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Abstract: A simplified, but non trivial, mechanical model—gas of N particles of mass m in a box
partitioned by n mobile adiabatic walls of mass M—interacting with two thermal baths at different
temperatures, is discussed in the framework of kinetic theory. Following an approach due to
Smoluchowski, from an analysis of the collisions particles/walls, we derive the values of the main
thermodynamic quantities for the stationary non-equilibrium states. The results are compared with
extensive numerical simulations; in the limit of large n, mN/M� 1 and m/M� 1, we find a good
approximation of Fourier’s law.
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1. Introduction

Fourier’s law, which relates the macroscopic heat flux to the temperature gradient in a solid
system, was introduced almost two centuries ago. Nevertheless, its understanding from microscopic
basis is still an important open issue of the non-equilibrium statistical mechanics [1]. In particular,
among the several theoretical studies on this subject, important results have been derived mainly for
1d systems. The prototype model is a chain of masses and non linear springs (Fermi-Pasta-Ulam-like
systems), whose ends interacts with thermal baths at different temperatures [1–3]. Other investigated
systems are constituted of 1d lattices [4,5], chains of cells, with an energy storage device, which
exchange energy through tracer particles [6,7], spinning disks [8], systems with local thermalization
mechanism [9,10], or a chain of anharmonic oscillators with local energy conserving noise [11]. Despite
the apparent simplicity of the problem, and of the considered models, both the analytical approaches
and the numerical studies are rather difficult in this context.

The main aim of the present paper is the study of Fourier’s law using a mechanical model,
which is rather crude (but still non-trivial), allowing for an approach in terms of kinetic theory. More
specifically, we consider a generalized piston model, made of a certain number of cells, each containing
a non-interacting particle gas. The walls of the cells are mobile, massive objects, that interact with the
particles via elastic collisions. The system at its ends interacts with thermal baths at fixed temperatures.
It is easy to realize the analogy between such a generalized piston model and the systems of masses
and springs: the pistons and the gas compartments play the role of masses and springs, respectively.

Our model is an example of partitioning system (as the adiabatic piston), where previous studies
showed that the presence of mobile walls can induce interesting behaviours [12–21]. Basically, in the
study of partitioning systems, one can adopt two approaches: in terms of a Boltzmann equation [14] or
introducing effective equations (Langevin-like) for suitable observables derived à la Smoluchowski,
i.e., from an analysis of the collisions particles/walls. In our study, we will adopt the latter method.
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The paper is organized as follows. Section 1 is devoted to the introduction of the model;
in Section 2, we show how a thermodynamic approach is not sufficient to determine the values of
macroscopic variables in the steady state. In Section 3, we present a coarse-grained Smoluchowski-like
description of the system, which provides a good prediction for the main quantities of interest.
In Section 4, we compare the theoretical results with numerical simulations and discuss the limit
of validity of the proposed approach. In Section 5, some general conclusions on Fourier’s Law in
mechanical systems are drawn. In Appendix A, we report the details of the analytical computations
presented in Section 3.

2. A Generalized Piston Model

We consider a box of length L, partitioned by n mobile adiabatic walls (also called pistons in the
following), with mass M, average positions zj and velocities Vj (j = 1, 2, . . . n). The walls move without
friction along the horizontal axis (see Figure 1). The external walls are kept fixed in the positions z0 = 0
and zn+1 = L. Each of the n + 1 compartments separated by the walls contains N non-interacting
point-like particles, with mass m, positions xi and velocities vi. The particles interact with the pistons
via elastic collisions:

V′ = V +
2 m

m + M
(vi −V),

v′i = vi −
2 M

m + M
(vi −V),

(1)

where primes denote post-collisional velocities.

T
A

T
B

L

z

Figure 1. Sketch of the system.

The two external walls in z = 0 and z = L act as thermal baths at temperatures TA and TB. The
interaction of the thermostats with the particles is the following: when a particle collides with the wall,
it is reinjected into the system with a new velocity drawn from the probability distribution [22]

ρA,B(v′) =
m

kBTA,B
|v′| e−

mv′2
2kBTA,B Θ(±v′), (2)

with + for the case A and − for B, and kB is the Boltzmann constant, Θ(x) being the Heaviside
step function:

Θ(x) =

{
1, if x > 0,

0, if x ≤ 0.
(3)

For the following discussion, we define the temperature of the i−th piston as

T(p)
i = M〈V2

i 〉, (4)

and the temperature of the particle gas in the compartment j as an average on the particles between
the (j− 1)-th and the j-th piston

Tj = m
1
N

jN

∑
i∈(j−1)N

〈v2
i 〉. (5)
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3. Simple Thermodynamic Considerations

We expect, and this is fully in agreement with the numerical computations, that, given a generic
initial condition, after a certain transient, the system reaches a stationary state. The positions of the
walls fluctuate around their mean values zj, in a similar way to T(p)

i and Ti. The first non-trivial

problem of the non equilibrium statistical mechanics is to determine zj, T(p)
i and Ti as function of the

parameters of the model, i.e., n, L, m, M, TA and TB.
We first analyze the simplest case of a single piston, where thermodynamics is sufficient to provide

a complete description of the stationary state. Then, we consider the more general case of a multiple
piston; in such a situation, thermodynamic relations are not enough to univocally determine the steady
state: it is necessary to adopt a statistical mechanics approach. Such an approach will rely on three
main assumptions, discussed in more detail below: small mass ratio m/M� 1, local thermodynamic
equilibrium in each compartment, and independence of the collisions particles/pistons.

3.1. Single Piston

If n = 1, using the equation for the perfect gas in each compartment, we immediately get
the equations {

pz1 = NkBTA,

p(L− z1) = NkBTB,
(6)

where p is the pressure, yielding

z1 =
TA

TA + TB
L. (7)

Therefore, in this case, thermodynamics univocally determines the stationary state of the system.

3.2. Multiple Piston

We now consider the generalized piston model with n > 1. An analysis of the case n = 2 is
enough to understand how the relations obtained from thermodynamics can be not sufficient to fully
characterize the non equilibrium steady state. Indeed, we have the following relations:

pz1 = NkBTA,

p(z2 − z1) = NkBT1,

p(L− z2) = NkBTB,

(8)

which give the constraints

z1 =
TA

TA + T1 + TB
L,

z2 =
TA + T1

TA + T1 + TB
L.

(9)

Therefore, since we have three variables (z1, z2, T1) and only two constraints, thermodynamics is
not enough to determine the stationary state. The computation can be easily extended to an arbitrary
value of n, leading to 

pz1 = NkBTA,

p(z2 − z1) = NkBT1

...,

p(zn − zn−1) = NkBTn−1,

p(L− zn) = NkBTB,

(10)
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that give the conditions

z1 =
TA

TA + ∑n−1
k=1 Tk + TB

L, · · · zm =
TA + ∑m−1

k=1 Tk

TA + ∑n−1
k=1 Tk + TB

L, · · · zn =
TA + ∑n−1

k=1 Tk

TA + ∑n−1
k=1 Tk + TB

L, (11)

with m = 2, . . . , n− 1, namely, only n constraints for 2n− 1 variables.

4. Coarse-Grained Description and Effective Langevin Equations

In order to obtain a statistical description of the system, we now derive effective stochastic
equations, governing the dynamics of the relevant variables. Previous theoretical studies based
on a Boltzmann equation approach on similar systems were reported in [13–15]. In particular,
a generalized piston model was considered in Reference [15]. In those works, theoretical results
were not compared to numerical simulations, so that the underlying hypotheses and their range of
validity remained unclear.

Here, we present a different analysis. We will assume that the evolution of the observables is
described by Langevin equations. The idea, coming back to Smoluchowski, is to integrate out the fast
degrees of freedom of the gas particles by computing conditional averages, knowing the macroscopic
variables: position z and velocity V of each piston, and temperatures T of the gases. In order to
simplify the notation, let us denote by 〈·〉 this average, meaning the conditional average 〈·|z, V, T〉.
We will compute the average change of a generic observable X in a small time interval ∆t, due to the
collisions between the particles of the gas and the pistons.

Let us assume that in the stationary state the particles of the gas, in each compartment, have
uniform space distribution ρ and a Maxwell–Boltzmann distribution φ(v) at temperature T:

φ(v) =
√

m
2πkBT

e−
m

2kBT v2
, ρ(x) =

1
∆z

, (12)

where ∆z is the length of the box containing the gas. We can obtain the rate of the collisions by
considering the following equivalent problem: piston at rest and a particle, which moves with the
relative velocity v−V. The point particles which collide against the piston in x in the time interval
dt are:

Nρ(x)(v−V)Θ(v−V)dt, Nρ(x)(V − v)Θ(V − v)dt, (13)

respectively, for particles on the left and on the right with respect to the piston. The Heaviside function
Θ is necessary to have a collision.

Let us now consider a generic observable Xj, depending in general on the velocities of the gas
particles and of the pistons. We want to write down a Langevin equation:

dXj

dt
= Dj(X) + noise, (14)

where both the drift term Dj(X) (X being the vector of all relevant macroscopic variables in the system)
and the noise term are due to collisions with the particles of the gas. We have:

Dj(X) = lim
∆t→0

〈
∆Xj|X

〉
∆t

= lim
∆t→0

1
∆t

[〈
∆Xj

〉L
coll +

〈
∆Xj

〉R
coll

]
, (15)

where〈
∆Xj

〉R
coll = N

∫ ∞

V
dv
∫ zL

zL−(v−V)∆t
dx Xj ρ(x)φ(v)Θ(v−V) =

N
∆zL

∫ ∞

V
dv Xjφ(v)(v−V)∆t, (16)

〈
∆Xj

〉L
coll = N

∫ V

−∞
dv
∫ zR−(v−V)∆t

zR

dx Xj ρ(x)φ(v)Θ(V − v) =
N

∆zR

∫ V

−∞
dv Xj φ(v)(V − v)∆t. (17)
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〈
∆Xj

〉R
coll is the variation of the observable due to the collisions with the particles that have the pistons

on the left, while
〈
∆Xj

〉L
coll denotes the variation due to the collisions with the particles which have the

piston on the right.
In the stationary state, the macroscopic variables T, V and z do not depend on time. It means that

the time derivative of the conditional average of a generic observable X is zero, namely:

lim
∆t→0

1
∆t

[〈
∆Xj

〉L
coll +

〈
∆Xj

〉R
coll

]
= 0. (18)

By using a perturbation development in the small parameter ε = m/M, it is possible to derive the
relations between the average positions and the temperatures of the pistons and the temperatures of
the gas. In order to obtain this result, we need to average on the piston velocity, which is a stochastic
variable. Of course, in the steady state, the odd momenta have to be zero:〈

V2α+1
〉
= 0, α = 0, 1, 2, ... (19)

The idea is to compute the average force produced by the particles of the gas, which collide
against the piston, by computing the average momentum exchanged in the collisions.

The evolution of the velocity of the piston is governed by the following stochastic
differential equation:

M
d
dt

V = Fcoll(∆zL, ∆zR, TL, TR, V) + Kη, (20)

where η is zero-average white noise, usually K is a constant, and Fcoll is the average force which acts
on the piston. This force is due to the collisions with the gas on the left and on the right, and depends
on the average size of the box on the right and on the left of the piston, ∆zL and ∆zR, respectively, and
on the temperatures of the gas on the left and on the right, TL and TR. Now let us set ∆X = V′ −V in
Equation (15). As detailed in the Appendix A, computing the left and right contributions to Fcoll and
expanding in the small mass ratio ε =

√
m/M, we obtain at the lowest orders:

O(1) : NkB

(
TL

∆zL
− TR

∆zR

)
, (21)

O(ε) : −2N
√

2kB

√
M
π

[
T1/2

L
∆zL

+
T1/2

R
∆zR

]
V. (22)

In the steady state, when the time derivative vanishes, we have from the order O(1) the following
relation between the temperatures of the gas and the average length of the boxes:

∆zR = ∆zL
TR
TL

. (23)

This relation is nothing but the one that can be derived from thermodynamics. From Equation (22),
we obtain the obvious result 〈V〉 = 0.

Analogous computations, reported in the Appendix A, can be carried out for the variance of the
pistons and the gas temperatures. In particular, for the variable ∆X = M(V′2 −V2), at lowest orders
in ε, we obtain the relations:

O(1) : N2kB

(
TL

∆zL
− TR

∆zR

)
, (24)

O(ε) :
N√
π

4
√

2
M1/2

[(
(kBTL)

3/2

∆zL
+

(kBT)3/2

∆zR

)
−MV2

(
(kBTR)

1/2

∆zR
+

(kBTL)
1/2

∆zL

)]
. (25)
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In the steady state, by using the thermodynamic relations, the order O(1) Equation (24) is
identically zero. After integrating over all values of the piston velocity and by requiring that the order
O(ε) vanishes, we obtain a relation between the temperature of the piston T(p) and those of the gases
on the left and on the right:

T(p) = M
〈

V2
〉
= (TRTL)

1/2 . (26)

Finally, a condition on the temperature of the gas as a function of the velocity variance of the
pistons on its left and on its right can be obtained by considering the variable ∆X = m(v′2 − v2)/N in
Equation (15). This gives (see Appendix A) the relations:

O(1) :
2kBT

∆z
(VL −VR) , (27)

O(ε) :
√

2kB
∆z

4√
π

T1/2

M1/2

[
MV2

R + MV2
L − 2T

]
. (28)

By integrating over the velocity of the piston, because 〈V〉 is zero, the order O(1) is identically
zero. By requiring that, in the stationary state, the order O(ε) vanishes, we eventually obtain:

0 =

√
2kB

∆z
4√
π

T1/2

M1/2

[
M
〈

V2
R

〉
0
+ M

〈
V2

L

〉
0
− 2T

]
=⇒ T =

M
2

(〈
V2

R

〉
+
〈

V2
L

〉)
. (29)

As expected from thermodynamics, one can easily show that the gases in contact with the
thermostats reach the temperatures of the thermal baths (see Appendix A for a detailed explanation).

5. Numerical Simulations

In order to check the range of validity of the above approach, we have performed extensive molecular
dynamics simulations (using an event driven algorithm) of the system, varying the relevant parameters
of the model and comparing the analytical prediction of Section 3 with the actual numerical results. The
system is initialized with the pistons placed at equidistant positions, with zero velocity, while the gas
particles are randomly distributed in each box, with velocities drawn from a Gaussian distribution at
temperature intermediate with respect to those of the thermostats. We have, however, checked that the
stationary state reached by the system is independent of the initial conditions. All data presented in the
following are measured in the steady state, after the transient relaxation dynamics from the initial state.

In Figure 2, we show the piston temperatures T(p)
i , i = 1, 2, 3, for a 3-piston system, as measured

in numerical simulations (symbols) for a certain choice of the parameters, and compare them with
the theoretical predictions of Equation (26) (lines). The approximation is good for the intermediate
piston, while it is not very accurate for the side pistons, and is the worst in the case of a large gradient
TB/TA � 1. Simulations performed for systems with more pistons give similar results.

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 05
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
5 0
5 5

 

 T ( p )
1

 T ( p )
2

 T ( p )
3

 T ( p )
1 =  ( T A T 1 ) 1 / 2  

 T ( p )
2 =  ( T 1 T 2 ) 1 / 2

 T ( p )
3 =  ( T 2 T B ) 1 / 2

T B

Figure 2. Piston temperatures for a 3-piston system, with parameters TA = 15, N = M = 100, m = 1,
L = 1.
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In Figure 3, we consider a system with a large number of pistons (n = 22), where the temperature
profile shows a linear behavior, in agreement with Fourier’s law. We report two sets of data, differing
in the value of the parameter R = mN/M. Notice that the linear behavior extends for a wider range of
z in the case R = 10. Lines represent linear fits of the data. Let us note that, for large n and R � 1,
T(p) vs. z is in good agreement with a linear behavior in the whole space interval (even close to the
thermal baths).

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 0

1 6

1 8

2 0

2 2

2 4

2 6

2 8

3 0

 

 R = 1
 L i n e a r  F i t
 R = 1 0
 L i n e a r  F i t
 T ( x )  =  T A + ( T B - T A )  x

T(p
)

z

Figure 3. Temperature profiles for a 22-piston system with R = 1 and R = 10. Other parameters are
TA = 15, TB = 30, M = 50, m = 1, L = 1.

The derivation of the Langevin equation (see Appendix A) is mainly based on the assumptions:

• m/M� 1;
• a local thermodynamic equilibrium, i.e. in each compartment between the piston i− 1 and the

piston i, the spatial distribution of the particles is uniform and the velocity probability distribution
is a Gaussian function, whose variance is given by the gas temperature;

• the collisions particles/pistons are independent.

The first assumption is easily checked, while the other ones are more difficult. We can expect
that a necessary condition for their validity is that N must be large. We have measured the velocity
distribution of the gas particles in the numerical simulations, finding that the above hypothesis is
verified. Moreover, we expect that the number of recollisions decreases with the ratio m/M, and we
have numerically checked that their contribution is negligible (the fraction of recollisions on the total
number of collisions is about 0.1%). Figure 4 shows the probability distribution functions of particles
colliding from left, φL(v), and from right, φR(v), with a moving wall: the agreement with a Gaussian
assumption is rather evident.

In addition, the numerical computations show that the left- and right-moving particles in the
same compartment have the following probability distributions:

φ−(v) =

√
2m

πkBT−
Θ(v)e−

mv2
2kBT− , (30)

φ+(v) =

√
2m

πkBT+
Θ(−v)e−

mv2
2kBT+ , (31)

where T− (T+) denotes the temperature of the particles incident on the piston i (i− 1) from the left
(right), with T− ≈ T+, resulting in a small but finite heat flow proportional to (T− − T+), in agreement
with [15]. Let us note that the above probability distributions are different from the distributions φL(v)
and φR(v), which are computed for particles actually colliding with the piston; this is the origin of the
presence of the factor v appearing in the expressions in the caption of Figure 4.
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Figure 4. Probability distribution function of the velocities φL(v) (φR(v)) of the particles colliding with
the first piston from the left (right), for a system with n = 2. The curves, red and blue, are respectively:
φL = m

kBTL
e−v2/kBTL v θ(−v) and φR = m

kBTR
e−v2/kBTR v θ(v), where TL = 15.0 and TR = 21.6 are the

temperatures of the gas on the left and on the right with respect to the first piston. Other parameters
are: TA = 15, TB = 30, N = 100, M = 100, m = 1, n = 2, L = 1.

The distribution of v in the compartment between pistons i− 1 and i, has the form:

φ(v) ∝ AΘ(v)e−
mv2

2kBT− + BΘ(−v)e−
mv2

2kBT+ ,

where A and B are constants. However, since

T− = T+ + O(ε2),

we have a Gaussian distribution for the particle gas in the compartment:

φi(v) ∝ e
− mv2

2kBTi + O(ε2), Ti = T+ + O(ε2). (32)

Let us note that all our results are based on an expansion in powers of ε, neglecting O(ε2).
In other words, because the heat rate is very small, this heat flux perturbs the Gaussian form of the
probability distribution φ in a negligible way.

In order to better understand the dependence of our theoretical results on the parameter R, we
have performed numerical simulations of the system for different values of R. From the previous
remark, we expect to have an improvement of the agreement between the numerical results and the
analytical predictions by increasing R. In Figure 5, we compare the piston temperature in a 4-piston
system with theoretical predictions from Equation (26), finding a very good agreement for large values
of R. This shows that the total mass of the gas contained in a box has to be larger than the mass of the
piston, in order for the kinetic theory presented in the previous section to be accurate.

0 , 1 1 1 0
1 6
1 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9

 

 
T ( p )

1 :  M = 5 0 ,  M = 1 0 0  
T ( p )

2 :  M = 5 0 ,  M = 1 0 0
T ( p )

3 :  M = 5 0 ,  M = 1 0 0
T ( p )

4 :  M = 5 0 ,  M = 1 0 0

R

Figure 5. Piston temperatures for a 4-piston system as a function of R. Dashed lines are the theoretical
predictions. Other parameters are TA = 15, TB = 30, m = 1, L = 1.



Entropy 2017, 19, 350 9 of 14

6. Conclusions

We have studied a generalized piston in contact with two thermal baths at different temperatures.
This system represents a simple but interesting case where the emergence of Fourier’s law from a
microscopic mechanical model can be studied. We have presented a kinetic theory treatment inspired
by an approach à la Smoluchowski, and we have investigated the range of validity of these results with
molecular dynamics numerical simulations. We have found that, in order for the theory to be accurate,
the ratio R = mN/M should be large enough, namely the total mass of the gas in each compartment
should be greater than that of the single piston.

We have considered ideal gas in our model, but we do not expect that the introduction of
short-range interactions among gas particles, at least in not too dense cases, leads to significant
differences in the behavior of the system. An interesting, non-trivial, future line of research in this
model is the study of the relaxation to the steady state and the dynamical properties of the system,
focusing on correlation and response functions.
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Appendix A

In this appendix, we will derive the relations that determine the stationary state of the
multi-component piston model described in the main text.

Appendix A.1. Piston Position

The effective force acting on the piston due to the collisions with gas particles, appearing in
Equation (20), is given by two contributions, Fcoll = FL

coll + FR
coll . By taking into account the elastic

collisions rule, Equation (1), these terms can be computed as follows:

FL
coll =

N
∆zL

∫ ∞

−∞
dvM(v−V)Θ(v−V)φ(v) (V′ −V) =

N
∆zL

2mM
m + M

∫ ∞

V
dv (v−V)2

√
m

2πkBTL
e−

m
2kBTL

v2

=
N

∆zL

M
m + M

[
erfc

(√
m

2 kBTL
V
)
(mV2 + kBTL)−

√
m
π

√
2kBTLVe−

m
2 kBTL

V2
]

,
(A1)

where in the first line we have used Equation (12). In the same way, by putting the observable
∆X = M(V′ −V) in the Equation (17), we have:

FR
coll =

N
∆zR

∫ ∞

−∞
dvM(V − v)Θ(V − v)φ(v) (V′ −V) = − N

∆zR

2mM
m + M

∫ V

−∞
dv (v−V)2

√
m

2πkBTR
e−

m
2kBTR

v2

= − N
∆zR

M
m + M

[(
1 + erf

(√
m

2 kBTR
V
))

(mV2 + kBTR) +

√
m
π

√
2kBTRVe−

m
2 kBTR

V2
]

.
(A2)

By putting together the previous relations, we obtain:

M
d
dt
〈V〉coll = FL

coll + FR
coll =

NM
m + M

[
kBTL
∆zL

erfc
(√

m
2 kBTL

V
)
− kBTR

∆zR

(
erf
(√

m
2 kBTR

V
)
+ 1
)]
−

− NM
m + M

√
2m
π

V
[√

kBTL
∆zL

e−
m

2 kBTL
V2

+

√
kBTR
∆zR

e−
m

2 kBTR
V2
]
+

+
NM

m + M
mV2

[
1

∆zL
erfc

(√
m

2 kBTL
V
)
− 1

∆zR

(
1 + erf

(√
m

2 kBTR
V
))]

.

(A3)
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By expanding in the small ratio ε =
√

m/M� 1, and assuming that V/v ∼ ε, we have:

O(1) : NkB

(
TL

∆zL
− TR

∆zR

)
, (A4)

O(ε) : −2N
√

2kB

√
M
π

[
T1/2

L
∆zL

+
T1/2

R
∆zR

]
V. (A5)

In the steady state, when the time derivative vanishes, we have from the order O(1) the following
relation between the temperatures of the gas and the average lengths of the boxes:

∆zR = ∆zL
TR
TL

. (A6)

Appendix A.2. Piston Fluctuations

Let us now consider the observable ∆X = M(V′2 −V2). From Equation (16), using Equation (1)
for the elastic collisions, we obtain:

M
d
dt

〈
V2
〉L

coll
=

N
∆zL

∫ ∞

−∞
dv (v−V)Θ(v−V)M(V′2 −V2)φ(v)

=
NM
∆zL

∫ ∞

V
dv (v−V)

[
(2m)2

(m + M)2 (V − v)2 +
4m

m + M
V(V − v)

]
φ(v).

(A7)

Using Equation (12), we have:

M
d
dt

〈
V2
〉L

coll
=

MN
∆zL
√

π

4m2

(m + M)2

(
2 kBTL

m

)3/2
−

− MN
∆zL
√

π

4m
m + M

2 kBTL
m
√

π erfc
(√

m
2 kBTL

V
) [

m
m + M

3
4
− 1

4

]
V+

+
MN

∆zL
√

π

4m
m + M

√
2 kBTL

m
e−

m
2 kBTL

V2
[

m
m + M

1
2
− 1

2

]
V2−

− MN
∆zL
√

π

4m
m + M

√
π

2
erfc

(√
m

2 kBTL
V
) [

m
m + M

− 1
]

V3.

(A8)

In the same way, from Equation (17), we obtain:

M
d
dt

〈
V2
〉R

coll
=

N
∆zR

∫ ∞

−∞
dv (V − v)Θ(V − v)M(V′2 −V2)φ(v)

=
NM
∆zR

∫ V

−∞
dv (V − v)

[
(2m)2

(m + M)2 (V − v)2 +
4m

m + M
V(V − v)

]
φ(v)

=
MN

∆zR
√

π

4m2

(m + M)2

(
2 kBTR

m

)3/2
+

+
MN

∆zL
√

π

4m
m + M

2 kBTR
m
√

π

(
1 + erf

(√
m

2 kBTR
V
)) [

m
m + M

3
4
− 1

4

]
V+

+
MN

∆zR
√

π

4m
m + M

√
2 kBTR

m
e−

m
2 kBTR

V2
[

m
m + M

1
2
− 1

2

]
V2−

+
MN

∆zR
√

π

4m
m + M

√
π

2

(
1 + erfc

(√
m

2 kBTR
V
)) [

m
m + M

− 1
]

V3.

(A9)
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Putting together the contributions from the relations (A8) and (A9), we have

M
d
dt

〈
V2
〉

coll
=

MN√
π

4m2

(m + M)2

(
2kB
m

)3/2 1
2

[
T3/2

L
∆zL

e−
m

2 kBTL
V2

+
T3/2

R
∆zR

e−
m

2 kBTR
V2
]
+

+ MN
4m

m + M
2kB
m

[
3
4

m
m + M

− 1
4

]{
TR

∆zR

(
erf
(√

m
2 kBTR

V
)
+ 1
)
−

− TL
∆zL

erfc
(√

m
2 kBTL

V
)}

V + MN
4m

m + M
1

2
√

π

√
2kB
m

[
m

m + M
− 1
]

×
{√

TL
∆zL

e−
m

2 kBTL
V2

+

√
TR

∆zR
e−

m
2 kBTR

V2
}

V2 + MN
4m

m + M
1
2

[
m

m + M
− 1
]

×
{

1
∆zR

(
erf
(√

m
2 kBTR

V
)
+ 1
)
− 1

∆zL
erfc

(√
m

2 kBTL
V
)}

V3.

(A10)

By using a Taylor expansion in the small parameter ε =
√

m
M � 1, we obtain:

O(1) : 2N
(

kBTL
∆zL

− kBTR
∆zR

)
V, (A11)

O(ε) :
N

M1/2
4
√

2√
π

[(
(kBTL)

3/2

∆zL
+

(kBTR)
3/2

∆zR

)
−MV2

(
(kBTL)

1/2

∆zL
+

(kBTR)
1/2

∆zR

)]
. (A12)

In the steady state, by using the thermodynamic relations, the order O(1) Equation (A11) is
identically zero. After integrating over all values of the piston velocity and by requiring that the order
O(ε) vanishes, we obtain a relation between the temperature of the right piston and that of the left one:

T(p) ≡ M
〈

V2
〉
= kB (TRTL)

1/2 , (A13)

where we have used also the thermodynamic relation Equation (A6).

Appendix A.3. Temperature of the Gas

Let us now compute the average temperature of the gas. We have to distinguish between two
different cases:

• Gas between two moving walls
• Gas between a moving wall and a thermostat

Appendix A.3.1. Gas between Two Moving Walls

Let us consider the observable ∆X equal to the difference of the gas energy before and after the
collision: ∆X = m(v′2 − v2)/N. By putting the observable into the relation (16) and by taking into
account the Equation (1), we obtain:

m
N

d
dt

〈
v2
〉L

coll
=

m
∆z

∫ ∞

−∞
dv (v−VR)Θ(v−VR)[v′2 − v2]φ(v)

=
m
∆z

∫ ∞

VR

dv (v−VR)

[
4M2

(m + M)2 (VR − v)2 +
4M

m + M
v(VR − v)

]
φ(v).

(A14)
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By integrating, we have:

m
N

d
dt

〈
v2
〉L

coll
=

m
∆z

1√
π

4M
m + M

(
2 kBT

m

)3/2
e−

m
2 kBT V2

R

[
− m

m + M

]
+

+
m
∆z

4M
m + M

2kBT
m

erfc
(√

m
2 kBT

VR

) [
− M

m + M
+

2m
m + M

]
VR
4
+

+
m
∆z

1√
π

4M
m + M

√
2kBT

m
1
2

M
m + M

e−
m

2 kBT V2
R V2

R −
m
∆z

2M2

(M + m)2 erfc
(√

m
2 kBT

VR

)
V3

R.

(A15)

In the same way, we obtain:

m
N

d
dt

〈
v2
〉R

coll
=

m
∆z

∫ ∞

−∞
(VL − v)Θ(VL −V)[v′2 − v2]φ(v)

=
m
∆z

∫ VL

−∞
dv (VL − v)

[
4M2

(m + M)2 (VL − v)2 +
4M

m + M
v(VL − v)

]
φ(v)

=
m
∆z

1√
π

4M
m + M

(
2 kBT

m

)3/2
e−

m
2 kBT V2

R

[
− m

m + M

]
−

− m
∆z

4M
m + M

2kBT
m

(
1 + erf

(√
m

2 kBT
VL

)) [
− M

m + M
+

2m
m + M

]
VL
4
+

+
m
∆z

1√
π

4M
m + M

√
2kBT

m
1
2

M
m + M

e−
m

2 kBT V2
L V2

L+

+ 2
m
∆z

M2

(M + m)2

(
1 + erf

(√
m

2 kBT
VL

))
V3

L .

(A16)

Putting together Equations (A15) and (A16), one has:

m
N

d
dt

〈
v2
〉

coll
= − m

∆z
1√
π

4M
m + M

m
m + M

(
2kBT

m

)3/2
 e−

m
2 kBT V2

L

2
+

e−
m

2 kBT V2
R

2

+

+
m
∆z

4M
m + M

2kBT
m

1
4

[
2m

m + M
− M

m + M

]{
VR erfc

(√
m

2 kBT
VR

)
−

−VL −VL erf
(√

m
2 kBT

VL

)}
+

m
∆z

1
2

4M2

(m + M)2

√
2 kBT

m
1√
π
×

×
[

V2
Re−

m
2 kBT V2

R + V2
L e−

m
2 kBT V2

L

]
− m

∆z
4M2

(m + M)2
1
2
×

×
[

V3
R erfc

(√
m

2 kBT
VR

)
−V3

L

(
1 + erf

(√
m

2 kBT
VL

))]
,

(A17)

and using a Taylor expansion around the small parameter ε =
√

m
M � 1 yields:

O(1) :
2kBT

∆z
(VL −VR) , (A18)

O(ε) :
√

2kB
∆z

4√
π

T1/2

M1/2

[
MV2

R + MV2
L − 2T

]
. (A19)

By integrating over the velocity of the piston, because 〈V〉 is zero, the order O(1) is identically
zero. By requiring that in the stationary state the order O(ε) vanishes, we obtain a relation between
the temperature of the gas and those of the near pistons:

0 =

√
2kB

∆z
4√
π

T1/2

M1/2

[
M
〈

V2
R

〉
0
+ M

〈
V2

L

〉
0
− 2T

]
=⇒ T =

M
2

(〈
V2

R

〉
+
〈

V2
L

〉)
. (A20)
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Appendix A.3.2. Gas between a Piston and a Thermostat

Consider the gas that is near a thermostat and piston. The variation of the temperature due to the
piston is the same as before and is given by the Equations (A15) or (A16), respectively, for a piston on
the right or on left, with respect to the considered gas. On the side of the thermostat, after the collision,
the particle takes a velocity according to the distribution given by the Equation (2). For instance, if the
thermostat is that one on the left at temperature T0, we have:

〈T〉Lther =
m
∆z

∫ ∞

−∞
dv
∫ ∞

−∞
dv′ (v′2 − v2)φ(v) |v|Θ(−v)ΦT0(v′)

m
∆z

∫ ∞

−∞
dv
∫ ∞

−∞
dv′ (v′2 − v2)

√
m

2πkBT
e−

m
2kBT v2

θ(−v) |v| v′ Θ(v′)
m

kBT0
e−

m
2kBT0

v′2

m
∆z

m
kBT0

√
m

2πkBT

∫ 0

−∞
dv
∫ ∞

0
dv′v v′(v′2 − v2)e−

m
2 kBT v2

e−
m

2kBT0
v′2 .

(A21)

By integrating, we obtain:

〈T〉Lther =

√
2

π m
k3/2

B
∆z

√
T[T0 − T]. (A22)

In order to compute the variation of the temperature, we have to put together Equations (A22)
and (A15):

d
dt
〈T〉 = 〈T〉Lther +

m
N

d
dt

〈
v2
〉R

coll
=

√
2

π m
k3/2

B
∆z

√
T[T0 − T]+

+
m
∆z

1√
π

4M
m + M

(
m

2 kBT

)3/2 e−
m

2 kBT V2
R

2

[
− m

m + M

]
+

+
m
∆z

4M
m + M

2kBT
m

erfc
(√

m
2 kBT

VR

) [
− M

m + M
+

2m
m + M

]
VR
4
+

+
m
∆z

1√
π

4M
m + M

√
2kBT

m
1
2

M
m + M

e−
m

2 kBT V2
R V2

R−

− m
∆z

2
M2

(M + m)2 erfc
(√

m
2 kBT

VR

)
V3

R.

(A23)

By solving perturbatively around the small parameter ε =
√

m
M � 1, we obtain:

O
(

1
ε

)
:

√
2
π

k3/2
B

M1/2

√
T

∆z
(T0 − T), (A24)

O(1) : −2
kBT
∆z

VR. (A25)

In the steady state, from relation (A24) at order O(1/ε), we have T = T0. This means that a gas
near a thermostat reaches the temperature of the thermal bath: this is the result one can obtain from
thermodynamics. We can obtain exactly the same result for a thermostat on the right with respect to
the considered gas.
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