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Abstract: Alzheimer’s disease (AD) is the most prevalent form of dementia in the world, which is
characterised by the loss of neurones and the build-up of plaques in the brain, causing progressive
symptoms of memory loss and confusion. Although definite diagnosis is only possible by necropsy,
differential diagnosis with other types of dementia is still needed. An electroencephalogram (EEG)
is a cheap, portable, non-invasive method to record brain signals. Previous studies with non-linear
signal processing methods have shown changes in the EEG due to AD, which is characterised
reduced complexity and increased regularity. EEGs from 11 AD patients and 11 age-matched control
subjects were analysed with Fuzzy Entropy (FuzzyEn), a non-linear method that was introduced as an
improvement over the frequently used Approximate Entropy (ApEn) and Sample Entropy (SampEn)
algorithms. AD patients had significantly lower FuzzyEn values than control subjects (p < 0.01) at
electrodes T6, P3, P4, O1, and O2. Furthermore, when diagnostic accuracy was calculated using
Receiver Operating Characteristic (ROC) curves, FuzzyEn outperformed both ApEn and SampEn,
reaching a maximum accuracy of 86.36%. These results suggest that FuzzyEn could increase the
insight into brain dysfunction in AD, providing potentially useful diagnostic information. However,
results depend heavily on the input parameters that are used to compute FuzzyEn.

Keywords: Alzheimer’s disease; electroencephalogram; non-linear analysis; complexity; irregularity;
Fuzzy Entropy; Sample Entropy

1. Introduction

Alzheimer’s disease (AD) is a form of dementia that is characterised by progressive impairments
in cognition and memory [1]. The cause of AD is not known [2], and the course of the disease can
last several years before death [1]. As AD is currently the most prevalent dementia worldwide [3,4]
the impact of the disease is significant. Current clinical diagnosis is based on the National Institute
of Neurological and Communicative Disorders and Stroke and Alzheimer's Disease and Related
Disorders Association (NINCDS-ADRDA) criteria [5], and, although definite diagnosis is only possible
by necropsy, a differential diagnosis with other types of dementia would be of great use.

The electroencephalogram (EEG), a recording of the electrical activity of the brain, shows great
potential to characterise changes in brain activity as a result of AD. There are several reasons for this;
the first being that AD is a cortical dementia [1] and, therefore, changes to the electrical activity of
the brain resulting from AD could be registered on EEGs. Furthermore, the EEG can be recorded
non-invasively, with portable equipment and at much lower cost than other imaging techniques that
are used in AD diagnosis. Therefore, the application of signal processing algorithms to extract features
from EEG signals may help in the characterisation of the changes that are associated with AD. In fact,
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several EEG features appear to be abnormal in AD patients, where a shift of the power spectrum to
lower frequencies, a decrease of coherence among cortical areas, perturbed synchrony, and reduced
complexity have been observed (for detailed reviews, please see [1,6]), although in the early stages of
the disease, the EEG may show similar features to that of age-matched healthy controls [7]. In spite
of these findings, there is room for the introduction of novel signal processing techniques for further
study of the EEG. In particular, entropy algorithms quantifying irregularity in data could be useful to
capture subtle changes in the EEG that might be caused by AD.

Different entropy algorithms have been introduced over the years to characterise the EEG,
with greater entropy being associated with increased irregularity in the EEG. Embedding entropies
are algorithms where entropy is used to provide information about how the EEG signal fluctuates
with time by comparing the time series with a delayed version of itself [8]. The introduction of
Approximate Entropy (ApEn) by Pincus [9] made the reliable characterisation of the entropy of short
and noisy biomedical signals possible in ways that were, up until its introduction, not achievable.
ApEn measures the regularity in data by examining time series for similar epochs and assigning
a non-negative number to the sequence, with larger values corresponding to more complexity or
irregularity in the data [9]. Given a time series with N samples, a sample length m and a tolerance
window r, ApEn(m, r, N) measures the logarithmic likelihood that samples of patterns that are close
(within r) for m contiguous observations remain close (within the same tolerance width r) on subsequent
incremental comparisons [9]. The ApEn algorithm counts each sequence as matching itself to avoid the
occurrence of ln(0) in the calculations. The effect of self-matches provides a biased estimate of entropy,
giving a false impression of determinism [10]. Furthermore, ApEn values depend heavily on the record
length, with ApEn being lower than expected for short time series, and it also lacks consistency when
different input parameter values are used to evaluate the same time series [11]. It was subsequently
superseded by Sample Entropy (SampEn), as introduced by Richman and Moorman [11]. As it is
also the case with ApEn, two input parameters, m and r, must be specified to compute SampEn.
SampEn(m, r, N) is the negative logarithm of the conditional probability that two sequences similar for
m point vectors remain similar at the next point, where self-matches are not included in calculating
the probability. SampEn would be lower for signals that show a higher degree of self-similarity,
i.e., more regular. In addition to overcoming some of the limitations of ApEn, SampEn is easier to
compute [11]. For both ApEn and SampEn, the recommended range of values for input parameters
are m = 1 or 2 and r between 0.1 and 0.25 times the standard deviation of the input data [11].

Different algorithms that are attempting to improve SampEn have been suggested. Quadratic
Sample Entropy (QSE) was introduced to reduce the influence of the arbitrary constants m and r on
SampEn and to reduce the skewing of results when either the top or the bottom of the conditional
probabilities was very small or very large [12]. Input variables are the same (i.e., a sample length m
and a tolerance window r) though the recommended values are different, with r not being limited
to the range suggested for ApEn and SampEn. Another attempt to improve SampEn was with the
introduction of Fuzzy Entropy (FuzzyEn) [13], based on the concept of fuzzy sets to determine a fuzzy
measurement of similarity of two vectors based on their shapes.

In this pilot study, FuzzyEn was used to characterise the broadband activity in the EEG of patients
with AD. It was hypothesised that FuzzyEn would identify differences between the entropy of EEG
signals from AD patients and age-matched control subjects, and that these differences could be used
to help in the classification of EEG signals with respect to their class (AD patient or control subject).
The quality of the classification would be evaluated using receiver operating characteristic (ROC)
curves [14]. Furthermore, FuzzyEn results would be compared with SampEn to ascertain whether the
claims that the former is a superior method to the latter hold true in the context of EEG analysis in AD.

The outline of the paper is as follows. Section 2 describes the EEG database that is used in this
study and introduces FuzzyEn. Results obtained with all of the input parameters tested in this pilot
study are presented in Section 3, whilst the discussion of the findings, focusing on a comparison of the
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results obtained with FuzzyEn and other related entropies, and the conclusions from this study follow
in Section 4.

2. Materials and Methods

2.1. Subjects and EEG Recording

The database used in this study consisted of 11 patients with a diagnosis of AD (five men;
six women; age: 72.5 ± 8.3 years, mean ± standard deviation (SD)), recruited from the Alzheimer’s
Patients’ Relatives Association of Valladolid (AFAVA), Spain, and 11 age-matched controls (seven men;
four women; age: 72.8 ± 6.1 years, mean ± SD). AD diagnosis was supported by clinical evaluation
(clinical history, physical, and neurological examination) and Mini-Mental State Examination (MMSE),
which is generally accepted as an effective way to evaluate cognitive function [15], was also performed.
The average MMSE score for the AD patients was 13.1 ± 5.9 (mean ± SD), indicating moderate to
severe dementia, and the score was 30 for all of the control subjects, indicating no mental impairment.
All of the subjects and caregivers gave their informed consent for participation in the study.

EEG signals were recorded with the subjects in a relaxed state with eyes closed at the Hospital
Clínico Universitario de Valladolid (Spain) using Oxford Instruments Profile Study Room 2.3.411 EEG
equipment and the international 10–20 system with electrodes referenced to the linked ear lobes of
each subject. More than 5 min of EEG data were recorded for each subject with a sampling rate of
256 Hz. Two AD patients were taking lorapezam at the time of recording the EEG, but no prominent
rapid rhythms were observed in the visual examination of their EEGs. None of the other subjects who
took part in the study were using medication that could be expected to influence the EEG.

Artefact-free sections of the EEG signals (split into 5-second epochs with no movement artefacts
and no electroencephalographic signs of sleep) were selected by Dr Pedro Espino, the specialist
physician that was overseeing the recording of the EEGs. On average, 30.0 ± 12.5 epochs (mean ± SD)
were selected from each electrode for each subject. All of the epochs selected were filtered using a
Hamming window FIR filter with order 426 and cut-off frequencies at 0.5 Hz and 40 Hz to remove
residual noise (DC offset and mains hum) prior to the computation of FuzzyEn. Zero-phase filtering
was used to make sure the use of a filter of such high order did not result in edge effects.

2.2. Fuzzy Entropy

Both ApEn and SampEn measure the similarity of the vectors being compared using a Heaviside
function, which can be represented as:

θ(z) =

{
1, i f z ≥ 0
0, i f z < 0

(1)

This leads to a two-state binary classifier, where the vectors are either close or not. However,
this might not be able to capture in the most appropriate way the boundaries between different classes,
which in real biomedical data might be more ambiguous [13]. Therefore, FuzzyEn was introduced to
overcome this limitation with a fuzzy function instead of the Heaviside function used to calculate the
similarity degree between vectors.

Since its introduction, FuzzyEn has been used to characterise different types of biomedical signals,
such as electromyograms [13,16–18], EEGs [19,20], gait [20], or heart rate variability [20,21]. Comparative
studies with ApEn and SampEn suggest that FuzzyEn outperforms them [17,19]. Furthermore, recent
evidence suggests that FuzzyEn is a robust entropy estimator when there are missing samples in the
biomedical signals being analysed [20].

Given N data points from a time series {x(n)} = x(1), x(2), . . . , x(N), FuzzyEn can be calculated
using the following algorithm [13]:

1. For 1 ≤ i ≤ N − m + 1, form m-vectors Xm(1) . . . Xm(N − m + 1) defined as:
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Xm(i) = [x(i), x(i + 1), . . . , x(i + m− 1)]− x0(i) (2)

These vectors represent m consecutive x values, commencing with the ith point, with the baseline
(x0(i) = 1

m ∑m−1
j=0 x(i + j)) removed.

2. Define the distance between vectors Xm(i) and Xm(j), dij,m, as the maximum absolute difference
between their scalar components.

3. Given n and r, calculate the similarity degree Dij,m of the vectors Xm(i) and Xm(j) with a fuzzy
function:

Dij,m = µ
(
dij,m, r

)
= exp

(
−
(
dij,m

)n

r

)
(3)

4. Define the function φm as:

φm(n, r) =
1

N −m

N−m

∑
i=1

(
1

N −m− 1

N−m

∑
j=1,j 6=i

Dij,m

)
(4)

5. We increase the dimension to m + 1, form vectors Xm+1(i), and, subsequently, obtain the function
φm+1 repeating steps 2 to 4.

6. For time series with a finite number of samples N, FuzzyEn can be estimated with the following
equation [13]:

FuzzyEn(m, n, r, N) = ln φm(n, r)− ln φm+1(n, r) (5)

Given that FuzzyEn is based on the original SampEn algorithm, as introduced by Richman
and Moorman in [11], it can be therefore computed as the negative logarithm of the conditional
probability that two sequences similar for m points—where similarity is measured using the fuzzy
function introduced in Equation (3), instead of the Heaviside function used in the ApEn and
SampEn algorithms—remain similar when the size of the vectors being considered is increased
by one. The algorithm, as is also the case with SampEn, does not include self-matches when
calculating the probability aforementioned. Thus, it does not show the bias that is associated with
ApEn [11]. Furthermore, lower values of FuzzyEn indicate more self-similarity in the time series being
characterised with this algorithm.

It is obvious that FuzzyEn values would depend on the values of the input parameters m, n, r,
and N, and comparisons should only be attempted for fixed values of these parameters. N is the length
of the time series and is determined, in this particular study, by the sampling frequency of 256 Hz
and the epoch length of 5 s. Parameter m determines the length of the sequences to be compared,
as in ApEn and SampEn. On the other hand, r and n determine the width and gradient of the fuzzy
exponential function.

In principle, larger values of m allow for a better reconstruction of the dynamics of the system
being characterised. However, the accuracy and confidence of the entropy estimate improve with a
greater number of matches of vectors of length m and m + 1. Therefore, it is usually recommended to
choose small values of m [11].

Figure 1 shows the changes in the shape of the fuzzy exponential function changes with n and r.
It has been recommended to use small integer values of n [13] and set the tolerance width as r times
the standard deviation (SD) of the original data sequence [11]; the latter would give FuzzyEn scale
invariance [9].

Based on these recommendations, in this pilot study, values of m = 1 and m = 2, n = 1, n = 2,
and n = 3, and r = 0.1, r = 0.15, r = 0.2, and r = 0.25 times the SD of the original time series were
used. This led to 24 variable combinations tested. FuzzyEn was therefore computed using 24 input
parameter combinations for channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, and T6.
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Figure 1. Fuzzy function for n = 1 (a), n = 2 (b), and n = 3 (c) and the different values of r used in the 
study. 
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The distribution of the FuzzyEn results was evaluated with the Lilliefors test. Depending on the 
results from the Lilliefors test, Student’s t-test, or Kruskal-Wallis tests were used to evaluate the 
statistical significance of differences between groups of subjects at each electrode. In all of the above 
statistical analyses, statistical significance was at p < 0.01. 

Results from the electrodes where statistically significant differences between AD patients and 
controls were found were then analysed with ROC curves, and sensitivity (true positive rate, i.e., 
percentage of AD patients correctly classified), specificity (true negative rate, i.e., proportion of 
control subjects correctly identified), accuracy (percentage of total subjects classified precisely), area 

Figure 1. Fuzzy function for n = 1 (a), n = 2 (b), and n = 3 (c) and the different values of r used in
the study.

2.3. Statistical Analysis

The distribution of the FuzzyEn results was evaluated with the Lilliefors test. Depending on
the results from the Lilliefors test, Student’s t-test, or Kruskal-Wallis tests were used to evaluate the
statistical significance of differences between groups of subjects at each electrode. In all of the above
statistical analyses, statistical significance was at p < 0.01.

Results from the electrodes where statistically significant differences between AD patients
and controls were found were then analysed with ROC curves, and sensitivity (true positive rate,
i.e., percentage of AD patients correctly classified), specificity (true negative rate, i.e., proportion
of control subjects correctly identified), accuracy (percentage of total subjects classified precisely),
area under the curve, and the optimum threshold (FuzzyEn value that maximises diagnostic accuracy)
were computed.
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3. Results

FuzzyEn was computed for all the 24 input parameter values. Results were averaged based on
all of the artefact-free five second epochs within the five-minute period of EEG recordings for the
22 subjects. For all the possible combinations of m, n, and r values, and most electrodes, FuzzyEn
was higher for the EEG of control subjects than that for AD patients. The tables in the Supplementary
Materials section contain all of the results for the 24 combinations of input parameter values tested.

The results depended heavily on the choice of input parameters. For n = 1, the FuzzyEn values
were found to follow a normal distribution. Therefore, Student’s t Test was used to evaluate the
statistical significance of the findings. For all the values of r and m = 1, FuzzyEn was significantly
lower (p < 0.01) for AD patients at electrodes Fp1, T6, P3, and O2. With m = 2 and all the values of
r, FuzzyEn was significantly lower (p < 0.01) for AD patients at electrodes T6, P3, P4, O1, and O2.
These results suggest that AD is associated with a significant decrease of entropy—as estimated by
FuzzyEn—in some, but not all, areas of the brain.

For n = 2 and n = 3 the results did not to follow a normal distribution and the Kruskal-Wallis test
was used to evaluate the statistical significance of the findings. With n = 2, the number of electrodes
where significant differences (p < 0.01) between both groups were found dropped significantly when
compared to results obtained with n = 1. FuzzyEn was significantly lower in AD patients’ EEGs at P3
(with m = 1 and all values of r, and m = 2 and r = 0.15, 0.2, and 0.25) and O2 (with m = 1 and r = 0.1,
0.15, and 0.2, and m = 2 and r = 0.2, and 0.25). With n = 3 and m = 1, FuzzyEn was only significantly
lower (p < 0.01) in AD patients’ EEGs at electrode O2 (for all combinations of r). With n = 3 and m = 2,
the only electrode where FuzzyEn was significantly lower (p < 0.01) in AD patients was P3, and this
only for r = 0.2 and r = 0.25. Furthermore, the dispersion of FuzzyEn values increased significantly for
n = 3, suggesting a less reliable entropy estimate (see results in the Supplementary Materials section).

Figure 2 summarises the average FuzzyEn values for n = 1, m = 2, and r = 0.25 times the SD of the
EEG time series, the combination of input parameters that highlights the biggest differences between
both groups for all possible input parameter combinations. The decrease in entropy in AD patients is
particularly evident for electrodes that are placed over the parietal, occipital, and temporal regions.
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The possible usefulness of FuzzyEn in a diagnostic context was evaluated with ROC curves.
The greatest accuracy, at 86.36%, was found when n = 1. This was the case in 9 of the 36 electrode
and variable combinations where significant differences between the controls subjects and the AD
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patients had been found using that value of n. The largest area under the curve (0.9091) was found
at electrode P3 when n = 1, m = 2, and r = 0.1 times the SD of the time series, closely followed by the
area at P3, when n = 1, m = 2, and r = 0.25 times the SD of the time series with 0.9008. These did not
correspond to the highest accuracy found, with 81.82% accuracy in both cases. Maximum sensitivity
was 90.91%, whilst there were some combinations of electrode and input parameter values resulting in
100% specificity. The complete results for FuzzyEn with n = 1 are summarised in Table 1.

Table 1. Sensitivity, specificity, accuracy, and area under the ROC curve for FuzzyEn (n = 1) for all
the electrodes and combinations of m and r, for which statistically significant differences between AD
patients and control subjects were found. The threshold is the FuzzyEn value that maximises accuracy.

m r Electrode Threshold Sensitivity Specificity Accuracy Area Under Curve

1 0.1 Fp1 1.1169 63.64 81.82 72.73 0.7934
T6 1.3916 81.82 81.82 81.82 0.8182
P3 1.1755 81.82 81.82 81.82 0.8595
O2 1.2918 81.82 90.91 86.36 0.8595

1 0.15 Fp1 0.8015 63.64 81.82 72.73 0.7934
T6 1.0217 81.82 81.82 81.82 0.8182
P3 0.8516 81.82 90.91 86.36 0.8678
O2 0.9393 81.82 90.91 86.36 0.8678

1 0.2 Fp1 0.6248 63.64 81.82 72.73 0.7934
T6 0.8040 81.82 81.82 81.82 0.8182
P3 0.6669 81.82 90.91 86.36 0.8678
O2 0.7362 81.82 81.82 81.82 0.8554

1 0.25 Fp1 0.5105 63.64 81.82 72.73 0.7934
T6 0.6662 81.82 81.82 81.82 0.8182
P3 0.5473 81.82 90.91 86.36 0.8678
O2 0.6054 81.82 81.82 81.82 0.8512

2 0.1 T6 0.8755 81.82 81.82 81.82 0.8182
P3 0.7847 81.82 81.82 81.82 0.9091
P4 0.7380 72.73 81.82 77.27 0.8099
O1 0.8414 81.82 72.73 77.27 0.8264
O2 0.8197 90.91 81.82 86.36 0.8512

2 0.15 T6 0.7127 81.82 81.82 81.82 0.8182
P3 0.6295 81.82 81.82 81.82 0.8843
P4 0.5885 63.64 90.91 77.27 0.8099
O1 0.6879 81.82 72.73 77.27 0.8182
O2 0.6617 90.91 81.82 86.36 0.8678

2 0.2 T6 0.6018 81.82 81.82 81.82 0.8264
P3 0.5301 81.82 81.82 81.82 0.8926
P4 0.4895 63.64 100 81.82 0.8182
O1 0.5743 81.82 72.73 77.27 0.8099
O2 0.5523 90.91 81.82 86.36 0.8595

2 0.25 T6 0.5206 81.82 81.82 81.82 0.8264
P3 0.4564 81.82 81.82 81.82 0.9008
P4 0.4182 63.64 100 81.82 0.8182
O1 0.4926 81.82 72.73 77.27 0.8099
O2 0.4727 90.91 81.82 86.36 0.8595

ROC results when n = 2 are summarised in Table 2. For this particular value of the fuzzy function,
there were 12 combinations of electrode and input parameter values that showed a significant decrease
of FuzzyEn in AD patients. The greatest accuracy was 81.82% and the largest area under the curve was
0.8843. Neither sensitivity nor specificity reached values that were greater than 81.82% in any case.

With n = 3, there were even fewer combinations (six in total) of electrode and input parameter
values showing a significant decrease of FuzzyEn in AD. Accuracy reached a maximum value of
81.82%, whilst the largest area under the curve was 0.8678 (for an accuracy of 77.27%). As was also the
case for n = 2, neither sensitivity, nor specificity, exceeded 81.82%. ROC results for these results are
held in Table 3.



Entropy 2018, 20, 21 8 of 13

Table 2. Sensitivity, specificity, accuracy, and area under the ROC curve for FuzzyEn (n = 2) for all
the electrodes and combinations of m and r for which statistically significant differences between AD
patients and control subjects were found. The threshold is the FuzzyEn value that maximises accuracy.

m r Electrode Threshold Sensitivity Specificity Accuracy Area Under Curve

1 0.1 P3 1.0782 81.82 81.82 81.82 0.8347
O2 1.4320 72.73 81.82 77.27 0.8512

1 0.15 P3 0.8648 81.82 81.82 81.82 0.8264
O2 1.1963 72.73 81.82 77.27 0.8430

1 0.2 P3 0.7279 81.82 81.82 81.82 0.8264
O2 1.0326 72.73 81.82 77.27 0.8430

1 0.25 P3 0.6377 81.82 81.82 81.82 0.8264

2 0.15 P3 0.7627 81.82 81.82 81.82 0.8843

2 0.2 P3 0.7231 81.82 81.82 81.82 0.8843
O2 0.7832 72.73 81.82 77.27 0.8264

2 0.25 P3 0.6875 81.82 81.82 81.82 0.8843
O2 0.7493 72.73 81.82 77.27 0.8347

Table 3. Sensitivity, specificity, accuracy, and area under the receiver operating characteristic (ROC)
curve for FuzzyEn (n = 3) for all the electrodes and combinations of m and r for which statistically
significant differences between AD patients and control subjects were found. The threshold is the
FuzzyEn value that maximises accuracy.

m r Electrode Threshold Sensitivity Specificity Accuracy Area Under Curve

1 0.1 O2 1.4739 72.73 81.82 77.27 0.8430

1 0.15 O2 1.3153 72.73 81.82 77.27 0.8554

1 0.2 O2 1.2030 72.73 81.82 77.27 0.8678

1 0.25 O2 1.1147 72.73 81.82 77.27 0.8512

2 0.2 P3 0.7747 81.82 81.82 81.82 0.8306

2 0.25 P3 0.7571 81.82 81.82 81.82 0.8347

4. Discussion and Conclusions

Resting state EEG activity of 11 AD patients and 11 control subjects was characterised with
FuzzyEn in this pilot study. FuzzyEn was introduced to overcome some limitations of ApEn and
SampEn [13], in particular, the fact that both algorithms use a Heaviside function to measure the
similarity of the embedding vectors from the time series being compared [13].

FuzzyEn was lower in the EEG of AD patients for all possible combinations of m, n, and r
values and for most electrodes. The greatest number of electrodes (Fp1, T6, P3, P4, O1, O2) showing
significant FuzzyEn differences between the EEG of AD patients and controls were seen when n = 1,
i.e., the steepest gradient of the exponential function. Furthermore, the highest values of accuracy
and area under the ROC curve were also obtained with this value of n. Our results suggest that
brains affected by AD show a more regular electrophysiological behaviour in the parietal and occipital
regions, something that is in agreement with previous studies [22–26].

Relevant findings in the changes in the EEG with AD using this same database include a significant
reduction in complexity, as measured with the Lempel-Ziv algorithm, at electrodes T5, P3, P4, and O1,
with classification accuracies between 72.73% and 81.82% [22]. Some of those electrodes showing
reduced complexity (measured with Lempel-Ziv complexity) coincide with those where a significant
decrease of irregularity in AD patients’ EEGs has been highlighted by FuzzyEn. However, it is worth
noting that FuzzyEn was able to find differences in a greater number of electrodes than Lempel-Ziv
complexity. A significant loss of complexity in the EEG of AD patients at T5, T6, P3, P4, O1, and O2 was
also found with a method based on auto-mutual information, with classification accuracies ranging
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from 81.82% to 90.91% [23], as well as with multiscale entropy (MSE), for which significant differences
between the MSE of AD patients and controls were found at F3, F7, Fp1, Fp2, T5, T6, P3, P4, O1,
and O2, with accuracies from 77.27% to 90.91% [24].

More relevant though are previous studies with this same EEG database using ApEn [23],
SampEn [25], and QSE [26]. It was found that ApEn was significantly lower in AD patients than
in controls at electrodes P3, P4, O1, and O2. However, classification accuracies that were obtained
using ROC curves at these electrodes ranged from 72.72% to 77.27% (with the latter value found at P3,
O1, and O2). The largest area under the curve was 0.8595 (at P3 and O1). Nevertheless, ApEn results
should be interpreted with great care, as this is a biased entropy estimator, and, therefore, not as
reliable as other algorithms [10,11]. SampEn values were also significantly lower for AD patients’ EEGs
than for age-matched controls’ EEGs at O1, O2, P3, and P4. Moreover, with SampEn the classification
accuracy obtained with ROC curves reached 77.27% at all of those electrodes, supporting the superior
discriminating power of SampEn when compared to ApEn, which could arise from the fact of SampEn
being an improvement over ApEn. Nevertheless, the largest area under the curve (0.8595 at O1) was
similar to the one that is found with ApEn. These results are also supported by recent findings with
QSE, with accuracies of 77.27% at P3, O1, and O2, for m = 1, m = 2, and a range of values of r [26]. All of
these results support that EEG activity of AD patients is significantly more regular (less complex) than
in a normal brain in the parietal and occipital regions. Table 4 summarises the results obtained with all
these methods.

It is worth noting that the detection of a significant decrease of entropy in the EEG of AD patients
is heavily dependent on the input parameters that are used in the different entropy estimators. In the
case of SampEn, the combination of input parameters that yielded the best results were m = 1 and
r = 0.25 times the standard deviation of the time series [25], whilst for QSE, similar results were
obtained with m = 1, m = 2, and a wide range of values of r [26]. On the other hand, for FuzzyEn,
the combination of input parameters that resulted in the greatest number of electrodes showing a
statistically significant decrease of entropy in AD (five in total: T6, P3, P4, O1, O2) and the highest
accuracies, was n = 1, m = 2, and r = 0.25 times the standard deviation of the time series. In fact,
with n = 1, m = 1, and r = 0.25, FuzzyEn was significantly lower for AD patients at electrodes Fp1,
T6, P3, and O2, but no significant differences were found at P4 and O1, unlike with SampEn or QSE.
Therefore, recent claims of FuzzyEn being superior to ApEn and SampEn in the discrimination of
EEG signals in AD patients [19] need to be evaluated with great care, as that might not necessarily be
the case for all the combinations of input parameters. Furthermore, our results suggest that FuzzyEn
becomes a much less reliable entropy estimator when n = 3 than when n = 1 or n = 2.

Our study is not the first time that the concept of FuzzyEn has been used to evaluate the complexity
changes in the EEG in AD patients. Fuzzy versions of ApEn and SampEn (the latter corresponding to
the algorithm used herein) were used to compute the complexity of the EEG in the delta, theta, alpha,
and beta bands [19]. It was shown that the fuzzy entropies could distinguish EEGs of AD patients
from those of controls in a better way than ApEn and SampEn, with a significant decrease in the alpha
band, particularly at electrodes T3 and T4. A classification accuracy of 88.1% using fuzzy SampEn
and a support vector machine classifier was reported. However, results cannot be compared directly
to those that are presented above, as the analysis in [19] focused on different EEG frequency bands,
with significant differences being found only in the alpha band. In our study, we have characterised
the entropy of a much broader bandwidth of the EEG at rest, therefore limiting the impact of any
technique used to extract the EEG activity in different frequency bands. Furthermore, recent evidence
suggests that the presence of broadband activity of the EEG is required for a proper evaluation of
complexity in the context of AD [27].
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Table 4. Sensitivity, specificity, and accuracy for all the electrodes where significant differences between
AD patients and control subjects were found with a selection of relevant non-linear methods previously
used in the analysis of the same electroencephalogram (EEG) database.

Method Electrode
ROC Classification Results

Sensitivity Specificity Accuracy

LZC (3 symbol conversion) [22]

T5 72.73 72.73 72.73
P3 81.82 81.82 81.82
P4 72.73 90.91 81.82
O1 90.91 72.73 81.82

Slope of MSE (m = 1, r = 0.25,
12 scales) for large time scales [24]

F3 81.82 81.82 81.82
F7 81.82 72.73 77.27

Fp1 90.91 90.91 90.91
Fp2 100 72.73 86.36
T5 90.91 81.82 86.36
T6 81.82 81.82 81.82
P3 81.82 90.91 86.36
P4 72.73 90.91 81.82
O1 81.82 90.91 86.36
O2 81.82 81.82 81.82

ApEn (m = 1, r = 0.25) [23]

P3 72.73 81.82 77.27
P4 63.64 81.82 72.73
O1 81.82 72.73 77.27
O2 90.91 63.64 77.27

AMI rate of decrease [23]

T5 90.91 72.73 81.82
T6 81.82 81.82 81.82
P3 100 81.82 90.91
P4 81.82 81.82 81.82
O1 81.82 81.82 81.82
O2 81.82 81.82 81.82

SampEn (m = 1, r = 0.25) [25]

P3 72.73 81.82 77.27
P4 63.64 90.91 77.27
O1 81.82 72.73 77.27
O2 90.91 63.64 77.27

* QSE (m = 1 and m = 2, different
values of r) [26]

P3 NR NR 77.27
P4 NR NR 77.27
O1 NR NR 77.27
O2 NR NR 77.27

NR: not reported; * denotes the studies in which leave-one-subject-out cross-validation was used.

The reasons for the decrease of irregularity in the EEG of AD patients that are highlighted by
FuzzyEn are not clear and might be a result of neuronal death, a consequence of neurotransmitter
deficiency, and/or loss of connectivity of local neural networks as a result of nerve cell death [1].
These changes might be explained by the theory of AD being a disconnection syndrome [28]: the loss
of connections between neurones in the cortex is a result from plaques and cell death [29], and this
could lead to a much more regular EEG signal (recording of cortical brain activity).

Our pilot study has some limitations that should be mentioned. Although FuzzyEn is able to
highlight subtle differences between EEG signals from AD patients and controls, the sample size used
was small (11 AD patients and 11 control subjects). Therefore, the multiple comparisons might have
resulted in an overestimation of the differences between the entropy of the EEG from AD patients
and controls. Furthermore, the EEG changes that were detected by FuzzyEn might not be specific
to AD. The detected increase of EEG regularity (or decrease of complexity) is also present in several
physiological and pathological states, including, but not limited to, sleep [30], anaesthesia [31], the
Creutzfeld-Jakob disease [32], vascular dementia [33], schizophrenia [34], or Parkinson’s disease [35].
Thus, future studies on FuzzyEn of the EEG in patients suffering from other dementias or mild cognitive
impairment need to be completed to ascertain the possible usefulness of this signal processing method
in the diagnosis of AD.
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Other potential future lines of research include the combination of FuzzyEn with MSE (used
in [24] with SampEn as the entropy estimator) and the recently introduced refined composite
MSE [36,37]. This could lead to further improvements in the characterisation of the EEG in AD.
In fact, preliminary evidence suggests that refined multiscale FuzzyEn is able to detect differences due
to AD in magnetoencephalograms [37]. Furthermore, a multivariate implementation of FuzzyEn could
also be used in the analysis of the EEG in AD. This could potentially increase the discriminating power
of the method, as shown with multivariate MSE with SampEn in [27]. However, it could also lead to
the loss of the relevant spatial differences that are highlighted in this study (i.e., EEG changes in AD are
not significant at all electrodes). Last, but not least, given that complementary information from EEG
signals in AD can be highlighted by different methods, the combination of linear and non-linear signal
processing algorithms could improve discrimination power. Among some of the entropy methods
that could be tested, conditional entropy and corrected conditional entropy [38] and permutation
entropy [39] show promise.

In summary, in spite of the aforementioned limitations, our findings with FuzzyEn suggest that
this entropy estimator has potential to increase the insight into brain dysfunction in AD, as it detects
subtle EEG differences between patients and controls with greater accuracy than SampEn or QSE.
However, although our results generally support the notion of FuzzyEn outperforming these methods,
as outlined in [17,19], one has to be very careful when comparing results, as that might be the case for
certain combinations of input parameters, but not all.
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