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Abstract: Strong background noise and complicated interfering signatures when implementing
vibration-based monitoring make it difficult to extract the weak diagnostic features due to incipient
faults in a multistage gearbox. This can be more challenging when multiple faults coexist. This paper
proposes an effective approach to extract multi-fault features of a wind turbine gearbox based on an
integration of minimum entropy deconvolution (MED) and multipoint optimal minimum entropy
deconvolution adjusted (MOMEDA). By using simulated periodic transient signals with different
noise to signal ratios (SNR), it evaluates the outstanding performance of MED in noise suppression
and reveals the deficient in extract multiple impulses. On the other hand, MOMEDA can performs
better in extracting multiple pulses but not robust to noise influences. To compromise the merits of
them, therefore the diagnostic approach is formalized by extracting the multiple weak features with
MOMEDA based on the MED denoised signals. Experimental verification based on vibrations from a
wind turbine gearbox test bed shows that the approach allows successful identification of multiple
faults occurring simultaneously on the shaft and bearing in the high speed transmission stage of
the gearbox.

Keywords: minimum entropy deconvolution; multipoint optimal minimum entropy deconvolution
adjusted; signal ratios; multiple faults

1. Introduction

Wind turbines are important in modern industrial electric power production. The health status
of the gearbox directly affects the working condition of the wind turbine system. In the event of
failure, it will be costly, therefore, its fault diagnosis technology is highly valued. If the position of
faults can be predicted accurately, they can be effectively avoided. Research into new multi-fault
diagnosis methods plays an important role in ensuring reliable gearbox performance. When faults
occur in the gears and inner race, outer race or rolling elements of the bearings, the transmission
system will be affected, and periodic pulses appear in the vibration signals [1–3]. It is usually difficult
to diagnose potential faults, especially when multiple faults exist under strong background noise,
vibrations excited by several faults are combined with each other non-linearly and non-stationarily.
Thus, simultaneous detection of multiple faults is still a big challenge in the monitoring and diagnosis
of rotating machinery [4–6]. In fact, the vibration signal feature extraction aims to extract the shock
component, or in other words, to find an optimal filter to reduce the shock of noise on the fault
signal. Minimum entropy deconvolution (MED), which is an adaptive system identification method,
was first proposed by Wiggins [7]. The basic principle of MED is to solve the deconvolution results to
highlight a few large spikes, which is a necessary prerequisite for minimum entropy deconvolution.
The maximum kurtosis is used as the iteration termination condition [8]. According to the maximum
principle of kurtosis, a larger kurtosis value indicates a larger proportion of the shock component in the
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signal. This feature is very suitable for noise reduction in rotating machinery shock failure diagnosis.
Sawalhi et al. [8] first used MED for rolling bearing and gear fault diagnosis. Taking advantage of the
MED method with Spectral Kurtosis (SK) to further enhance the fault detection and diagnosis ability
in the rolling bearing, Jiang et al. [9] detected the weak shocks of rolling element bearings using a MED
method with envelope analysis. Wang et al. [10] extracted bearing failure frequency data successfully
by MED and Ensemble Empirical Mode Decomposition (EEMD). As shown above, the MED method
has demonstrated its power in rotating machinery fault diagnosis, but has not been put into use in
multi-fault identification of rotating machinery.

In order to overcome the shortcomings of MED, McDonald et al. [11] proposed a rotating
machinery fault feature extraction method, referred to as Multipoint Optimal Minimum Entropy
Deconvolution Adjusted (MOMEDA). The method uses a time target vector to define the position
and weight of the pulse sequence obtained by deconvolution. These targets are suitable for the
feature extraction of a vibration source of a rotating machine that generates a shock pulse for every
revolution. In addition, this method does not need an iterative algorithm to obtain the optimal filter.
The MOMEDA algorithm can deal with non-integer numbers of fault periods and does not require
re-sampling. In addition, the periodic components of the fault signal can be obtained by calculating
the multi-point kurtosis of the vibration signal, which provides a new idea for the feature extraction
of rotating machinery fault. However, MOMEDA as proposed by McDonald et al. focuses on the
extraction of notch gear vibration signals which are strong shock signals. The main objective of
this paper is to study multi-fault feature extraction in a strong noise environment with low Signal
Noise Ratio (SNR). Through the simulation signals, Multipoint Kurtosis (MK) cannot accurately and
effectively determine the multi-fault periods, resulting in the fact the MOMEDA method cannot extract
the fault period signals based on the periods determined by MK, which requires original pre-filtered
processed vibration signals. Therefore, in this paper, the noise reduction performances of MED at
different SNRs are verified by the simulated signal, and the influence of strong noise on MK is also
verified. Thus, the original vibration signal is denoised to improve the SNR, and then MK is introduced
to extract the features of the fault period. Finally, by setting different period intervals, MOMEDA is
used as the filter to extract the components of multiple faults, which can effectively identify the fault
characteristics of wind turbine gearboxes.

2. Background and New Method

2.1. Introduction of MED

Minimum entropy deconvolution (MED) first proposed by Wiggins, is an adaptive system
identification method which was used by Sawalhi [11] for rolling bearing and gear fault diagnosis.
The basic principle of MED is to solve the deconvolution results to highlight a few large spikes, which is
a necessary pre-requisite for minimum entropy deconvolution. The maximum kurtosis is used as the
iteration termination condition [7]. According to the maximum principle of kurtosis, a larger kurtosis
value indicates a larger proportion of the shock component in the signal. This feature is suitable for
noise reduction of rotating machinery shock failure signals, as it can better highlight shock pulses.
We assume that the rolling bearing failure signal can be expressed as:

y(n) = h(n)× x(n) + e(n) (1)

where e(n) is the noise, x(n) is the shock sequence of the rolling bearing, h(n) is the transfer function,
and y(n) is the collected vibration signal.

The source signal characteristics will be lost after x(n) decays to y(n) due to the environmental noise
and path transmission, resulting in a large entropy change. The purpose of solving for deconvolution
is to obtain an inverse filter f (n) that recovers the property of the input x(n) according to the output,
which is:

x(n) = f (n)× y(n) (2)
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f̂ (n) is an estimate of f (n), and its optimality is determined by the sequence x̂(n) obtained by
solving deconvolution of Equation (2). The closer the shape of the sequence x̂(n) is to the shape of x(n),
f (n) is optimal. This method is called minimum entropy deconvolution because the inverse filter f̂ (n)
can make x̂(n) restore the original property or have most of the original properties, that is, to minimize
the entropy. Ralph Wiggins [7] uses the norm of sequence x̂(n) to determine the entropy of itself and
uses it as the objective function to solve the optimal solution. When the sequence norm is the largest,
the inverse filter f̂ (n) is the optimal value, and Equation (2) becomes:

x(n) = f (n)× y(n) =
L

∑
l=1

f (n)y(n− l)
√

a2 + b2 (3)

According to the above analysis, the MED algorithm to find the minimum entropy can be
summarized as follows:

(1) The elements in f (0) are all initialized to 1.

(2) The iterative calculation of the equation x(n) = f (n)(i−1) × y(n) is performed.

(3) Calculate b(i)(l) = a
N
∑

n=1
x3(n)y(n− l).

(4) Calculate f (i) = A−1b(i).

(5) If ‖ f (i) − f (i−1)‖2
2 is less than a given threshold, the threshold of this paper is 0.01, and recursion

is stopped. Otherwise, let i increase by 1, and return to step 2.

2.2. Introduction of MOMEDA

Despite the successful results with MED, there are several major drawbacks. Firstly, MED is
optimizing the norm kurtosis which prefers a solution of a single impulse. Secondly, MED is an
iterative approach that involves iteratively finding a good filter solution [11]. In order to overcome
the shortcomings of MED in the detection of rotating machinery faults, McDonald proposed in 2016 a
position multi-pulse target recognition deconvolution algorithm with known positions for rotating
machinery fault detection, which can identify continuous impulse pulses. The introduced maximum
problem is called the multipoint optimal minimum entropy deconvolution adjusted (MOMEDA):

(
→
y ,
→
t ) =

1

‖
→
t ‖

→
t

T→
y

‖→y ‖
(4)

(
→
y ,
→
t ) = max
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f

→
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‖→y ‖
(5)

where the target vector
→
t is a constant vector that determines the pulse position and the weight.

The normalized level 1 is used to denote the optimal target solution, and the fault period can be
extracted at different sampling rates. The periods of different fault features at the same sampling
frequency can also be identified. Therefore, the target vector can be used to separate the pulse signal
and determine the position.

The extremum of Equation (5) is solved by deriving the filter coefficients (
→
f = f1, f2, . . . fL):
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Since:

d
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→
f
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−1
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−3

tkykX0
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→
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xk+L−1
xk+L−2

...
xk


Therefore Equation (6) can be written as:

d
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Further simplified:

t1
→
M1 + t2
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M2 + . . . + tN−L
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t (8)

The extreme value is solved by the derivative equal to
→
0 , and Equation (6) can be written as:

‖→y ‖
−1

X0
→
t − ‖→y ‖

−3→
t

T→
y X0

→
y =

→
0 (9)

That is:
→
t

T→
y

‖→y ‖
2 X0

→
y = X0

→
t (10)

Since
→
y = XT

0

→
f , and assume that (X0XT

0 )
−1 exists:

→
t

T→
y

‖→y ‖
2

→
f = (X0XT

0 )
−1

X0
→
t (11)

The MOMEDA filter and the output are simplified as follows:

F =
[ →

f 1

→
f 2 . . .

→
f M

]
= (X0XT

0 )
−1

X0

[ →
t 1

→
t 2 . . .

→
t M

]
(12)

Y =
[ →

y 1
→
y 2 . . .

→
y M

]
XT

0 F (13)

This method can completely avoid the iterative operation, and we do not need to consider whether
the period is an integer and the influence of filter length on noise reduction.

MOMEDA can calculate several consecutive target vectors by Equations (12) and (13), and further
distinguish between the fault periods and the relevant factors of its surrounding non-fault periods.
However, when the noise is too large, the target vector t representing the position and weight of the
output deconvolution impulse will be distorted, thus distorting the characteristics of the original
periodic shock, as discussed in the next section of the simulation signal.

In order to extract the fault features accurately, Multipoint Kurtosis (MK) is introduced as a
measure of feature extraction for the multi-stage transmission gearbox with wide frequency distribution
and multi-fault period:

Multipoint Kurtosis =
(∑N−L

n=1 t2
n)

2

∑N−L
n=1 t8

n

∑N−L
n=1 (tnyn)

4

(∑N−L
n=1 y2

n)
2

(14)

This definition is based on kurtosis, but its target vector is extended to multiple pulses at
the controlled position and further normalized to extract the fault period and plot the spectrum
using multi-point kurtosis to identify the fault. When the multi-point kurtosis comes to a peak,
the corresponding number of sampling points (period) is the fault period. In fact, there are peaks at
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integer, half, or 1.5 times the fault period, so multi-point kurtosis can differentiate between the fault
periods and the surrounding non-fault periods.

3. Performance Evaluation by Simulated Signals

To observe the noise reduction performance of MED, a simulated signal is generated based on the
impact characteristics of faulty bearings and rotors. It is then evaluated by applying MED to different
cases when the signal is added with different levels of noise:

signal 1 = 1.8e−7.1πt sin
(

71π

√
1− (0.1)2t

)
(15)

signal 2 = 0.45e−4πt sin
(

40π

√
1− (0.1)2t

)
(16)

The time-domain signal shown in Figure 1d is a direct addition of three signals: Signal 1
representing a strong impulse-train with a shorter period, Signal 2 being a weak impulse-train with a
larger period, and a random noise series. Envelope spectrum analysis of the simulation signal shows
that under strong noise conditions, the shock signals are both submerged by noise, so it is necessary
to reduce the noise. After filtering the simulation signal using MED, the kurtosis value increases
from 1.5662 to 5.546. The results are shown in Figure 2, and there is only one peak, which cannot be
determined as a strong or weak shock. The result of envelope spectrum analysis after MED noise
reduction is shown in Figure 3, where the strong shock signals are extracted, but weak shock signals is
still submerged by noise. Therefore, MED is only suitable for improving the signal-to-noise ratio of the
vibration signal, and the tracking of the weak fault characteristic is somewhat difficult.
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3.1. MED Denoised MK Spectrum

In this part, the limitations of MK to extract the shock period at different SNRs are first verified.
Further, the fault periods of the signals de-noised by MED are extracted with MK to verify its validity.
The simulation signal is shown in Figure 4.
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Figure 4. Simulation signals 1, 2 and 1 + 2.

There are two shocks and their period is 80 and 150 respectively, and the energy of signal 1 is
greater than signal 2. We add different white noise levels to signal 1 and signal 2. The noise levels are
11.63, 2.8, −1.89 and −5.12 dB, respectively, and the MK spectra are shown in Figures 5a, 6a and 7a.
It is clear that at the peak of the spectrum, the periods 40, 120, 80, 160, 240 correspond to 0.5 times,
1.5 times and integer multiples of the shock signal 1, respectively, but there is no spectrum peak about
the period of 150, in addition, along with the increase of noise, the spectrum peak of period 80 is
gradually submerged by noise when the noise level is −5.21 dB.
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signal 1 + signal 2 + 11.63 dB noise + MED and its MK spectrum.
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+ 2.8 dB noise + MED and its MK spectrum.
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In order to extract information about the period of 150, we use MED to reduce the noise of the
original signal, and the corresponding multi-kurtosis spectra are shown in Figures 5b, 6b and 7b. It is
clear that at the peak of the spectrum, the periods 75, 150 and 300 correspond to 0.5 times and an
integral multiples of the shock signal 2, respectively.

3.2. MED Denoised MOMEDA

In order to further verify the effect of noise on MOMEDA noise reduction proposed in the
previous section, the simulation signals 1 in Figure 4 and different levels of noise are selected for
analysis. Under the premise of selecting the noise reduction interval of [20, 160], the noise levels are
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10.23, 8.25, 4.43, 1.56 and −2.13 dB, respectively, and the MOMEDA results are shown in Figure 8a–e.
It is clear that with the decrease of the SNR, the periodic shock of 80 is gradually submerged, and with
the increase of noise, MOMEDA can still extract a periodic shock (T = 55.4, 55.9) each time, as is
shown in Figure 8d,e. However, this shock has no relationship with the signal of period 80. The main
reason is that the target vector will be deformed in a strong noisy environment, which will distort the
characteristics of the original periodic shock and further cause false diagnosis or leakage. If MOMEDA
noise reduction is used in the case of multi-fault coexistence, it not only cannot extract the strong shock,
but the extraction of the weak shocks is incapacitated. The next step will be to further discuss the noise
reduction and set reasonable period intervals to improve the noise reduction efficiency of MOMEDA.
In order to further extract the shock components corresponding to each fault period, we use MOMEDA
to extract the features of the above simulated signal, but the range of the search cycle of this method
is man-made. The signals in Figure 5a are denoised by MOMEDA by setting up the different period
ranges of [30, 50], [51, 100], [101, 130], [131, 155] and [156, 200], and the results are shown in Figure 9a–e.
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It is clear that under low noise conditions, a unique peak can be highlighted in each cycle interval,
but the extracted peak may be 0.5 times (Figure 9a), 1.5 times (Figure 9c) and 2 times (Figure 9e) the
original signal period (Figure 9b,d). The half cycle 75 of the original shock signal 2 is not highlighted
in the [51, 100] range, since the main energy in this interval is concentrated in the original shock
signal 1. In addition, when the period interval is set to [20, 200], only the shock signal with period 80
can be extracted. The main reason is that when there are two fault periods in the composite signals,
and the signal with period 80 is stronger than that of 150, so when using MOMEDA to extract the
periodic component, the shock component with a period of 80 is successfully identified, but the shock
component with a period of 150 is always mistaken for noise being filtered out. Therefore, when the
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multi-fault features are extracted, the setting of the fault period intervals will affect the precision of
fault extraction.

When the SNR is low, by entering the different period interval of [30, 50], [51, 100], [101, 130],
[131, 155] and [156, 200], the simulated signal shown in Figure 7a is denoised by with MOMEDA.
Due to the period of 80 signal is stronger, so its MOMEDA noise reduction is similar to Figure 9, but the
results of the noise reduction of the [131, 155] interval are shown in Figure 10a, the corresponding
period of 136.8 is a pseudo-periodic component, which has no relationship with the simulated signals
of the original periods 80 and 150. This means that in a strong noisy environment, the search results
in the interval of a fault period may be noise, which may lead to misdiagnosis. In order to eliminate
noise interference, the original signal is first denoised by MED and then extract the period, so that the
noise interference can be successfully eliminated, the results is shown in Figure 10b.
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Therefore, a target that has strong and weak faults can be simultaneously extracted by MED noise
reduction and different period interval setting. For example, when the periodic signals 80 and 150 are
searched, the search interval may be set to [70, 90] and [140, 170], then the periods corresponding to
other faults or noises are assigned to the noise components.

4. Multi-Fault Feature Recognition under Strong Noise

Taking the following aspects into account:
(1) When the background noise of the gearbox is large, the fault features are often submerged by

noise and the fault period is not easy to be extracted. Therefore, by simulation signal of Section 3, it can
be found that multi-kurtosis cannot identify the fault features in the case of a single fault or multiple
faults at low signal-to-noise ratio as shown in Figure 8a. We can see that the peaks at the period of
80 and 150 are not obvious, and there is no peak at the multiple or half times. Thus, a strong noise
reduction method is urgently needed for its pretreatment.

(2) In order to extract the characteristic period of multiple faults, we can improve the
signal-to-noise ratio of the signal through the MED pre-noise reduction method. Because the maximum
kurtosis is taken as the iteration termination condition in MED, it not only can highlight the individual
strong shock signals, but also improve the signal-to-noise ratio of the weak shock signals. Then
we multiply the kurtosis of the signal after noise reduction. It can be seen from Figures 5b, 6b, 7b
and 8b that the positions at which peaks appear are at periods 40, 80, 160 and 150, 300, respectively.
Obviously, the signal after noise reduction, although not as large as the peak corresponding to Figure 5b,
has distinguished the fault period and the surrounding non-fault period effectively. Therefore, for a
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periodic vibration signal, when the multi-kurtosis is after MED it has a fixed period corresponding to
the peak period and its multiples.

The fault period and reasonable search intervals are determined firstly, and then the signals
de-noised by MED are processed with MOMEDA to obtain the fault features. Since each feature
extraction can extract only one periodic component, when using MOMEDA to extract each period
component, if the period range is set too large, other noise components will be extracted, resulting in
misdiagnosis. In this case, in order to improve the accuracy of MOMEDA search fault period, the fault
period should be adjusted.

In order to avoid leakage diagnosis in the process of noise reduction by MOMEDA, the scope of
the fault period needs to be identified in advance to further determine the number of sampling points.
In order to make sure that there will be more than five period peaks in the whole sampling interval,
the fault period of the gear box rotating machinery should be determined, and the sampling points
should be controlled at about five times the maximum period. The specific feature extraction flow
chart is shown in Figure 11.
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5. Application Case

The method is further demonstrated with a vibration signal obtained from a wind turbine. The test
bench sketch of the wind turbine gearbox is shown in Figure 12. The gear transmission system has three
stages. The first is a planetary gear train and the other two are the fixed axis gear trains. According to
the structural features of the wind turbine gearbox test bench, four transducers are mounted at the
measuring points on bearing blocks #5, #7, #8, and #10, respectively. The rotational frequency of the
output shaft is 27.3 Hz. The sampling frequency for data acquisition is at 10,000 Hz. According to the
calculation, the vibration period of the shaft is 365.9. In addition, according to the bearing type and the
shaft speed to calculate the bearing failure frequency and fault period, and bearing fault periods are
also listed in the following Table 1.
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Figure 12. Schematic of wind turbine gearbox test rig.

Table 1. Bearing fault period data.

Bearing Locations Inner Ring Fault
Period

Outer Ring Fault
Period

Rolling Element
Fault Period

High speed input shaft bearing #8 42.3 59.9 100.4
High speed input shaft bearing #9 42.3 59.9 100.4

High speed output shaft bearing #10 45.1 65.5 108.3

The vibration signal data of bearing block #10 under no-load and strong load conditions are
collected, respectively, and the vibration wave forms are shown in Figures 13 and 14. In Figure 13,
there is no obvious periodic component, the vibration amplitude is small, and the vibration signal
is stable. When the power from the generator is increased to 1880 kW, vibration and noise begin to
increase gradually. At the same time, there are obvious signs of warming in the high speed shaft of
the gear box after the test rig running for a short time. It can be seen from Figure 14 that there is an
obvious periodic component. In order to further determine the failure period, the multi-point kurtosis
of the fault signals under no-load and strong load conditions were calculated. According to the bearing
fault period and the rotation period of the shaft, set the multi-point kurtosis period range of 10~1500,
step size is set to 0.1, and the results are shown in Figures 15 and 16.
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Figure 16. Multi-point kurtosis spectrum of vibration signal under strong load.

Obviously, the multi-point kurtosis spectrum of the normal gearbox is smooth, but the 183 Hz,
365.9 Hz, 731.8 Hz periodic components in the fault spectrum correspond to the multiple rotation
period of the high-speed shaft. As a result, it can be preliminarily determined that the high-speed shaft
has undergone weak bending. As the noise is relatively large, in order to determine whether there are
other fault components in the gearbox, according to the method described in this paper, using the MED
method to reduce the noise of the vibration signal processing to get the signal after noise reduction
which is shown in Figure 17. It can be seen that kurtosis value has been greatly improved, but no
significant periodic weak shock signal appears.
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Figure 17. MED reduction of vibration signal under strong load.

The de-noised signals are analyzed by multi-point kurtosis. At this time, the problem of bending
failure of the high-speed shaft has been determined. Therefore, the period range is set to be 10~500,
the step is 0.1, and the result is shown in Figure 18. Except for the 183 Hz and 365.9 Hz high-speed
shaft period components, the spectrum peak also appear in the 65.2 Hz, 130.4 Hz, 195.6 Hz, 260.8 Hz
components. The observation of Table 1 shows that these frequency components are multiple of the
fault frequency of outer ring of #10 bearing. Thus, it can be determined that the failure of the gearbox
consists mainly of two aspects, besides high-speed shaft bending, the outer ring of output bearing has
also failed.

In order to further extract the fault signal, the original signals are denoised by MOMEDA. The two
period ranges are set of 360~370 and 60~70, respectively. The corresponding spectra of the extracted
fault features are shown in Figures 19 and 20, respectively. Obviously, the shock vibration signals are
extracted one by one, and when the box is finally opened, it could found that outer ring of #10 bearing
displays a serious pitting phenomenon.
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Obviously, only the intrinsic mode function of the third layer extracts the double frequency of the
diagnosis frequency of the high-speed shaft. However, the failure frequency of the high-speed shaft
#10 bearing is not successfully extracted in high frequency. It is possible that the weak bearing fault is
still submerged by EEMD decomposition due to the background noise. Therefore, the EEMD cannot
extract the composite fault features effectively.

6. Conclusions

(1) MED denoising using the maximum kurtosis as the termination condition of iteration can
improve the SNR of the signals. Its primary advantage is that it can greatly improve the SNR of
the original signal to prepare for the signal post-processing without changing the fault structure of
the original signal. However, the limitation of this algorithm is that by only reaching the maximum
kurtosis and finding the best filter, the iterative calculation can be stopped. In addition, this algorithm
can only extract the strong shock components of individual periods, and has no immunity to weak
shock signals.
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(2) In this paper, the multi-point kurtosis method was used to extract the fault-period components,
the maximum multipoint period or the multiple of the period is the fault characteristic. This period
component can be integer or fractional, without a priori knowledge. The effect of tracking the fault
period through the maximum of multi-point kurtosis is relatively weak under strong background
noise. The pre-processing of the original signal by MED can reduce the interference of the noise to the
multi-point kurtosis method in extracting the periodic components. In addition, after determining
the periodic components, it is necessary to set a reasonable period to extract the fault characteristics.
Larger periodic intervals often contain some uncertain factors, such as noise components, and will
further interfere with feature extraction.

(3) The validity of this method is proved by the agreement of the simulation signals and measured
signals. Using this method, the fault characteristic of the composite fault can be successfully extracted,
and it is effective even under strong background noise.
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