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Abstract: Estimating uncertain state variables of a general complex dynamical network with
randomly incomplete measurements of transmitted output variables is investigated in this paper.
The incomplete measurements, occurring randomly through the transmission of output variables,
always cause the failure of the state estimation process. Different from the existing methods,
we propose a novel method to handle the incomplete measurements, which can perform well
to balance the excessively deviated estimators under the influence of incomplete measurements.
In particular, the proposed method has no special limitation on the node dynamics compared with
many existing methods. By employing the Lyapunov stability theory along with the stochastic
analysis method, sufficient criteria are deduced rigorously to ensure obtaining the proper estimator
gains with known model parameters. Illustrative simulation for the complex dynamical network
composed of chaotic nodes are given to show the validity and efficiency of the proposed method.
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1. Introduction

The past few decades have witnessed the rapid growth of research interests in the complex
dynamical networks. Dynamical systems in real networks are abstracted into independent vertices
in the complex network model, and the edges represent complicated connections between those
individual systems [1]. Since the small-world [2] and scale-free [3] network models were proposed,
it was possible to explore the deeper behavior in the complex dynamical networks, such as social
network [4] and the Internet [5]. Additionally, based on various inner features and topological
structures, the complex dynamical network has become a functional tool to describe most real
networks, such as neural networks [6], transportation networks [7], electrical power grids [8], etc., [9,10].
Considerable efforts in studying complex networks have been made on the controllability and
robustness analysis [11,12], synchronization and control schemes [13,14], estimation for uncertain
state variables [15,16], etc. A large number of existing studies, concerning the synchronization or
other problems of complex networks, have assumed that the state variables transmitted for coupling
or communication could be completely measured. In fact, due to the technological limitations or
massive cost for measurement, it is quite common that the state variables are partially available
while the outputs are always measurable. For example, in order to control a certain circuit, acquiring
the knowledge of its capacity voltages and inductance currents as many as possible is quite helpful.
In reality, however, it turns out to be difficult and unwise to measure directly all the state variables.
On the contrary, the outputs are always easy to be measured completely, which inspires us to make full
use of output variables of the circuit to reconstruct immeasurable state variables. Therefore, estimating
the uncertain state variables of complex dynamical networks with measurable outputs has become
one of the hot issues for further studying.
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In the traditional area of systems and control theory, several estimation techniques have been
proposed over decades [17–19]. Recently, abundant achievements on the state estimation of complex
dynamical networks have been obtained [20–27]. In order to apply to more real environments or
meet certain engineering requirements, a number of unreliable or uncertain factors have been taken
into account on the state estimation problem, such as coupling time delays [20,21], stochastic noisy
disturbance [22], uncertain network parameters [23], incomplete measurements [24–29], etc. In this
paper, we focus on the state estimation of complex dynamical networks considering incomplete
measurements. In the previous studies, the Bernoulli probability distribution [24,27–29] was usually
introduced to describe the incomplete measurements of transmitted information. Sometimes multi
random independent variables were used to indicate different influencing factors in according to actual
sensor saturations [25] or coupling time delays [26,27] when analyzing incomplete measurements
of transmitted information. If the sent control information is incompletely measured at the
receiver, the usual solution is just ignoring the incomplete measurements of information without
any complements at these moments [24–27,29] or replacing them with the most recently received
information [28]. The existing methods [24–29] are only effective for the complex dynamical networks
whose state variables of nodes are stationary, and failure to the general complex networks whose node
dynamics is generally non-stationary. The Lyapunov function in their stability analysis [24–29] was
designed by error states together with node states. As a result, the error states and every node state are
required to be stabilized asymptotically at the same time, which is impossible for a general complex
dynamical network.

Motivated by the above discussions, we investigate the state estimation of a general complex
dynamical network, and propose a novel estimator to handle the situation of incomplete measurements.
When the sent output variables are received incompletely by the observer network for some time
periods, the proposed estimators will replace the incompletely measured outputs with the estimated
outputs during those time periods. It is a simple way to decrease the excessive deviation of
the estimators caused by incomplete measurements. The novel estimation method we present
has no particular restrictions on the node dynamics, even it is non-stationary. By employing the
Lyapunov stability theory along with the stochastic analysis method, sufficient criteria are deduced
rigorously in the form of linear matrix inequalities to obtain the proper estimator gains with known
model parameters.

The rest parts of this paper are organized as follows. Problem formulation and useful preliminaries
are provided in Section 2. The state estimation for a general complex dynamical network with
incomplete measurements of transmitted information is further discussed in Section 3. In Section 4,
illustrative simulation results are shown to verify the effectiveness of the proposed estimators.
Some conclusions are drawn in Section 5.

2. Network Models and Preliminaries

Some necessary notations which will be used in the following are introduced here. Assume that S,
T are constant matrices with proper dimensions. ‖S‖ represents the Euclidean norm of S. S+ represents
the Moore-Penrose inverse of S. S⊗ T represents the Kronecker product of S and T. I represents the
identity matrix of proper dimensions.

Consider the general complex dynamical network composed of N nonidentical nodes that are
fully state-coupling, which is described by

ẋi(t) = Aixi(t) + fi (xi(t)) +
N

∑
j=1

cijΓxj(t),

yi(t) = Hixi(t),

(1)

where i = 1, 2, ..., N, xi(t) = [xi1(t), xi2(t), · · · , xin(t)]
T ∈ Rn defines the state vector of the ith node

and yi(t) = [yi1(t), yi2(t), · · · , yim(t)]
T ∈ Rm defines the output vector of that. Ai ∈ Rn×n is the
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linear part of system matrix of the ith node and fi : R× Rn → Rn is a smooth nonlinear vector field
of that. Both Ai and fi govern the full dynamics of the ith node independent of interactions from
the other nodes. Hi ∈ Rm×n is the output matrix of the ith node. For simplicity, it is assumed that
m = 1. In this way, the output yi(t) is a scalar as well as the linear combination of state components
{xi1(t), xi2(t), · · · , xin(t)}. Γ ∈ Rn×n is the inner coupling matrix which denotes the inner connections
from node j to node i. C = (cij)N×N ∈ RN×N is the configuration matrix which describes the coupling
strength and topological structure of the complex dynamical network. If there exists a non-zero link
from node j to node i (i 6= j), then cij 6= 0; otherwise, cij = 0. The diagonal elements {cii |i = 1, 2, ..., N }

of C are defined to satisfy cii = −
N
∑

j=1,j 6=i
cij.

For the purpose of estimating the uncertain states which are unobservable or partly observable in
the original network, one treats (1) as the original one, and establishes an observer network (2) whose
evolution of node dynamics is the same as the original network [20–27].

˙̂xi(t) = Ai x̂i(t) + fi (x̂i(t)) +
N

∑
j=1

cijΓx̂j(t) + ui(t),

ui(t) = ki (ŷi(t)− yα
i (t)) ,

ŷi(t) = Hi x̂i(t),

(2)

where x̂i(t) = [x̂i1(t), x̂i2(t), · · · , x̂in(t)]
T ∈ Rn denotes the estimated state vector of the ith node

and ŷi(t) ∈ R denotes the estimated output scalar of that. ui(t) is the state estimator imposed on
the ith node in the observer network and ki ∈ Rn is the according estimator gain which needs to
be determined. yα

i (t) is the output variable received by the observer network (2). Compared with
the original output yi(t) sent from the original network (1), yα

i (t) is affected in some extent by the
unreliable communication environments and incomplete measurements occur randomly for some
time periods. In order to describe the irregularity in yα

i (t), continuous-time stochastic processes
{αi(t) |i = 1, 2, ..., N } are introduced here [30].{

Prob {αi(t) = 1} = E {αi(t)} = ᾱi(t),

Prob {αi(t) = 0} = 1− E {αi(t)} = β̄i(t),
(3)

where {αi(t)} are mutually independent and identically distributed to each other. For simplicity, ᾱi(t),
the mathematical expectation of αi(t), is assumed to be an uncertain constant ᾱi which is bounded
by ᾱi ∈ [δi1, δi2]. For example, as shown in Figure 1, αi(t) = 1 represents that the output variable of
the ith node is received completely by the observer network for the time period t ∈ (t1, t2]

⋃
(t3, t4].

Otherwise, if the output variable is received incompletely, then αi(t) = 0 for the time period
t ∈ (t0, t1]

⋃
(t2, t3]

⋃
(t4, ∞). In real networks, there always exists a detecting mechanism for judging

whether the sent information is received completely or not. For instance, in wireless communication
networks, the attenuation coefficients of different channels could be calculate roughly by independent
channel detection equipments. If the signal attenuation occurs, αi(t) = 0; if not, αi(t) = 1. As the
channel environment changes, αi(t) will also change and be detected at any time. Moreover, in the
existing studies [24–29], yα

i (t) was presented as

yα
i (t) = αi(t)yi(t). (4)

Aiming to estimate uncertain state variables using the available output variables, it is quite helpful
to obtain the complete information of the sent output variable yi(t) during the whole time period.
Otherwise, caused by incomplete measurements, the deviation of the estimator input from the proper
state is going to increase excessively. It will lead to failures of synchronization between the original
and observer networks as well as the estimation of uncertain states in the original network.
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Figure 1. An example of continuous-time stochastic process αi(t).

To overcome the above harmful influence during the estimation process, we propose a novel
estimator (5) dealing well with the incomplete measurements of transmitted output variables.{

ui(t) = ki (ŷi(t)− ȳi(t)) ,

ȳi(t) = αi(t)yi(t) + (1− αi(t)) ŷi(t).
(5)

For instance, as shown in Figure 1, if the output variable yi(t) is incompletely measured during
the time period (t2, t3], the estimated output ŷi(t) is used to replace yi(t) right for the time period
(t2, t3]. It will fix the excessive deviation of estimator inputs brought by the incomplete measurements
in time.

Let ei(t) = x̂i(t)− xi(t), then the error dynamical network (6) could be deduced from the original
network (1) and observer network (2) with the novel estimator (5).

ėi(t) = ˙̂xi(t)− ẋi(t)

= Aiei(t) + fi (x̂i(t))− fi (xi(t)) +
N

∑
j=1

cijΓej(t) + αi(t)ki Hiei(t).
(6)

In order to stabilize the error dynamical network (6) and reconstruct the uncertain state variables
in the original network (1), one suitable assumption and two useful lemmas are introduced as follows.
We assume that functions { fi(·) |i = 1, 2, ..., N } are continuous and satisfy the following condition:
there exist positive constants {µi |i = 1, 2, ..., N } such that

‖ fi (z1(t))− fi (z2(t))‖ ≤ µi ‖z1(t)− z2(t)‖ , (7)

which hold for any vectors z1(t), z2(t) ∈ Rn.

Lemma 1. For any vectors z1(t), z2(t) ∈ Rn, the inequality 2zT
1 (t)z2(t) ≤ zT

1 (t)z1(t) + zT
2 (t)z2(t) holds for

any t.

Lemma 2 ([31]). Suppose that there is a matrix S =

[
S11 S12

S21 S22

]
satisfying S11 = ST

11, S22 = ST
22 and

S12 = ST
21. The condition S < 0 is equivalent to S22 < 0 and S11 − S12S−1

22 S21 < 0.

3. Main Results

In this section, based on the stabilization of the error dynamical network (6) from the original and
observer networks, the main results of estimation of uncertain state variables with random incomplete
measurements of transmitted output variables are shown as follows.
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Theorem 1. Suppose that the assumption (7) holds. If the considered matrix Ψ satisfies the following inequality

Ψ =

[
Π P
P −I

]
< 0, (8)

where

Π = PA + AT P + µ2 I + αM + αMT + P (C⊗ Γ) +
(

CT ⊗ ΓT
)

P,

then the error dynamical network (6) will be stabilized to the origin, so that the original network (1) and observer
network (2) will synchronize asymptotically. The uncertain state variables xi(t) in the original network (1) will
be reconstructed by x̂i(t) eventually, i.e.

lim
t→∞

‖ei(t)‖ = lim
t→∞

‖x̂i(t)− xi(t)‖ = 0,

where Pi = PT
i > 0, P = diag (P1, P2, ..., PN), A = diag (A1, A2, ..., AN), µ = diag (µ1, µ2, ..., µN)⊗ I,

α = diag (δ11, δ21, ..., δN1)⊗ I, M = diag (M1, M2, ..., MN) = diag (P1k1H1, P2k2H2, ..., PNkN HN), the ith

estimator gain ki is obtained by ki = P−1
i Mi H+

i .

Proof of Theorem 1. Choose the scalar Lyapunov function V as follows.

V =
N

∑
i=1

eT
i (t)Piei(t). (9)

The derivative of V taking the form of mathematical expectation is calculated in (10) along with
the estimator (5), and one has

E(V̇) =
N

∑
i=1

(
eT

i (t)Pi ėi(t) + ėT
i (t)Piei(t)

)
=

N

∑
i=1

eT
i (t)Pi (Aiei(t) + fi (x̂i(t))− fi (xi(t))) +

N

∑
i=1

eT
i (t)Pi

(
N

∑
j=1

cijΓej(t) + ᾱiki Hiei(t)

)

+
N

∑
i=1

(Aiei(t) + fi (x̂i(t))− fi (xi(t)))
T Piei(t) +

N

∑
i=1

(
N

∑
j=1

cijΓej(t) + ᾱiki Hiei(t)

)T

Piei(t),

(10)
Together with the assumption (7) and Lemma 1, one gets

E(V̇) =
N

∑
i=1

eT
i (t)

(
Pi Ai + AT

i Pi

)
ei(t) +

N

∑
i=1

eT
i (t)

(
ᾱiPiki Hi + ᾱi HT

i kT
i Pi

)
ei(t)

+
N

∑
i=1

eT
i (t)Pi ( fi (x̂i(t))− fi (xi(t))) +

N

∑
i=1

( fi (x̂i(t))− fi (xi(t)))
T Piei(t)

+
N

∑
i=1

N

∑
j=1

eT
i (t)PicijΓej(t) +

N

∑
i=1

(
N

∑
j=1

cijΓej(t)

)T

Piei(t)

≤
N

∑
i=1

eT
i (t)

(
Pi Ai + AT

i Pi

)
ei(t) +

N

∑
i=1

eT
i (t)

(
ᾱiPiki Hi + ᾱi HT

i kT
i Pi

)
ei(t)

+
N

∑
i=1

eT
i (t)

(
PiPT

i + µ2
i I
)

ei(t) +
N

∑
i=1

N

∑
j=1

eT
i (t)PicijΓej(t) +

N

∑
i=1

(
N

∑
j=1

cijΓej(t)

)T

Piei(t)

=
N

∑
i=1

eT
i (t)

(
Pi Ai + AT

i Pi + PiPT
i + µ2

i I + ᾱiPiki Hi + ᾱi HT
i kT

i Pi

)
ei(t)

+
N

∑
i=1

N

∑
j=1

eT
i (t)PicijΓej(t) +

N

∑
i=1

(
N

∑
j=1

cijΓej(t)

)T

Piei(t).

(11)
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Let e(t) =
[
eT

1 (t), eT
2 (t), ..., eT

N(t)
]T ∈ RN , and one obtains

E(V̇) ≤ eT(t)Ωe(t) (12)

where

Ω = PA + AT P + PP + µ2 I + αM + αMT + P (C⊗ Γ) +
(

CT ⊗ ΓT
)

P.

According to Lemma 2, one could further transform the matrix Ω into the equivalent LMI
condition (8). Taking Ψ < 0 from (8), one has E(V̇) < 0 holding for any e(t) 6= 0. Only if e(t) = 0, then
E(V̇) = 0. Based on the Lyapunov stability theory, the error dynamical network (6) is asymptotically
stable at the origin, that means the uncertain state variables in the original network (1) are reconstructed
successfully by the novel estimator (5) dealing with the incomplete measurements of the output
information. The proof is completed.

4. Numerical Simulations

In this section, some numerical examples are presented to illustrate the effectiveness of the novel
estimator that we proposed. The chaotic Lorenz system is selected to characterize the node dynamics
shown as (13). The Lorenz system is one of the most well-known chaotic systems, of which the
irregular behavior could increase the difficulty of synchronization, so that it could further verify the
effectiveness of the proposed method.

ẋi1(t) = a (xi2(t)− xi1(t)) ,

ẋi2(t) = cxi1(t)− xi2(t)− xi1(t)xi3(t),

ẋi3(t) = xi1(t)xi2(t)− bxi3(t).

(13)

when a = 10, b = 8/3, c = 28, the Lorenz system shows the chaotic behavior. Due to the bounded
chaotic attractors in a certain region [32,33], the assumption (7) is evidently satisfied in the Lorenz
system. For brevity, we consider a complex dynamical network consisting of six identical nodes in
order to validate the above theoretical results. We assume that the inner coupling matrix Γ = I, and all
{Hi |i = 1, 2, ..., 6} are assumed to be the same as the matrix H, which is shown as follows.

ẋi(t) = Axi(t) + f (xi(t)) +
6

∑
j=1

cijΓxj(t),

yi(t) = Hxi(t),

(14)

where A =

−10 10 0
28 −1 0
0 0 −8/3

, Γ =

1 0 0
0 1 0
0 0 1

, H =
[
2 1 1

]
. The topological structure of the

network (14) is denoted by the matrix C which is shown as Figure 2.

1 2

4 5

3

6

Figure 2. Topological structure of the original network (14).
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C = (cij)6×6 =



−2 0 0 2 0 0
0 −2 1 1 0 0
0 0 −2 1 0 1
0 0 0 0 0 0
2 0 0 0 −4 2
0 2 0 0 1 −3


.

Receiving the node dynamics of the considered network (14) which is treated as the original one,
the observer network (15) is established with the incompletely measured output information yα

i (t).

˙̂xi(t) = Ai x̂i(t) + fi (x̂i(t)) +
6

∑
j=1

cijΓx̂j(t) + ui(t),

ui(t) = ki (ŷi(t)− ȳi(t)) ,

ŷi(t) = Hx̂i(t),

yα
i (t) = αi(t)yi(t),

ȳi(t) = yα
i (t) + (1− αi(t)) ŷi(t),

(15)

The mathematical expectations of stochastic processes {αi(t) |i = 1, 2, ..., 6} are assumed to be the
same, uncertain but bounded by ᾱi = ᾱ ∈ (δ1, δ2) = (0.6, 0.8) for brevity. Resorting to the LMI toolbox
of MATLAB, one could get a feasible solution by solving the matrix inequality (8), which is shown in
the following.

P1 =

 26.4980 −1.6922 0
−1.6922 19.7662 0

0 0 25.7098

, P2 =

 26.4775 −1.6877 0
−1.6877 19.8545 0

0 0 25.7999

,

P3 =

 26.4616 −1.6644 0
−1.6644 19.8910 0

0 0 25.7516

, P4 =

 27.2440 −2.1692 0
−2.1692 19.2774 0

0 0 26.7690

,

P5 =

 26.2775 −1.3786 0
−1.3786 20.5666 0

0 0 27.2213

, P6 =

 26.3732 −1.5536 0
−1.5536 20.1013 0

0 0 26.8136

,

k1 =

−49.4383
−69.7363
−43.3924

, k2 =

−49.4285
−69.4809
−43.2633

, k3 =

−49.3838
−69.3209
−43.2961

,

k4 =

−50.3987
−73.4525
−41.9269

, k5 =

−48.2936
−65.6912
−40.1592

, k6 =

−48.9326
−67.8944
−41.3151

.

The initial values of state variables in the original and observer networks are chosen randomly in
the interval (0, 1).

Figure 3 shows the reconstructing process of uncertain state variables in the considered
network (14), which is conducted by the observer network (15).

From Figure 3, it is obvious to tell that the dynamical error variables between corresponding nodes
in the original and observer networks just take a little time to converge to zero under the influence of
random incomplete measurements of transmitted output variables. The evolution of the stochastic
process αi(t) is shown in Figure 4, which indicates a common situation of incomplete measurements in
the unreliable communication channel.

Figures 3 and 4 illustrate that, just using the scalar output variables {yi(t)}, the uncertain
state vectors {xi(t)} in the considered network are rapidly followed by the corresponding state
vectors {x̂i(t)} in the observer network, in spite of the incomplete measurements characterized by
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random variable αi(t), which demonstrates that the designed estimators perform well dealing with
incomplete measurements.

t
0 5 10 15 20

-0.4

-0.2

0

0.2

0.4
e

x1

t
0 5 10 15 20

-0.4

-0.2

0

0.2

0.4
e

x2

t
0 5 10 15 20

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
e

x3

t
0 5 10 15 20

-0.6

-0.4

-0.2

0

0.2
e

x4

t
0 5 10 15 20

-0.8

-0.6

-0.4

-0.2

0

0.2
e

x5

t
0 5 10 15 20

-0.2

0

0.2

0.4

0.6
e

x6

Figure 3. Dynamical error variables between corresponding nodes {xi |i = 1, 2, ..., 6} in the original
and observer networks.

t
0 5 10 15 20

-0.5

0

0.5

1

1.5

Figure 4. Diagram of the stochastic process αi(t) versus time t.

Remark 1. The existing methods [24–29] require that the node dynamics must reach the stationary state by
itself. If this condition is not met, the results with existing methods are the failure of state estimation, which
means trajectories of estimated state variables would not follow ones in the original network.

5. Conclusions

Reconstructing uncertain state variables of general complex dynamical networks with randomly
incomplete measurements of transmitted information has been studied in this paper. The random
incomplete measurements can prevent the successful state estimation process. Different from previous
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researches, our novel method is able to balance the excessively deviated estimators and performs
well under the influence of incomplete measurements. Especially, there is no special limitation on
the node dynamics. By employing the Lyapunov stability theory with the stochastic analysis method,
mathematical derivation of the mechanism are deduced rigorously to obtain sufficient criteria in terms
of an LMI approach with known model parameters. Illustrative examples are given to show the
effectiveness of our proposed method.
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