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1. Introduction

The Fokker–Planck equation with constant coefficients has the form [1–5]:

∂w
∂t

= a∆w− v · grad w. (1)

Here, a > 0 is the diffusion coefficient, and v is the drift vector.
The Fokker–Planck equation has many different physical applications: statistics of laser light [1],

superionic conductors under the influence of an additional external field [1], diffusion in an external
field [3], transport processes in porous media [6,7], groundwater hydrology [8], quantum optics [9], etc.
The terms “diffusion coefficient” and “drift vector” do not predetermine their various physical
interpretations [3].

Equation (1) can be written in the form of the continuity equation for probability density:

∂w
∂t

= −div J (2)

and the constitutive equation for the probability current [1,3,10,11]:

J = −a grad w + vw. (3)

Another way of obtaining Equation (1) consists of considering the conservation law (for example,
for mass concentration) [7,12–14]:

Dc
Dt

= −div j, (4)

where:

D
Dt

=
∂

∂t
+ v ·∇ (5)
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is the material derivative, v is a velocity vector and ∇ stands for the gradient operator.
Using the Fick law:

j = −agrad c, (6)

we get:

∂c
∂t

= a∆c− v · grad c. (7)

Investigation of different physical phenomena in media with complex internal structure has led to
considering mathematical models involving differential equations with derivatives of fractional order
(see [15–27], among others). The space fractional [10,28–39], time fractional [10,28,29,34,35,40–58] and
space-time-fractional [59–66] generalizations of the advection-diffusion equation were studied by
many authors. Both physical aspects of the fractional advection-diffusion equation and numerical
schemes used for their solution were extensively studied in many papers (an extensive literature
review can be found in [67]).

Effective implicit numerical methods for the solution of the space-time fractional Fokker–Planck
equation and fractional advection diffusion equation were proposed in [68,69]; their stability and
convergence were studied in [62] (see also [70,71]).

We can also mention the implicit difference method based on the shifted Grünwald–Letnikov
approximation [36], transformation of fractional differential equation into a system of ordinary
differential equation [37], the random walk algorithms [38,39], the spectral regularization method [52],
the Crank–Nicholson difference scheme [53], Adomian’s decomposition [50], a spatial and temporal
discretization [64], the fractional variational iteration method [54], the homotopy perturbation
method [51,63,72] and the Jacobi collocation method [73].

In this paper, we discuss two possibilities of obtaining the space-time fractional generalization
of the advection-diffusion equation. In the case of the time-fractional advection-diffusion equation,
for these possibilities, the terms “Galilei variant” and “Galilei invariant” equations are used [34,42,44].
The Caputo time-fractional derivative and Riesz fractional Laplacian are employed. The fundamental
solutions to the corresponding Cauchy and source problems in the case of one spatial variable
are studied. It should be emphasized that in the case of the classical advection-diffusion equation
(α = 1, β = 2), the fundamental solutions to the Cauchy problem and to the source problem coincide
for t > 0; in the case of the fractional advection-diffusion equation, they are substantially different.
The properties of the fundamental solution to the Cauchy problem for the space-time fractional
advection-diffusion equation in the case of the first approach were investigated in [74]. In that paper,
the explicit representation of the fundamental solution for the space fractional advection-diffusion
equation (α = 1) was obtained. In the present paper, we supplement the findings of [74] for the Cauchy
problem in the case of the first approach by analysis of several particular cases and by the results of
numerical calculations. The analytical form of the fundamental solutions for the Cauchy problem in
the case of the second approach, as well as of the fundamental solutions to the source problems are
obtained in the present paper for the first time. Most attention is concentrated on the solutions of
equations with the value of the Caputo derivative α = 1/2, which allows us to obtain solutions in the
form of integrals amenable for numerical treatment. The numerical results are illustrated graphically.
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2. Mathematical Preliminaries

The Riemann–Liouville integral of fractional order α is defined as [75–77]:

Iα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, α > 0, (8)

where Γ(α) is the gamma function.
The Riemann–Liouville derivative of fractional order α is introduced as a left-inverse to the

fractional integral Iα:

Dα
RL f (t) =

dn

dtn

[
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 f (τ)dτ

]
, n− 1 < α < n, (9)

whereas the Caputo fractional derivative has the form [75–77]:

∂α f (t)
∂tα

=
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1 dn f (τ)

dτn dτ, n− 1 < α < n. (10)

The introduced fractional operators have the following Laplace transform rules:

L {Iα f (t)} = 1
sα

f ∗(s), (11)

L { Dα
RL f (t)} = sα f ∗(s)−

n−1

∑
k=0

Dk In−α f (0+)sn−1−k, n− 1 < α < n, (12)

L
{

∂α f
∂tα

}
= sα f ∗(s)−

n−1

∑
k=0

f (k)(0+)sα−1−k, n− 1 < α < n. (13)

Here, the asterisk denotes the transform, and s is the Laplace transform variable.
The one-dimensional Riesz derivative can be defined by its Fourier transform rule [77]:

F
{

dβ f (x)
d|x|β

}
= −|ξ|β f̃ (ξ), 0 < β ≤ 2, (14)

where the tilde marks the Fourier transform and ξ is the transform variable. For β = 2, the standard
formula is obtained:

F
{

d2 f (x)
dx2

}
= −ξ2 f̃ (ξ). (15)

In the case of several spatial variables, the positive powers of the Laplace operator, − (−∆)β/2,
β > 0, are also called the Riesz derivatives and are defined by their Fourier transforms [77–80]:

F
{
(−∆) β/2 f (x)

}
= |ξ|βF { f (x)} , β > 0, (16)

where ξ is the transform-variable vector.
Equation (16) is a fractional generalization of the standard formula for the Fourier transform of

the Laplace operator corresponding to β = 2:

F {(−∆) f (x)} = |ξ|2F { f (x)} . (17)
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3. Fractional Advection-Diffusion Equations

3.1. The First Approach

Gurtin and Pupkin [81] proposed the general time-nonlocal dependence between the heat flux
and the temperature gradient. Nigmatullin [82,83] considered the following general form of such
an equation:

q(t) = −k
∫ t

0
K(t− τ) grad T(τ)dτ (18)

resulting in the heat conduction equation with memory:

∂T
∂t

= aT

∫ t

0
K(t− τ)∆T(τ)dτ. (19)

The constitutive Equation (3) can be generalized in a similar way. We will restrict our consideration
to the case v = const. For example, the constitutive equation:

J =
∫ t

0
K(t− τ) [−a grad w(τ) + vw(τ)]dτ (20)

leads to the advection-diffusion equation with the general memory kernel [27,56]:

∂w
∂t

=
∫ t

0
K(t− τ) [a∆w(τ)− v · grad w(τ)]dτ (21)

(see also [1], where similar equations were obtained for the Fokker–Planck equation in the case of
one spatial variable, and the point −∞ was chosen as a starting point (a lower limit) in the integral
describing non-Markovian process).

The time-nonlocal constitutive equations for the probability current with the long-tail power
kernel [27,56]:

J = D1−α
RL [−a grad w + vw] , 0 < α ≤ 1, (22)

give the time-fractional advection-diffusion equation:

∂αw
∂tα

= a∆w− v · grad w, 0 < α ≤ 1. (23)

The space-time-fractional advection-diffusion equation takes the form:

∂αw
∂tα

= −a (−∆)β/2 w− v · grad w, 0 < α ≤ 1, 1 ≤ β ≤ 2. (24)

The first term in the right-hand side of Equation (24) represents the long-range interaction and
provides an attempt to extend the continuum approach to smaller length scales and to link some
aspects of lattice mechanics to continuum theory. The left-right side term with the Caputo fractional
derivative describes the history effect on the concentration, but there is no memory effect on the drift.

3.2. The Second Approach

In this case, we have the conservation law (4), and instead of the Fick law (6), we assume its
time-nonlocal counterpart:

j = −a
∫ t

0
K(t− τ) grad c(τ)dτ, (25)

which leads to the general equation:

∂c
∂t

+ v · grad c = a
∫ t

0
K(t− τ)∆c(τ)dτ. (26)
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For the time-fractional generalization of the Fick law:

j = −aD1−α
RL grad c, 0 < α ≤ 1, (27)

we arrive at:

∂c
∂t

+ v · grad c = aD1−α
RL ∆c, 0 < α ≤ 1, (28)

or:

∂αc
∂tα

= a∆c− I1−α (v · grad c) , 0 < α ≤ 1. (29)

The corresponding space-time-fractional equation reads:

∂αc
∂tα

= −a (−∆)β/2 c− I1−α (v · grad c) , 0 < α ≤ 1, 1 ≤ β ≤ 2. (30)

In Equation (30), the space-fractional Laplace operator (the Riesz operator) describes the
long-range interaction, whereas the time-fractional operators refer to the memory effects (both on the
concentration and the drift in contrast to Equation (24).

4. Fundamental Solutions to the Cauchy Problems

4.1. The First Approach

Consider the space-time-fractional advection-diffusion Equation (24) in the domain −∞ < x < ∞:

∂αw
∂tα

= a
∂βw
∂|x|β − v

∂w
∂x

, 0 < α ≤ 1, 1 ≤ β ≤ 2, (31)

under initial condition:

t = 0 : w = p0 δ(x). (32)

The Laplace transform with respect to time t and exponential Fourier transform with respect to
the spatial coordinate x give:

w̃ ∗(ξ, s) =
p0√
2π

sα−1

sα + a|ξ|β − ivξ
. (33)

The inverse integral transforms lead to:

w(x, t) =
p0

2π

∫ ∞

−∞
Eα

[
−
(

a|ξ|β − ivξ
)

tα
]

e−ixξ dξ, (34)

where the following formula has been used [75–77]:

L−1
{

sα−γ

sα + b

}
= tγ−1Eα,γ (−btα) (35)

with Eα,γ(z) being the Mittag–Leffler function in two parameters α and γ:

Eα,γ (z) =
∞

∑
n=0

zn

Γ(αn + γ)
, α > 0, γ > 0, z ∈ C, (36)

and Eα(z) ≡ Eα,1(z).
When α = 1, E1(z) = ez and Equation (34) simplifies:
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w(x, t) =
p0

π

∫ ∞

0
exp

(
−atξβ

)
cos [(x− vt)ξ]dξ. (37)

4.1.1. Standard Diffusion (α = 1, β = 2)

In this case, the solution is well known (see, for example, [1,9]):

w(x, t) =
p0

2
√

πat
exp

[
− (x− vt)2

4at

]
. (38)

4.1.2. Cauchy Diffusion with α = 1, β = 1

For the so-called Cauchy diffusion [84], which is characterized by the values α = β = 1, we get:

w(x, t) =
p0

π

at
a2t2 + (x− vt)2 . (39)

4.1.3. Subdiffusion with α = 1/2

The Mittag–Leffler function E1/2(−z) has the following integral representation [85]:

E1/2(−z) =
2√
π

∫ ∞

0
exp

(
−u2 − 2uz

)
du, (40)

and the solution reads:

w(x, t) =
p0

π3/2

∫ ∞

0

∫ ∞

−∞
exp

(
−u2 − 2ua

√
t|ξ|β

)
cos

[(
x− 2uv

√
t
)

ξ
]

dξ du. (41)

Taking in (41) β = 2, we obtain [27]:

w(x, t) =
p0

π
√

2at1/4

∫ ∞

0

1√
u

exp

−u2 −

(
x− 2uv

√
t
)2

8au
√

t

du. (42)

For β = 1, we have:

w(x, t) =
4a
√

tp0

π3/2

∫ ∞

0
e−u2 u

4a2tu2 +
(

x− 2uv
√

t
)2 du. (43)

The results of numerical calculations are shown in Figures 1–4 for different values of the orders of
derivatives α and β and the drift parameter v. In the calculations, we have introduce the following
nondimensional quantities:

w =
a1/βtα/β

p0
w, x =

1
a1/βtα/β

x, v =
tα−α/β

a1/β
v. (44)

4.2. The Second Approach

In this case, we consider the space-time-fractional advection-diffusion equation:

∂αc
∂tα

= a
∂βc

∂|x|β − I1−α

(
v

∂c
∂x

)
, 0 < α ≤ 1, 1 ≤ β ≤ 2, (45)

under initial condition:

t = 0 : c = p0 δ(x). (46)

The integral transform technique allows us to obtain the solution in the transform domain:
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c̃ ∗(ξ, s) =
p0√
2π

1
s + a|ξ|βs1−α − ivξ

. (47)

In what follows, we confirm ourselves to the case α = 1/2:

c̃ ∗(ξ, s) =
p0√
2π

1
s + a|ξ|β√s− ivξ

. (48)

0.0

0.1

0.2

0.3

0.4

0.5

−3.0 −2.0 −1.0 0.0 1.0 2.0 3.0

w

x

v = 0

v = 1

v = 2

Figure 1. The fundamental solution to the Cauchy problem; Equation (37); α = 1, β = 1.5.
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Figure 2. The fundamental solution to the Cauchy problem; the first approach, Equation (42); α = 0.5,
β = 2.
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−3.0 −2.0 −1.0 0.0 1.0 2.0 3.0
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Figure 3. The fundamental solution to the Cauchy problem; the first approach, Equation (41); α = 0.5,
β = 1.5.

The partial-fraction decomposition of (48) gives:

c̃ ∗(ξ, s) =
p0√
2π

1√
a2|ξ|2β + 4ivξ

×

 1
√

s + 0.5
(

a|ξ|β −
√

a2|ξ|2β + 4ivξ

) − 1
√

s + 0.5
(

a|ξ|β +
√

a2|ξ|2β + 4ivξ

)


(49)

and:

c(x, t) =
p0

2π
√

t

∫ ∞

−∞
e−ixξ 1√

a2|ξ|2β + 4ivξ

×
{

E1/2,1/2

[
−0.5

(
a|ξ|β −

√
a2|ξ|2β + 4ivξ

)√
t
]

− E1/2,1/2

[
−0.5

(
a|ξ|β +

√
a2|ξ|2β + 4ivξ

)√
t
]}

dξ.

(50)
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0.0
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0.6

−3.0 −2.0 −1.0 0.0 1.0 2.0 3.0
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v = 0
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v = 2

Figure 4. The fundamental solution to the Cauchy problem; the first approach, Equation (43); α = 0.5,
β = 1.

Taking into account the integral representation of the Mittag–Leffler function E1/2,1/2(−z) [85]:

E1/2,1/2(−z) =
2√
π

∞∫
0

exp
(
−u2 − 2uz

)
u du, (51)

we get:

c(x, t) =
p0

π3/2
√

t

∫ ∞

−∞

∫ ∞

0

u√
r

exp
(
−u2 − a

√
tu|ξ|β

)
×
{

exp
[
u
√

rt cos(ϕ/2)
]

cos
[

xξ + ϕ/2− u
√

rt sin(ϕ/2)
]

− exp
[
−u
√

rt cos(ϕ/2)
]

cos
[

xξ + ϕ/2 + u
√

rt sin(ϕ/2)
] }

du dξ,

(52)

where:

r =
√

a4|ξ|4β + 16v2ξ2, ϕ = arctan
(

4vξ

a2|ξ|2β

)
. (53)

The solution (52) is shown in Figures 5 and 6 for β = 2 and β = 1.5, respectively.
The nondimensional quantities are introduced as:

c =
a1/βtα/β

p0
c, x =

1
a1/βtα/β

x, v =
t1−α/β

a1/β
v. (54)
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Figure 5. The fundamental solution to the Cauchy problem; the second approach, Equation (52);
α = 0.5, β = 2.
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Figure 6. The fundamental solution to the Cauchy problem; the second approach, Equation (52);
α = 0.5, β = 1.5.
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5. Fundamental Solution to the Source Problem

5.1. The First Approach

Consider the space-time-fractional advection-diffusion Equation (24) with the source term in the
domain −∞ < x < ∞:

∂αw
∂tα

= a
∂βw
∂|x|β − v

∂w
∂x

+ q0 δ(x) δ(t), 0 < α ≤ 1, 1 ≤ β ≤ 2, (55)

under zero initial condition:
t = 0 : w = 0. (56)

The Laplace transform with respect to time t and exponential Fourier transform with respect to
the spatial coordinate x give:

w̃ ∗(ξ, s) =
q0√
2π

1
sα + a|ξ|β − ivξ

. (57)

The inverse integral transforms result in the solution:

w(x, t) =
q0tα−1

2π

∫ ∞

−∞
Eα,α

[
−
(

a|ξ|β − ivξ
)

tα
]

e−ixξdξ. (58)

Subdiffusion with α = 1/2

It follows from Equations (51) and (58) that:

w(x, t) =
q0

π3/2
√

t

∫ ∞

0

∫ ∞

−∞
u exp

(
−u2 − 2ua

√
t|ξ|β

)
cos

[(
x− 2uv

√
t
)

ξ
]

dξ du (59)

with two particular cases corresponding to β = 2 [27,56]:

w(x, t) =
q0√

2aπt3/4

∫ ∞

0
exp

−u2 −

(
x− 2uv

√
t
)2

8a
√

tu

√u du (60)

and β = 1:

w(x, t) =
4aq0

π3/2

∫ ∞

0
e−u2 u2

4a2tu2 +
(

x− 2uv
√

t
)2 du, (61)

respectively.
The results of numerical calculations are shown in Figures 7–9 for different values of the orders

of derivatives and the drift parameter v. In the calculations, we have introduce the following
nondimensional quantities:

w =
a1/βtα/β−α+1

q0
w, x =

1
a1/βtα/β

x, v =
tα−α/β

a1/β
v. (62)
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Figure 7. The fundamental solution to the source problem; the first approach, Equation (60); α = 0.5,
β = 2.
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Figure 8. The fundamental solution to the source problem; the first approach, Equation (59); α = 0.5,
β = 1.5.
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Figure 9. The fundamental solution to the source problem; the first approach, Equation (61); α = 0.5,
β = 1.

5.2. The Second Approach

Consider the space-time fractional advection-diffusion Equation (45) with the source term:

∂αc
∂tα

= a
∂βc

∂|x|β − I1−α

(
v

∂c
∂x

)
+ q0 δ(x) δ(t), 0 < α ≤ 1, 1 ≤ β ≤ 2, (63)

under zero initial condition:
t = 0 : c = 0. (64)

The integral transform technique allows us to obtain the solution in the transform domain:

c̃ ∗(ξ, s) =
q0√
2π

s1−α

s + a|ξ|βs1−α − ivξ
. (65)

In what follows, we confirm ourselves to the case α = 1/2:

c̃ ∗(ξ, s) =
q0√
2π

√
s

s + a|ξ|β√s− ivξ
. (66)

The partial-fraction decomposition of (66) yields:

c̃ ∗(ξ, s) =
q0√
2π

1

2
√

a2|ξ|2β + 4ivξ

×


√

a2|ξ|2β + 4ivξ − a|ξ|β
√

s + 0.5
(

a|ξ|β −
√

a2|ξ|2β + 4ivξ

) +

√
a2|ξ|2β + 4ivξ + a|ξ|β

√
s + 0.5

(
a|ξ|β +

√
a2|ξ|2β + 4ivξ

)


(67)

and:
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c(x, t) =
q0

4π
√

t

∫ ∞

−∞
e−ixξ 1√

a2|ξ|2β + 4ivξ

×
{(√

a2|ξ|2β + 4ivξ − a|ξ|β
)

E1/2,1/2

[
−0.5

(
a|ξ|β −

√
a2|ξ|2β + 4ivξ

)√
t
]

+

(√
a2|ξ|2β + 4ivξ + a|ξ|β

)
E1/2,1/2

[
−0.5

(
a|ξ|β +

√
a2|ξ|2β + 4ivξ

)√
t
]}

dξ.

(68)

After accounting for the integral representation of the Mittag–Leffler function E1/2,1/2(−x) (51),
we arrive at:

c(x, t) =
q0

2π3/2
√

t

∫ ∞

−∞

∫ ∞

0

u√
r

exp
(
−u2 − a

√
tu|ξ|β

)
×
{√

r exp
[
u
√

rt cos(ϕ/2)
]

cos
[

xξ − u
√

rt sin(ϕ/2)
]

+
√

r exp
[
−u
√

rt cos(ϕ/2)
]

cos
[

xξ + u
√

rt sin(ϕ/2)
]

− a|ξ|β exp
[
u
√

rt cos(ϕ/2)
]

cos
[

xξ + ϕ/2− u
√

rt sin(ϕ/2)
]

+ a|ξ|β exp
[
−u
√

rt cos(ϕ/2)
]

cos
[

xξ + ϕ/2 + u
√

rt sin(ϕ/2)
] }

du dξ.

(69)

The solution (69) is presented in Figures 10 and 11 with the nondimensional quantities:

c =
a1/βtα/β−α+1

q0
c, x =

1
a1/βtα/β

x, v =
t1−α/β

a1/β
v. (70)
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Figure 10. The fundamental solution to the source problem; the second approach, Equation (69);
α = 0.5, β = 2.
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Figure 11. The fundamental solution to the source problem; the second approach, Equation (69);
α = 0.5, β = 1.5.

6. Discussion

We have considered two approaches to deriving the space-time fractional advection-diffusion
equation. In the case of one spatial dimension, we have studied the fundamental solutions to the
Cauchy and source problems for the obtained equations. As is seen from the figures, the solutions
corresponding to the first and second approach have different behaviors in the direction of drift (x > 0
in the figures). For α = 1 and 1 ≤ β ≤ 2, the solution has no cusp at x = 0, the quantity v only causes a
drift of the maximum value of the solution in the x-direction (x− vt in the solution (37); the typical
curves are shown in Figure 1). For fractional values of α and 1 < β ≤ 2, the fundamental solutions
to the Cauchy problems have a cusp at x = 0. For fractional values of α and β = 1, the fundamental
solution to the Cauchy problem has singularity at x = 0, and drift caused by the quantity v is less
noticeable as is seen from Figure 4.

For the source problem, the quantity v causes drift of the maximum value of the solution in the
x-direction with the significant difference between the solutions in the first and second approaches:
in the first approach, the maximum value of the solution decreases with the increasing v,
whereas in the second approach, the maximum value of the solution increases with the increasing v.
The obtained solutions can also be used for testing numerical algorithms for solving the fractional
advection-diffusion equation. The reader interested in evaluation of the Mittag–Leffler functions is
referred to the paper [86] and the MATLAB program elaborated by Igor Podlubny [87] that implements
the algorithms suggested in [86].
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