3D, we utilize this method as MATLAB 2015
provides a built-in function. For higher dimensional manifolds, algorithms of the second class are
appropriate. These methods iterate through each data point and use a set of parameters to determine
whether on not they lie on the boundary [89–92].
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3.4. Outward Extension across the Boundary of a Manifold

Let M be a smooth k-dimensional Riemannian manifold with a smooth boundary, ∂M.
The manifold M is isometrically embedded [93] in Rn via the smooth mapping ι : M→ Rn. We denote
by ι? the differential map (i.e., the Jacobian matrix at each point) associated with ι. It is well known [93]
that ι? maps tangent vectors of M into vectors in Rn. In our case, ι is the embedding obtained via
diffusion maps.

Consider the point xi ∈ ∂M and its image Xi = ι(xi) ∈ Rn. The corresponding embedded tangent
space ι?Txi M has a natural basis ι?∂1, . . . , ι?∂k, which is the image by ι? of the canonical basis ∂1, . . . , ∂k
in a local chart around xi such that ι?∂1 is the inward normal at Xi. This set of tangent vectors can be
extended by an orthonormal frame ek+1, . . . , en ∈ Rn such that ι?∂1, . . . , ι?∂k, ek+1, . . . , en is a basis of
Rn ' ι?Txi M× (ι?Txi M)⊥.

Let Mε = {x ∈ M | d(x, ∂M) ≤ ε)}, where d(x, ∂M) denotes the geodesic distance from x ∈ M to
the closest point in the boundary ∂M. Let x ∈ Mε be such that xi is the closest point to x lying in ∂M.
Then, we define the reflective extension of X = ι(x) across the boundary of M, denoted by R(x) ∈ Rp,
as the vector:

R(x) = −〈ι?∂1, X− Xi〉 ι?∂1 +
k

∑
`=2
〈ι?∂`, X− Xi〉 ι?∂` +

n

∑
`=k+1

〈IIXi e`, X− Xi〉 IIXi e`,

where 〈·, ·〉 is the inner product associated with the Riemannian metric of M and IIX is the second
fundamental form [93] (Chapter 6), which describes how curved the embedded manifold is at a point X.
Therefore, we can compute the outward extension of the point X as the new point X′ = X+ δR(x) ∈ Rp

for some δ > 0 (see also Figure 12).

Figure 12. An illustration of M embedded in Rn via ι and its relationship with the tangent space,
the normal direction and the curvature.

3.5. Geometric Harmonics

In this section, we review the construction of geometric harmonics introduced in [94]. If we have
a set of point-samples {y1, . . . , ym} ⊂ Rn and a function f defined at those points, using geometric
harmonics we can obtain an extension of f that is defined outside of the set of known samples. We will
use geometric harmonics in Section 3.6 to fit a function to data and then extrapolate its value at
new points.

Let us define the kernel:

w(x, y; ε0) = exp
{
−‖x− y‖2

2 ε0

}
,

where x, y ∈ Rn and ε0 > 0. Consider the symmetric m×m matrix W with elements Wij = w(yi, yj).
The matrix W is symmetric and, by Bochner’s theorem [95] (Theorem 6.10), Positive Semi-Definite
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(PSD). This implies that W has a full set of orthonormal vectors ϕ1, . . . , ϕm and its eigenvalues are real
(due to W being symmetric) and non-negative (because W is PSD) λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0.

For δ > 0, let us consider the set Sδ = {α : λα > δλ1} of indices of truncated eigenvalues. Let f
be a function defined at some scattered points. We define the projection of f as:

f 7→ Pδ f = ∑
α∈Sδ

〈 f , ϕα〉 ϕα

with 〈·, ·〉 being the inner product. The extension of Pδ f evaluated at a point x 6∈ {y1, . . . , ym} is
defined by:

(E f )(x) = ∑
α∈Sδ

〈 f , ϕα〉Φα(x) where Φα(x) = λ−1
α

m

∑
i=1

w(x, yi)ϕi,α,

where ϕi,α is the i-th component of the eigenvector ϕα. The functions Φα are called geometric harmonics.
By projecting and subsequently extending the function f , we have an effective method to evaluate the
function at points outside the set of known point samples.

The accuracy of the extrapolation method described above depends on the relative error between
f and its projection Pδ f being bounded by η ≥ 0 (that is, whether ‖ f − Pδ f ‖ ≤ η‖ f ‖ holds). In order
to deal with functions where this condition is not satisfied, we use a multi-scale approach and project
the residual f − Pδ f onto a finer scale, ε1 = 2−1ε0, by repeating the above procedure using a kernel w
that uses ε1 instead of ε0. This approach can be iterated by taking ε` = 21−`ε0 for ` = 1, 2, . . . until the
norm of the residual is sufficiently small.

A complete treatment of geometric harmonics can be found in [94], and an application to chemical
kinetics appears in [76] (Section 3.2.5). This scheme is a crucial component of lifting from diffusion
map coordinates to conformational space coordinates, which constitute the functions to be extended.

3.6. iMapD Algorithm

The algorithm we propose performs a systematic search for unknown metastable states on the
attracting manifold of a high-dimensional molecular system without a priori knowledge of coarse
variables. The method relies on an external molecular dynamics package to numerically solve the
equations of motion in (typically short) simulations, starting from a single set of initial conditions
as input. There is also a number of problem-dependent algorithmic parameters (e.g., alpha shape
parameters, extrapolation step lengths, etc.); the ones germane to iMapD are reported. The steps in the
algorithm are detailed below:

1. Collection of an initial set of samples: The molecular system is initialized and evolved long
enough so that it arrives at some basin of attraction. After removing the initial points that quickly
arrive at the attracting manifold, the remaining data points constitute the initial set of samples
(point cloud) on the manifold. These samples will be used in the subsequent steps of the method.

2. Parameterization of point cloud in lower dimensions: Using the set of samples from the previous
step, we extract an optimal (and typically low-dimensional) set of coarse variables using DMAPS
(for example, with cosine-diffusion maps). This process yields a parameterization of the local
geometry of the free energy landscape around the region being currently visited by our system.
All of our points are then mapped to the new set of coarse variables, thereby reducing the
dimensionality of the system.

3. Outward extrapolation in low-dimensional space: After identifying the current generation of
boundary points in the space of coarse variables (for example, via the alpha-shapes algorithm),
we obtain additional points by extrapolating in the direction normal to the boundary.

4. Lifting of points from the (local) space of coarse variables to the conformational space: In order
to continue the simulation, we must obtain a realization in conformational space of the
newly-extended points in DMAP (or other reduced) space. In other words, we need a
sufficient number of points in conformational space that are consistent with the DMAP (reduced)
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coordinates of the newly-extrapolated points. In the present paper, we use geometric harmonics,
but in general, this task can be accomplished using biasing potentials, such as those available in
PLUMED [96] or Colvars [97].

5. Repetition until the landscape is sufficiently explored: The lifted points serve as guesses for
regions of the manifold that are yet to be probed. The system is reinitialized at these points
(usually by running new parallel simulations), and the unexplored space is progressively
discovered. This process is then repeated, effectively growing the set of sampled points on
the free energy landscape.

In practice, this process begins with the initial simulation. The outcome is a set of samples within
some basin of attraction that are then used in order to identify a few coarse variables via DMAPS.
Once the points are mapped to the coarse variables, we run a boundary detection algorithm to identify
points at the edges of the dataset. Then, for each boundary point p in DMAP space, the center of mass
of its k-nearest neighbors is found. Each point is extended outward along the vector u connecting the
center of mass to p. The new DMAP coordinates are then converted back into the conformational space.
Using a training set of diffusion coordinates and their corresponding coordinates in the conformational
space, geometric harmonics is used to fit the relevant function (e.g., a dihedral angle), extrapolate it to
the newly-extended point and return approximate coordinates in conformational space for this new
point. For the training set, we supply the nearest neighbors of the boundary point. Once each boundary
point is extended and lifted to the conformational space, new simulations are initialized from these
points. “Stitching” these new patches of explored regions together grows the approximation to the free
energy landscape and explores it systematically without a priori knowledge of coarse variables.

In implementations of the algorithm, there arise various practical questions that affect the
exploration of the attracting manifold, including:

1. Simulation run time: Though system dependent, simulations should be run until (a) the trajectory
enters a region already explored, or (b) a new basin is discovered, or (c) a reasonable amount
of time has passed for the trajectory to have explored “new ground” within the current basin.
These conditions can be tested by detecting if the trajectory remains within a certain radius for a
given amount of time (it has most likely found a potential well) or if the trajectory has a nontrivial
amount of nearest neighbors from already explored regions.

2. Selection of trajectory points: Only “on manifold” points that belong to the basin of attraction
should be collected. We implement this by removing a fixed number of points early in the
trajectory that correspond to the initial approach to the attracting manifold. Discarding them will
have the beneficial effect of preventing the exploration in directions orthogonal to the attractor.
The exploration among the remaining points will lead to better sampling of basins and around
saddle points within the attracting manifold.

3. Memory storage of data points: Observe that the samples gathered throughout the exploration
process need not be kept in memory and can instead be stored in the hard drive. In principle, the
file system or an appropriate database can be used to keep the corresponding files, but if storage
space becomes an issue, then it is possible to randomly prune points whenever a (user-specified)
maximum number of data points is exceeded. Note that if, between random pruning and
preprocessing the data, distinct patches of explored regions appear, each sample of the manifold
must be expanded separately so as not to discard samples that may have potentially reached
new metastable states.

4. Conclusions

We have presented, illustrated and discussed several components of an algorithm for the
exploration of effective free energy surfaces. The algorithm links machine learning (manifold learning,
in particular, diffusion maps) with established simulation tools (e.g., molecular dynamics). The main
idea is to discover, in a data-driven fashion, coordinates that parametrize the intrinsic geometry of the
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free energy surface and that can help usefully bias the simulation so that it does not revisit already
explored basins, but rather extends in new, unexplored regimes. Smoothness and low-dimensionality
of the effective free energy surface are the two main underpinning features of the algorithm.
Its implementation involves several components (like point-cloud edge detection) that are the subject
of current computer science research and has led to the development of certain “twists” in data
mining (like the sine-diffusion maps presented here). We believe that such a data-driven approach
holds promise for the parsimonious exploration of effective free energy surfaces. The algorithm
is (in its current implementation) based on the assumption that the effective free energy surface
retains its dimension throughout the computation. The systematic recognition of points at which this
dimensionality may change and the classification of the ways this can occur are some of the areas of
current research that could expand the scope and applicability of this new tool.
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