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Abstract: Autoregressive processes play a major role in speech processing (linear prediction),
seismic signal processing, biological signal processing, and many other applications. We consider
the quantity defined by Shannon in 1948, the entropy rate power, and show that the log ratio of
entropy powers equals the difference in the differential entropy of the two processes. Furthermore,
we use the log ratio of entropy powers to analyze the change in mutual information as the model
order is increased for autoregressive processes. We examine when we can substitute the minimum
mean squared prediction error for the entropy power in the log ratio of entropy powers, thus
greatly simplifying the calculations to obtain the differential entropy and the change in mutual
information and therefore increasing the utility of the approach. Applications to speech processing
and coding are given and potential applications to seismic signal processing, EEG classification, and
ECG classification are described.
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1. Introduction

In time series analysis, the autoregressive (AR) model, also called the linear prediction model,
has received considerable attention, with a host of results on fitting AR models, AR model prediction
performance, and decision-making using time series analysis based on AR models [1-3]. The linear
prediction or AR model also plays a major role in many digital signal processing applications, such as
linear prediction modeling of speech signals [4-6], geophysical exploration [7,8], electrocardiogram
(ECG) classification [9], and electroencephalogram (EEG) classification [10,11]. We take a new look at
AR modeling and analysis and these applications using a quantity from the field of information theory
as defined by Shannon.

In his landmark 1948 paper [12], Shannon defined what he called the derived quantity of entropy
power (also called entropy rate power) to be the power in a Gaussian white noise limited to the same
band as the original ensemble and having the same entropy. He then used the entropy power in
bounding the capacity of certain channels and for specifying a lower bound on the rate distortion
function of a source. Entropy rate power appears to be as fundamental a concept in Shannon
Information Theory as mutual information (then called average mutual information [13]); however,
unlike mutual information and many other quantities in Shannon theory, entropy rate power is not a
well-studied, widely employed concept, particularly in signal processing.

We examine entropy rate power from several different perspectives that reveal new possibilities,
and we define a new quantity, the log ratio of entropy powers, that serves as a new tool in the
information theoretic study of a sequence of signal processing operations. In particular, we use the
log ratio of entropy powers to study the change in differential entropy and the change in mutual
information as the predictor order is increased for autoregressive processes. We also demonstrate the
use of the log ratio of entropy powers for the analysis of speech waveform coders and the analysis
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of code-excited linear predictive coding of speech. Specifically, for speech waveform coding the
overall reduction in mean squared prediction error can be interpreted using the log ratio of entropy
powers as the performance gain in terms of bits/sample provided by the predictor. This insight is
entirely new. For the analysis of code-excited linear predictive speech coding, the log ratio of entropy
powers allows us to decompose the mutual information between the input speech being coded and
the reconstructed speech into a sum of mutual informations and conditional mutual informations
corresponding to the information provided by each of the components of the code-excited speech
codec. This allows us to characterize the contributions of each component in terms of the mutual
information with respect to the input speech. This is an entirely new way of analyzing the performance
of code-excited linear predictive coding and potentially offers new design approaches for this dominant
speech coding structure.

Additionally, we consider the applications of the AR model in geophysical exploration [7,8],
electrocardiogram (ECG) classification [9], and electroencephalogram (EEG) classification [10,11] and
setup how the log ratio of entropy powers can provide new insights and results for these fields.
For each of these applications, the interpretation of change in mean squared prediction error for
different predictor orders in terms of changes in differential entropy and changes in mutual information
open up new analysis and classification paradigms. Separately, Gibson and Mahadevan [14] have used
the log ratio of entropy powers to derive and extend the interpretation of the log likelihood spectral
distance measure from signal processing.

We begin by defining the concept of entropy power and entropy rate power in Section 2 and
there summarize the well known results for entropy power in terms of the power spectral density of a
Gaussian process. Section 3 presents the autoregressive model and power spectral density and the
Levinson-Durbin recursion for the solution of the Toeplitz set of equations that occurs when solving
for the AR or linear prediction coefficients of an asymptotically wide-sense stationary AR process as
delineated in [6,15,16]. The equivalence of the entropy power and the minimum mean squared one
step ahead prediction error for Gaussian AR sequences and relevant bounds on the minimum mean
squared prediction error for non-Gaussian processes are discussed in Section 4.

The fundamental new quantity, the log ratio of entropy powers, is developed in Section 5, where it
is shown that the key results hold when the entropy power is replaced by the variance for Laplacian
and Gaussian processes and where the relationship of the log ratio of entropy powers to changes in
differential entropy and mutual information is presented as a signal progresses through a series of
linear predictors when the model order is incremented. Also in this section, the log ratio of entropy
powers for maximum entropy spectral estimates and for decompositions in terms of orthogonal
deterministic and nondeterministic processes are examined.

Examples are presented in Section 6 illustrating the use of the log ratio of entropy powers
for the linear prediction analysis of several speech frames as the predictor order is increased.
Applications to speech waveform coding and to speech coding using code-excited linear prediction
are given in Section 7. Other possible applications to AR modeling in geophysical exploration [7,8],
ECG classification [9], and EEG classification [10,11] are outlined in Section 8. Conclusions and
suggestions for future applications are provided in Section 9.

2. Entropy Power/Entropy Rate Power

In his landmark 1948 paper [12], Shannon defined the entropy power (also called entropy
rate power) to be the power in a Gaussian white noise limited to the same band as the original
ensemble and having the same entropy. He then used the entropy power in bounding the capacity
of certain channels and for specifying a lower bound on the rate distortion function of a source. We
develop the basic definitions and relationships concerning entropy power in this section for use later
in the paper.
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Given a random variable X with probability density function p(x), we can write the
differential entropy

W) =~ [ plx)log plx)dx )

where X has the variance var(X) = 0. Since the Gaussian distribution has the maximum differential
entropy of any distribution with mean zero and variance o2 [17],

h(X) < %log2ne02 2)
from which we obtain .
= — _exp2h(X) < o?
Q= (g @P(X) <0 ©)

where Q was defined by Shannon to be the entropy power associated with the differential entropy of
the original random variable X [12]. In addition to defining entropy power, this equation shows that
the entropy power is the minimum variance that can be associated with the not-necessarily Gaussian
differential entropy h(X).

Please note that Equation (3) allows us to calculate the entropy power associated with any given
entropy. For example, if the random variable X is Laplacian [18] with parameter A, then #(X) = In (2Ae)
and we can substitute this into Equation (3) and solve for the entropy power Q = 2eA?/ 7. Since the
variance of the Laplacian distribution is 0> = 2A2, we see that Q < ¢, as expected from Equation (3).
This emphasizes the fact that the entropy power is not limited to Gaussian processes. This simple
result is useful since speech signals as well as the linear prediction error for speech are often modeled
by Laplacian distributions.

For an n-vector X with probability density p(x"), and covariance matrix Kx = E[(X — E(X))(X —
E(X))T], we have that

H(X) < 5 log[(27e)"|K(| @

from which we can construct the vector version of the entropy power as

1
Qx = Wexp 2h(X) < [Kx|. ®)

We can write a conditional version of Equation (3) as

Qx|y = (zlne)exp 2h(X|Y) < Var(X]Y) (6)

We will have the occasion to study pairs of random vectors X and Y where we use the vector Y
to form the best estimate of X. If Kyy is the covariance matrix of the minimum mean squared error
estimate of X given Y, then we have

H(X]Y) < 3 log [(27)" [ K] @)

and from which we can get an expression for the conditional entropy power, Qy|y,

1
Oxjy = WGXP 2h(X]Y) < [Kxyl- (8)

So, Qx|y is upper bounded by the determinant of the conditional error covariance matrix, |Ky|y|-
We have equality in Equations (2)—(8) if the corresponding random variables or random vectors
are Gaussian.
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Often our interest is in investigating the properties of stationary random processes. Thus, if we
let X be a stationary continuous-valued random process with samples X" =[X;,i = 1,2, ..., n], then the
differential entropy rate of the process X is [19]

F= lim Sh(X") = lim h(X,[X") ©)
n—,oo

We assume that this limit exists in our developments and we drop the overbar notation and
use h = h. Using the entropy rate in the definition of entropy power yields the nomenclature entropy
rate power.

Within the context of calculating and bounding the rate distortion function of a a discrete-time
stationary random process, Kolmogorov [20] and Pinsker [21] derived an expression for the entropy
rate power in terms of its power spectral density.

If we now consider a discrete-time stationary Gaussian process with correlation function
¢(k) = E[X;X; ], the periodic discrete-time power spectral density is defined by

[ee]

P(w) =Y (k) exp (jwk) (10)

—00

for |w| < 7. We know that an n-dimensional Gaussian density with correlation matrix ®, has the
differential entropy h(X) = (n/2)log (27te|®,|!/"). Then, the entropy rate power Q can be found
from [22,23]

T 1/n
log Q = lim log |®,| (11)
which yields [22,23]
7T
Q=-exp [i/ log ®(w)dw] (12)
27T -7

as the entropy rate power.
Later we develop a closely related result for any distribution using the definition of entropy power.

3. Autoregressive Models

An AR process is given by
m
s(k) =) ais(k—i) +w(k) (13)
i=1
where the autoregressive parameters a;,i = 1,2, ..., m, are called the linear prediction coefficients for
speech processing applications, and w(k) is the excitation sequence. For purposes of linear prediction
speech analysis, we generally do not need to make an assumption on the distribution of the excitation.
However, it is often assumed that the prediction error for speech is Laplacianly distributed [6,18,24].
In general time series analysis, the excitation is often chosen to be some ii.d. sequence,
the distribution of which is unspecified. The AR model in Equation (13) is a one-sided process
and depends on the initial conditions, which we will assume to be zero, and therefore is not wide
sense stationary (WSS). As a result, the power spectral density of the AR process is not accurately
represented by Equation (10). Fortunately, an important result due to Gray [15], provides the necessary
power spectral density expression for AR processes.

3.1. The Power Spectral Density

For the AR model in Equation (13), the correlation function ¢ (k) = E[X;X; ] depends on j and
therefore is not WSS. However, the AR model can be shown to be asymptotically WSS under suitable
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conditions [15,25-27]. Leaving the details to the references, for asymptotically WSS AR processes with
coefficients a;,i = 0,1,2...,m, the asymptotic power spectral density is given by

0.2
Dyr(w) = 2(@) (14)
where
s() = | Y acexp ()P (15)

with 02 the variance of the AR process input sequence and a9 = 1.
P 4R (w) is the power spectral density of the AR process that we use in the remainder of the paper.

3.2. The Levinson-Durbin Recursion

In linear prediction for speech analysis and coding, the linear prediction model is used to capture
the spectral envelope. For a given windowed frame of L input speech samples, where the windowing
sets all samples outside the window to zero, it is necessary to calculate the linear prediction coefficients.
This is done by choosing the coefficients to minimize the sum of the squared prediction errors over the
frame; that is, choose the coefficients to minimize €?(k) = Y_[s(k) — Y1, a;s(k — i)]? [4-6]. Taking the
partial derivatives with respect to each of the coefficients, aj, j =1,2,..,m, yields the set of linear
simultaneous equations

NgE

1aiR(|i—J'|) = R(j) (16)

forj=1,2,..,m, where

~| =

L—Jjl-1
R(j) = ’;0 s(k)s(k+ j]) (17)

with R(j) = R(—j). In matrix notation this becomes

RA=C (18)
where R is an m by m Toeplitz matrix of the autocorrelation terms in Equation (17), A = [a1, 4, ..., an] T
and C is a column vector of the autocorrelation terms R(j),j =1,2,...,m.
An efficient method to solve the set of linear simultaneous equations in Equation (18) is due to
Durbin [28] and is given by [4-6,16]:

Let
E© = R(0) (19)
then compute
n—1
pn = [R(n) = " a)" R — )] /E"Y (20)
j=1

for 1 < n < m. Then we compute the linear prediction coefficients as

ai) = pu (21)
and
a](.") = a](.nfl) - pnagln_;l). (22)
We next calculate
EM = (1 - pi)EnY) (23)

and then go to Equation (20) and continue until n = m, the desired predictor order.
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The quantity E(*) is the mean squared prediction error (MSPE) for the nth order predictor, which is
also given by the expression

E™ = R(0) — i a"R(j). (24)
j=1

and is nonincreasing with increasing predictor order so we have that
R(0) = E® > EV > E?) > ... > Eim=1) > Elm), (25)

In many problems, such as speech coding applications, the predictor order m is chosen based on a
combination of predictor accuracy over a wide set of speech data and a desired bit rate allocation to
the set of coefficients.

However, for speech analysis, one can monitor the MSPE and set the predictor order to the value
where further decreases in E") are small. For applications to seismic exploration [7], electrocardiogram
(ECG) classification [9], and electroencephalogram (EEG) classification [10,11], the AR model order
may be fixed to a preselected value, determined via the Durbin recursion according to an acceptable
MSPE, or investigated and adjusted for each experimental application. We discuss each explicitly in
Section 8.

Later we use the sequence of mean squared prediction errors in Equation (25) to infer the change
in mutual information as the predictor order is increased, but to justify this approach, first we must
develop the key concepts and expressions relating entropy power and minimum mean squared
prediction error, which we do in the next section.

4. Minimum MSPE and AR Models

Perhaps surprisingly, the right side of Equation (12) plays a major role in time series analysis
beyond entropy power and the Gaussian assumption. More specifically, using ® 4z (w) in Equation (12)
we obtain the minimum mean squared one-step prediction error (MSPE) for autoregressive (AR)
processes, even if they are not Gaussian [2,3,22]! That is, the mean squared prediction error,
sometimes called the innovation variance [3], is given by

E(®) = exp [%/” log ® 4 (w)dw] 26)
—7T

where we have used the notation from Section 3 for the minimum mean squared prediction error.
This result does not require the AR process to be Gaussian.

Furthermore, the fact that Equation (26) is the minimum mean squared one-step prediction error
for AR processes, even non-Gaussian processes, proves useful for upper bounding the entropy power
for autoregressive processes using the estimation counterpart to Fano’s Inequality [17]

EIX ~ ROG)P > 5 exp2[(X|R(%y))]. @7)

In our notation Equation (27) becomes
1
E[S — Pu(S)]* > 5— exp2[h(S|Pa(S))] (28)

where S is the signal being predicted, P,(S) is the nth order linear predictor, and (S|P, (S)) is the
differential entropy of the prediction error [S — P, (S)].

Notice that in increasing the order of an AR model, we have Equation (25), that is, the MSPE is
nonincreasing with increasing model order, which then implies that

Qxipi(x) = Lx|py(x)-+ = Qx|p,1(x) = Qx|py(x) (29)
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holds for the sequence of entropy powers. Equation (29) follows since the iteration in
Equations (19)—(25) builds the minimum mean squared error predictor as the predictor order is
increased from 1 to m. According to Choi and Cover [29], the minimal order Gauss-Markov process
that satisfies the given covariance constraints is the maximum entropy process, which implies that it is
the minimum mean squared error process satisfying the constraints. Since we know that the entropy
rate power Qxp, (x) satisfies Equation (28), Equation (29) follows.

As a setup for applications to be discussed later, note that these observations imply the following.
If the AR or linear prediction coefficients and the correlation functions are known, it is straightforward
to find the minimum MSPE [6,30] using Equation (24). Furthermore, if we fit an AR model to a time
series, we can find the minimum MSPE from the E(!) generated by the recursion in Section 3 and hence
upper bound the entropy rate power that corresponds to that model.

If the time series is in fact AR, we can iteratively increase the model order, calculate the AR or
linear prediction coefficients for the iterated model order which yields the best fit, and for that model,
we can calculate the minimum MSPE and thus an upper bound to the entropy rate power. If the time
series is not AR, then we can find the best approximation and its corresponding minimum MSPE,
which is again an upper bound on the entropy power for that best fit model.

5. Log Ratio of Entropy Powers

We can use the definition of the entropy power in Equation (3) to express the logarithm of the
ratio of two entropy powers in terms of their respective differential entropies as

Qx _
gQY_

We are interested in studying the change in the differential entropy brought on by different
signal processing operations by investigating the log ratio of entropy powers. However, in order to

Jlo [1(X) — h(Y)] (30)

calculate the entropy power, we need an expression for the differential entropy! So, why do we need
the entropy power?

First, entropy power may be easy to calculate in some instances, as we show later. Second,
the accurate computation of the differential entropy can be quite difficult and requires considerable
care [31]. Generally, the approach is to estimate the probability density function (pdf) and then use the
resulting estimate of the pdf in Equation (1) and numerically evaluate the integral.

Depending on the method used to estimate the probability density, the operation requires selecting
bin widths, a window, or a suitable kernel [31], all of which must be done iteratively to determine when
the estimate is sufficiently accurate. The mutual information is another quantity of interest, as we shall
see, and the estimate of mutual information also requires multiple steps and approximations [32,33].
These statements are particularly true when the signals are not i.i.d. and have unknown correlation.

In the following we consider special cases where Equation (30) holds with equality when the
entropy powers are replaced by the corresponding variances. We then provide justification for using the
signal variance rather than entropy power in other situations. The Gaussian and Laplacian distributions
often appear in studies of speech processing and other signal processing applications, so we show that
substituting the variances for entropy powers for these distributions satisfies Equation (30) exactly.

5.1. Gaussian Distributions

For two i.i.d. Gaussian distributions with zero mean and variances U§ and 0'%, we have directly
that Qx = 0% and Qy = 0%, so

1. Ox 1, o% B
Qlog@ = Elog(?% = [1(X) = h(Y)] (31)
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which satisfies Equation (30) exactly. Of course, since the Gaussian distribution is the basis for the
definition of entropy power, this result is not surprising.

5.2. Laplacian Distributions

For twoii.d. Laplacian distributions with parameters Ax and Ay [18], their corresponding entropy
powers Qx = 26/\%(/ mand Qy = 2e/\%, / 1t, respectively, so we form

1. 0Ox 1. A%

=[In (2eAx) — In(2eAy)]
=[h(X) — h(Y)].

(32)

so the Laplacian distribution also satisfies Equation (30) exactly. We thus conclude that we can
substitute the variance, or for zero mean Laplacian distributions, the mean squared value for the
entropy power in Equation (30) and the result is the difference in differential entropies.

For speech processes, the prediction residual or prediction error often is modeled as being
iid. Laplacian based on speech data histograms [6,24] or simply assumed to be Gaussian for
convenience [27]. As a consequence, this implies that for speech processing applications, we can use
the variances of mean squared errors instead of the entropy powers without penalty, thus avoiding the
calculation of the differential entropies from limited data.

Interestingly, it can be shown that the Logistic distribution [18] also satisfies Equation (30) exactly.
The author has not been able to identify a broad model class for which Equation (30) is satisfied exactly.

5.3. Increasing Predictor Order
We can use Equation (30) in terms of the entropy powers for increasing AR model orders in the
signal processing iterations as

1 log QX|P,,_1(X)

3105 = h(X|P,-1(X)) — h(X|Py(X) (33)
X|Py(X)

If we add and subtract (X)) to the right hand side of Equation (33), we then obtain an expression
in terms of the difference in mutual information between the two stages as

1 QX|P,H(X)

= log =I(X; Py(X)) — I(X; P,—1 (X)) (34)
2 Qx|p,(x)

From the series of inequalities on the entropy power in Equation (29), we know that both
expressions in Equations (33) and (34) are greater than or equal to zero. It is important to note
that Equations (33) and (34) are not based on a Gaussian assumption for the underlying processes.
For these expressions, the entropy power Q is calculated from the differential entropy of the signal
being analyzed.

Even though the results in Equations (33) and (34) are not based on a Gaussian assumption,
we know from the definition of entropy power that they hold exactly for i.i.d. Gaussian processes.
Of course, because of the example in Section 5.2, we also know that these equations hold exactly for
ii.d. Laplacian processes as well. Explicitly, for two i.i.d. Laplacian distributions with parameters A,
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and Ay, their corresponding entropy powers Qxp, | = 2eA% | /mand Qx|p, = 2eA? / 7, respectively,

so we form

1log LX‘P'H _1 og
2 Qxjp, 2 Az

=[In(2eA,_1) — In(2eA,)]
=[h(X|P,_1) — h(X|Py)],

(35)

so when the prediction error sequence at time instants n — 1 and 7 satisfy, or are assumed to satisfy,
the Laplacian distribution, Equation (30) is satisfied exactly. Similarly, if we add and subtract the
differential entropy of the original Laplacian sequence being predicted, then Equation (34) is satisfied
exactly as well. We thus conclude that we can substitute the error variance, or for zero mean Laplacian
distributions, the mean squared value for the entropy power and obtain the desired relationships from
the log ratio of entropy powers.

This increase in mutual information between the input and the predicted sequence also implies
changes in the relationship between the prediction error sequence X — P,(X) and the input X.
In fact, since we know from Equation (33) that h(X|P,_1(X)) — h(X|P,(X)) > 0, then we have
that h(X|P,—1(X)) > h(X|P,(X)). From this, we form

h(X = Py1 (X)[Pr1(X)) 2 h(X = Pa(X) [ Pa (X)) (36)

which says that the differential entropy of the prediction error is nonincreasing with increasing
prediction order. This result is consistent with the minimum mean squared prediction error (MMSPE)
and entropy power results in Equations (25) and (29), and with the fact that the minimum mean
squared error (MMSE) is nonincreasing with predictor order in statistical minimum mean squared
error prediction [2,3], particularly for AR processes.

So, using the log ratio of entropy powers, what we have is a new interpretation of the improvement
in mean squared prediction error in terms of a decrease in the differential entropy of the prediction error
expressed in terms of bits. The results in terms of mutual information and differential entropy are exact
forii.d. Gaussian and Laplacian prediction errors, but it would greatly simplify our investigations
if we could infer the change in differential entropy and mutual information without checking the
distributions of the data, calculating the differential entropies and/or the mutual information, and the
entropy powers.

More specifically, it would be very helpful if we could substitute the mean squared prediction
errors for the entropy powers in Equations (33) and (34) in general.

5.4. Maximum Entropy Spectral Estimate

As shown in [29], we know that the entropy of any finite length segment of a random process
with a specified covariance structure is bounded above by the entropy of the minimal order Gaussian
AR process that satisfies the given covariance constraints. Thus, one way to achieve the goal of using
the minimum mean squared prediction error in Equations (33) and (34) for the entropy power is to
assume that the linear predictor coefficients from Section 3 are the results of the given autocorrelation
constraints for a maximum entropy spectrum estimate.

Since the maximum entropy spectrum is the minimal order Gauss-Markov process satisfying
the given covariance constraints, the minimum mean squared prediction errors equal the entropy
powers and therefore can be used in Equations (33) and (34) [29], thus avoiding the need to calculate
the entropy power directly using Equation (3).

Following [29], by assuming the maximum entropy estimate of the spectral density, we are not
assuming that the higher order, k > m, covariance terms in Equation (10) are equal to zero but that
they satisfy
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Pk =Y a"p(k—j) (37)

j=1

for k > m + 1. However, for our development, this fact is unimportant.

5.5. Orthogonal Decompositions and Whitened Prediction Errors

We can also motivate using the minimum mean squared prediction error for the entropy power
in Equations (33) and (34) by considering the series of AR predictors obtained in Section 3 as n
progresses from 1 to m as a series of orthogonal decompositions into deterministic and nondeterministic
processes [2,3,34], producing a whitened prediction error at each stage. Of course, this idea is not
far-fetched because it is intuitive that the goal of the linear predictor for each # is to obtain the whitest
prediction error possible [27].

Conceptually, this is equivalent to assuming that for each 7, the process is exactly an nth order
AR process. Under these assumptions, we would have a series of minimum mean squared prediction
errors expressible as [2,3]

1 s
EM = exp [E/ 7TlogCI’AR(n)(fU)dW] (38)

n=1,2,...,m where ®,p(,) (w) is the power spectral density of the corresponding nth order AR
process, which holds even if the AR processes are non-Gaussian. Since the mean squared prediction
error E(") is exactly the entropy power if the series of nth order AR processes are Gaussian (by
definition of entropy power), it is natural to use the minimum mean squared prediction error for the
entropy power under these conditions.

In summary, based on (a) the fact that Equation (30) is satisfied exactly for i.i.d. Gaussian and
Laplacian random variables, as can be seen from Equations (31) and (32), respectively; (b) the fact
that the maximum entropy spectral estimate for the given correlation constraints is a Gaussian AR
process; and (c) the fact that the linear predictors that yield the best whitened prediction errors for
each order produce a minimum mean squared prediction error that satisfies Equation (38), which is the
expression for the entropy power for a Gaussian AR process, we proceed in the following to replace
the entropy power in key equations, such as Equations (33) and (34) with the minimum mean squared
prediction error.

To reiterate, the purpose of using the minimum mean squared prediction error, which is readily
available, is to eliminate the need to numerically calculate/estimate the histogram of the data and then
use the histogram to form the entropy power from Equation (3). This is a substantial simplification that
is very useful in practice and also is a process that eliminates the histogram estimation step, which as
discussed earlier in this section, is in itself fraught with sources of inaccuracies.

Examples and applications of the log ratio of entropy powers are developed in the
following sections.

6. Experimental Examples

To illustrate the utility of the expression in Equation (34), we consider four frames of narrowband
voiced speech. For each frame, we list the MMSPE as the predictor order is incremented up to order
N =10 and also list the corresponding change in mutual information as calculated from Equation (34) as
the model order is increased, but where we use MMSPE(X, X,,) = E(, asin Equations (24) and (25) in
place of Qxp, (x)-

To categorize the differences in the speech frames we investigate, we use a common indicator
of predictor performance, the Signal-to-Prediction Error (SPER) in dB [35], also called the Prediction
Gain [6], defined as SE(X)

MSE(X
= 1000810 §10SPE(X, X10)

SPER(dB) (39)



Entropy 2018, 20, 750 11 of 21

where MSE(X) is the average energy in the utterance and MMSPE(X, Xj) is the minimum mean
squared prediction error achieved by a 10th order predictor. The SPER can be calculated for any
predictor order but we choose N = 10, a common choice in narrowband speech codecs and the
predictor order that, on average, captures most of the possible reduction in mean squared prediction
error without including long term pitch prediction.

Figures 1-4 show the spectral envelopes calculated using an N = 10th order AR model for four
different speech frames. Correspondingly, Tables 1-3 list the MMSPE(X, Xy) = E(N) as the predictor
order is increased from N = 1 up to N = 10 in increments of one for the speech frames in Figures 1-3.
We do not include a table or Frame 87 since the MMSPE is only reduced from MSE(X) = 1.0 to
MMSPE(X, X19) = 0.316. The third column in the tables labeled as I(X; Xy) — I(X; Xn—1) is obtained
from Equation (34) but with the entropy power for each N replaced by the MMSPE(X, Xy ) so we have

1.  MMSPE(X,XN-1)

-1
2“8 "MMSPE(X, Xy)

= I(X; Xn) — I(X; Xn_1) (40)

In this equation and the tables, we interpret the mutual information I(X; X,,) when n = 0 as equal
to zero since in that case X, = 0.

We are approximating the entropy power Qx|p, (x) by MMSPE(X, Xy) at each stage, since the
latter is much simpler to calculate. While this can be argued to be equivalent to assuming that the
speech signal is Gaussian, thus leading to Equations (27) and (28) being satisfied with equality, we are
not arguing that speech signals have a Gaussian distribution. Our goal instead is to characterize the
incremental change in mean squared prediction error for AR processes in terms of gains in mutual
information. The results are interesting and potentially highly useful in many applications.

The four speech frames being considered have quite different SPER values, specifically
SPERs =16, 11.85,7.74 and 5 dB, and thus constitute an interesting cross section of speech segments
to be analyzed; however, although different, the average SPER of these four frames is about 10 dB,
which is the usual SPER or prediction gain that is shown for average speech data and N = 10 in the
literature [6,24]. The first significant observation is that now we can map an increase in predictor order
to an increase in the mutual information between the input sequence and the Nth order predicted
value, which is an entirely different interpretation and a new indicator of predictor quality.
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Figure 1. Frame 45 Spectral Envelope, SPER = 16 dB.
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Table 1. Change in Mutual Information from Equation (34) as the Predictor Order is Increased: Frame 45,

SPER = 16 dB.
N MMSPE(X,Xy) I(X;Xn)—I(X;XN-1)
0 1.0 0 bits/letter
0-1 0.3111 0.842 bits/letter
1-2 0.0667 1.11 bits/letter
2-3 0.0587 0.092 bits/letter
3-4 0.0385 0.304 bits/letter
4-5 0.0375 0.019 bits/letter
5-6 0.0342 0.065 bits/letter
6-7 0.0308 0.069 bits/letter
7-8 0.0308 0.0 bits/letter
8-9 0.0261 0.12 bits/letter
9-10 0.0251 0.026 bits/letter
0-10 Total 0.0251 2.647 bits/letter

In particular, we see that the N = 10th order predictors corresponding to the spectral envelopes
in Figures 1-4 increase the mutual information between the input segment and predicted signal by
2.647,1.968, 1.29, and 0.83 bits/sample, respectively. We also see the incremental change in mutual
information as the predictor order is indexed up from 1 to N. This characterization opens up new
analysis and research directions by extending the MSE to an information measure.

Along these lines of analysis, note that in Table 1 when the predictor order is increased from
N = 1to N = 2, the mean squared error changes by 0.311 — 0.066 = 0.245, which as shown in the
table corresponds to an increase in mutual information between the original input and the predicted
value of 1.11 bits/letter. While the normalized change in mean squared error is noticeable, the increase
in mutual information is more than 1 bit! For the same table, we see that in increasing the predictor
order from N = 3 to N = 4 the mean squared error changes by 0.0587 — 0.0385 = 0.0202, a seemingly
very small change, but from Table 1 we see that the corresponding increase in mutual information
is 0.304 bits/letter. Thus, the change in mutual information captures more clearly an improvement
perhaps not as evident in the change in mean squared error. This behavior is also evident in the
other tables.

For example, in Table 2 when the predictor order is increased from N = 1 to N = 2 the mean
squared error changes by 0.096 while the increase in mutual information is 0.339 bits/letter and
similarly as the predictor order is increased from N = 6 to N = 7 the mean squared error changes by
0.0258 while the increase in mutual information is 0.226 bits/letter. We can see other such occurrences
in Table 3 when the predictor order is increased from N = 5 to N = 6, the mean squared error
changes by 0.1365 while the increase in mutual informaton is 0.36 bits/letter, and as the predictor
order is increased from N = 7 to N = 8, the mean squared error changes by 0.0277 while the increase
in mutual information is 0.104 bits/letter. It is therefore clear, that the log ratio of entropy powers
provides significantly different, but complementary, insights to the observed changes in mean squared
prediction error.
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Table 2. Change in Mutual Information from Equation (34) as the Predictor Order is Increased: Frame 23,

SPER =11.85 dB.

Envelope (dB)

N MMSPE(X,Xy) I(X;Xn)—I(X;Xn_1)
0 1.0 0 bits/letter
0-1 0.2577 0.978 bits/letter
1-2 0.1615 0.339 bits/letter
2-3 0.1611 0.0 bits/letter
34 0.1179 0.225 bits/letter
4-5 0.1118 0.042 bits/letter
5-6 0.0962 0.104 bits/letter
67 0.0704 0.226 bits/letter
7-8 0.0653 0.054 bits/letter
8-9 0.0653 0.0 bits/letter
9-10 0.0652 0.0 bits/letter
0-10 Total 0.0652 1.968 bits /letter
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Table 3. Change in Mutual Information from Equation (34) as the Predictor Order is Increased:
Frame 3314, SPER = 7.74 dB.

N MMSPE(X,Xy) I(X;Xn)—I(X;XN-1)
0 1.0 0 bits/letter
0-1 0.6932 0.265 bits/letter
1-2 0.4918 0.25 bits/letter
2-3 0.4782 0.02 bits/letter
3-4 0.3554 0.215 bits/letter
4-5 0.3474 0.0164 bits/letter
5-6 0.2109 0.36 bits/letter
6-7 0.2065 0.015 bits/letter
7-8 0.1788 0.104 bits/letter
8-9 0.1682 0.044 bits/letter
9-10 0.1680 0.0 bits/letter
0-10 Total 0.1680 1.29 bits/letter

100

C1-] R/ N S —— R

L] N

O R L P S —

Envelope (dB)

0 A N £ W

4] p—

1 I T | I
' | I 1
' | T
| | | | I
s re====- Fe=———- Te=————- T=====- T
1 | | | I
1 | | | 1
1 | | | !
1 1 1

70

!

I

i 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
Frequency (Hz)

Figure 4. Frame 87 Spectral Envelope, SPER = 5 dB.

For some applications, such as speech waveform coding, the interpretation is direct in terms of
the decrease in average number of bits/sample required for transmitting or storing the waveform,
as developed in Section 7.1. More generally, the incorporation of an information measure into analyses
of seismic, speech, EEG, and ECG signals offers a new way forward for researchers modeling these
signals for analysis, detection, and classification. The change in mutual information as the linear
predictor order is adjusted can also provide a new interpretation and categoration of the codebooks
used in code-excited linear predictive speech coding, which is discussed in Section 7.2. In any event,
these results suggest an interesting new, and previously unexplored way for researchers to classify the
contributions of AR predictors and linear prediction in their applications.

7. Application to Speech Coding

One particularly interesting and useful application is to linear prediction-based speech coding,
which constitutes the primary underlying principle for most deployed speech codecs today for digital
cellular and Voice over Internet Protocol (VoIP) [36-38]. More specifically, Equation (40) may be useful
in characterizing the bit rate reduction for speech coding produced by increasing the linear (AR)
predictor order.
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7.1. Speech Waveform Coding

For linear prediction-based time-domain waveform coding such as differential pulse code
modulation (DPCM), a common performance indicator is the signal to noise ratio (SNR) defined as

MSE(X)

SNR= "2
MSE(X, Xg)

(41)
where Xy is the reconstructed sequence at the decoder and thus MSE(X, Xg) is the mean squared
reconstruction error [16,35]. A characterization of the performance in terms of the achieved SNR has
always been in terms of the SPER, sometimes also called the Prediction Gain [6,36] from the expression

SNR = SPER-SNRg (42)
where SPER = 1/ MMSPE and SNR, is the signal-to-noise ratio of the quantizer [6], or equivalently
SNR(dB) = SPER(dB) + SNR(dB) (43)

where SNR(dB) = 10log;,SNR. In these equations, we see that the SNR has an association with
bit rate through the number of levels or output entropy of the quantizer; however, the SPER is only
associated with the error in prediction and only indirectly with the reconstruction error versus bit
rate. A natural question that follows is “How many bits/sample does an SPER or prediction gain of a
certain magnitude save when coding the speech?” Equation (40) allows us to estimate this savings in
bit rate.

To elaborate, suppose that we wish to compare the performance of 8 bits/sample p-law
PCM [16,35] that achieves a desirable target SNR of SNR(dB) = 35 dB with the performance of
adaptive DPCM, particularly with the goal of determining how much prediction gain is required.
While we can investigate the bits/sample required through Equations (42) and (43) indirectly, our new
results allow us to write a new additive bit rate equation of the form

Rsnr = Rsper + Rsnrg- (44)

This result says that the rate Rgng that produces a desired overall SNR in PCM can be expressed
as the summation of the effective rate compensated for by the linear prediction, Rgprr, and the rate of
the quantizer, Rgnr,, needed to produce the desired output SNR when operating on the prediction
error. Although simple, this is a fascinating result. The distortion-rate performance of the ADPCM
system is broken down into components of the SNR due to prediction and to quantization as in
Equations (42) and (43) and the effective rate of each of these components as in Equation (44). A few
examples of the utility of this new characterization follow.

As a concrete example from Figure 1 and Table 1, we see that an N = 10th order predictor
allows a reduction in bit rate of 2.647 bits/sample over direct pulse code modulation (PCM), that
is, coding of the original speech signal without prediction. Taking 8 bits/sample y-law PCM as our
reference and using Equation (44), this implies that using predictive coding, the bit rate would be
reduced to about 5.4 bits/sample for the prediction error quantization, or 43.2 kbits/s. To factor in the
perceptual difference between log-PCM quantization noise and the quantization noise in predictive
differential encoding, we can use some earlier results on such a comparison between 7 bits/sample
p-law PCM and ADPCM that aligns the objective SNR with subjective ratings by listeners to see
that a 2.647 bits/sample reduction from 7 bits/sample yu-law PCM would yield a required bit rate of
4.4 bits/sample or 35.2 kbits/s, which closely fits the subjective performance results in [6,39] and the
performance achieved by 4 bits/sample or 32 kbits/ ADPCM in the G.726 standard [40].

We can also observe from Table 1 that well over half of the total gain in bit rate for an N = 10th
order predictor is obtained with only an N = 4th order predictor which achieves a rate reduction of
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2.348 bits/sample. While it is evident that an N = 4th order predictor for Frame 45 accomplishes most
of the reduction in MSPE, casting the performance of an N = 4th order predictor as a reduction in bit
rate of more than 2.25 bits/sample seems to capture more explicitly the importance of the predictor for
representing this frame of speech.

If we consider a similar analysis for the three other speech frames in Figures 2—4, we see that
these frames have a lower SPER than for Frame 45, and that from Equation (44) in order to maintain
a constant RgyR, the rate of the quantizer must be higher as the bit rate reduction provided by the
predictor is 1.968, 1.29, and 0.83 bits/sample, respectively, for these three frames. While it is known
and intuitive that poorer predictor performance must be compensated for by the quantizer, this explicit
characterization in terms of rate is informative and new.

7.2. Code-Excited Linear Prediction

For speech coding, we can go beyond linear predictive waveform coding and consider the utility
of our results to Code-Excited Linear Prediction (CELP), which does not attempt waveform-following,
but uses linear prediction for the short term memory along with a fixed codebook excitation and an
adaptive codebook, the last of which captures the long term memory due to speaker pitch. A block
diagram of a CELP decoder is shown in Figure 5. In this figure, A(z) =1 -}, ajz~/ is the z domain
representation of the AR model in Equation (13) and g, and g. are the gains associated with the
adaptive codebook and the fixed codebook, respectively. The predictor coefficients aj, i=12,...,m,
the codebook gains ¢, and g, the adaptive codebook long term memory or speaker pitch estimate,
and the specific fixed codebook codeword are selected at the CELP Encoder (not shown) to provide the
best frequency weighted squared error fit over the current speech frame and then transmitted to the
decoder for speech synthesis. For more details on the CELP structure and the encoding and decoding
processes, the reader should consult the references [6,16,24,36].

Feedback for Pitch
Excitation

Adaptive
Codebook

—’%\ |
Vo Synthesis
Filter

Fixed

Codebook
8.

Figure 5. Code-Excited Linear Prediction (CELP) Decoder.

Fit

CELP is the most widely deployed method for speech coding today, serving as the primary speech
coding method in the Adaptive Multirate (AMR) codec [37] and in the Enhanced Voice Services (EVS)
codec [38] used in cell phones and VoIP. Interestingly, although signal-to-noise ratio is not a useful
overall performance indicator for CELP codecs, we develop the idea that the MMSPE for the AR
modeling of the short-term memory can give a useful measure for the reduction, or increase, in the bits
or complexity needed for the codec excitation.

We consider the case where a CELP codec is used to code the AR sequence corresponding to
Figures 1-4. Since it is well known that the fixed and adaptive codebook excitation must make up for
any error energy not modeled by the short term predictor [36], in applying the results in Table 1 based
on Equation (40) for CELP, the change in bits/sample provided by an increase in linear predictor order
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can be interpreted as a corresponding change (reduction) in the bits/sample, or codebook complexity,
required by the fixed codebook.

To make this more specific, let the combined Fixed and Adaptive Codebook excitation for the
Synthesis Filter in Figure 5 be denoted as X¢ and the reconstructed output as Xg, and then we form

I(X; XR) = I(X; XN, Xc) = [(X; Xn) + I(X; Xc| XN) (45)

where Xy is the prediction term and X is the original speech being coded by the using the CELP
Encoder (not depicted). This expression states that the mutual information between the original speech
X and the reconstructed speech Xr equals the mutual information between X and Xy, the linear
prediction of X, plus the mutual information between X and the codebook excitations X conditioned
on Xy. Thus, to achieve or maintain a specified mutual information between the original speech and
the reconstructed speech, any change in I(X; X)) must be offset by an adjustment of I(X; Xc|Xy ).
We note from Figure 5 that the codebook excitations consists of two additive components,
the Adaptive codebook and the Fixed codebook. We thus can decompose the term I(X; X¢|Xy) as

I(X; Xc|XNn) =1(X; X4, XF|XN)
:I(X}XA|XN)+I(X,'XF|XN,XA) (46)
=I1(X; Xp|XN) + I(X; Xa| XN, XF)

where X4 represents the Adaptive codebook contribution and Xr represents the Fixed codebook
contribution. Both forms of the chain rule for the mutual information are shown in Equation (46),
but in most codec designs, the adaptive codebook contribution is removed before the search over the
fixed codebook.

For our current purposes, however, the term of interest is I(X; X)), which we suggest can be
calculated /approximated by the log ratio of MMSPE values as in Tables 1-3, and in Figure 4. Therefore,
we avoid the difficult calculations and approximations needed to estimate the differential entropies
and the mutual information, and thus we can more easily get insights into the tradeoffs between
the prediction component and the codebook excitations through Equations (45) and (46) for CELP
codec designs.

8. Other Possible Applications

Of course, AR models play a large role in many applications, including ECG classification [9],
EEG classification [10,11], and geophysical exploration [7,8]. We have not conducted experiments
using our log ratio of entropy powers approach to these problems, but, in the following subsections,
we outline in some detail possible approaches to a few of these applications. The applications
described are chosen such that each application uses the AR model in different ways. Sufficient
details are provided such that researchers skilled in these several areas should be able to follow the
descriptions to implement their particular application.

8.1. ECG Classification

Reference [9] describes a method for electorcardiogram (ECG) classification and detection based
on AR models of the QRS complex in an ECG signal. The overall method consists of multiple signal
processing steps, beginning with preprocessing to remove artifacts from respiratory modulation and
baseline drift, then filter bank methods to identify QRS peaks, followed by AR modeling of one or two
beats of the ECG signal available from the pre-processing step, and finally clustering to arrive at a
classification or patient identification.

The classification task is to determine whether an ECG shows a normal heart rhythm,
an arrhythmia, or a ventricular arrhythmia. The patient identification task is to recognize a patient
from a recorded ECG. The AR modeling step is the central component of the method, and the authors
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state that having an accurate AR model order is crucial to the success of both tasks and that using
the prediction error power in addition to the predictor coefficients significantly improves the patient
identification task. Of course, both the prediction error power and the model order are intimately
intertwined, since the former is an output of the latter.

The authors in [9] determine the model order from the observation of a “knee” in the modeling
error power curve as the model order is increased. In their work, they use orders of 2-4, which do,
in fact, yield a small MSPE for the one example specifically presented. We suggest that the log ratio of
entropy powers as the model order is increased as presented in Section 5.3 of the current paper can
serve as an additional indicator of a suitable AR model order through Equations (33) and (34) with the
entropy powers replaced by MSPE as in Equation (40).

Specifically, from the examples in Section 6, we have seen that the log ratio of entropy powers
can be interpreted as a possibly more sensitive indicator of the match produced as the model order
is increased in comparison to the straightforward MSPE. Since for the patient identification task,
the prediction error power improved recognition performance, folding in the change in mutual
information as from Equation (40) may supply a further improvement in performance.

8.2. EEG Classification

Autoregressive models have been used in a variety of EEG signal processing applications.
One such application is the classification of an EEG to determine if a patient has sufficient anethesia for
deep surgery [10]. The approach in [10] is to develop m = 1,2, ..., M Nth order AR models, denoted as
AR(™) from EEG signals taken from other patients that are labeled as being in some state (inadequate
anethesia, sufficient anethesia), which are then used as templates representing the different states of
anethesia. The challenge is that while the template EEGs are labeled as being in one of two classes,
the interpatient variability is high, so a statistical comparison of the input EEG is needed to see which
template it is closest to.

To accomplish this, the input EEG is passed through the prediction error filters formed from all of
the AR(™m = 1,2,..., M Nth order AR models, with the output of each filter producing a prediction
error that is the result of predicting the input EEG with the AR coefficients determined from each
labeled template. Each template covariance matrix and its” corresponding MMSPE are fed to a Gaussian
assumption Karhunen-Loeve Nearest Neighbor (KL-NN) rule to select the correct classification.

In [10,11] the order of all of the AR(™) models are set at some fixed N, and it is possible that the
change in mutual information as indicated by the log ratio of entropy powers could be used to aid
in the selection of the appropriate model order. However, as an alternative application, we suggest
here that the log ratio of entropy power between the EEG being tested and each of the template AR(")
models might be a good classification rule.

What we propose is to use the prediction errors at the output of each prediction filter as in
reference [10] and determine the MMSPE for each, then form the log ratio of entropy powers to
compare each of these to the MMSPE for each template, and then use these quantities in a NN
algorithm. Notationally, let the MMSPE for each template AR(M) be Q(Xm|AR(m) ),m=1,2,..., M,
where X, is the EEG used to develop template m, and let the MMSPE when predicting the input
EEG with each AR("™) be Q(Y|AR(™)), where Y denotes the input EEG signal. By the definition of the
optimality of the templates in being matched to their particular mth EEG signal, we know that

Q(Y|AR!™) > Q(X,,| AR™)) (47)

form=1,2,..., M.
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We can thus form the log ratio of entropy powers as

myyy _ 1, Q(Y|AR™)
d(Y, X(AR™)) 21°gQ(Xm|AR(m>) (48)

=h(Y|AR™) — h(X|AR(™)

which we know is greater than or equal to zero. A mutual information expression for the log ratio of
entropy powers does not appear to be possible for this problem setup. The quantity in Equation (48),
d(Y,X(AR(™)), can then be used directly in a NN calculation as in [10].

8.3. Geophysical Exploration

There is a very long history of autoregressive or linear prediction models in geophysical signal
processing and exploration [7,8,41,42] for use in developing an understanding of the subsurface crustal
layer interfaces. In those applications, the predictor order N may be chosen to be (1) some previously
determined length, or (2) the predictor order where the normalized mean squared error meets some
prior-selected threshold or shows only slight further increases.

From Tables 1-3, we see the normalized MMSPE as the predictor order is increased from N =1
to N = 10. Observing these values, it would appear that choosing a preset value for the predictor
order in this range would not produce reliable results, except perhaps if N were chosen to be large.
Additionally, selecting a predetermined threshold for the MMSPE to select the predictor order also
appears to be difficult. However, selecting the predictor order where the normalized mean squared
prediction error shows only slight further increases as N is incremented appears workable. Of course,
quantifying “only slight further increases” can be a challenge.

As discussed in detail toward the end of Section 6, the mutual information or the log ratio of entopy
powers provides an alternative indicator of the new “information” being obtained as the predictor
order is incremented. Reiterating a few of those points, we see that in Table 1 when the predictor order
is increased from N = 3 to N = 4 the mean squared error changes by 0.0202, an apparently small
change, but the corresponding increase in mutual information is 0.304 bits/letter. Similarly, in Table 2
when the predictor order is increased from N = 6 to N = 7 the mean squared error changes by 0.0258,
less than three hundredths of the normalized energy, while the increase in mutual information is
0.226 bits/letter. Additionally, from Table 3 when the predictor order is increased from N = 7 to
N = §, the mean squared error changes by 0.0277, a relatively small value, while the increase in mutual
information is 0.104 bits/letter.

Therefore, for the geophysical application of the AR model, the log ratio of entropy powers or
change in mutual information provides a perhaps more sensitive indicator of the appropriate model
order and certainly a new intuitive interpretation of changes in mean squared prediction error as the
model order is increased.

9. Conclusions

We present a new quantity, the log ratio of entropy powers, for investigating the changes in
mutual information and differential entropy as the predictor order is incremented in autoregressive
models or for evaluating the overall change in differential entropy and mutual information for a
selected AR model order. We show that entropy power can be replaced by the minimum mean
squared prediction error and the expressions still hold for i.i.d. Gaussian and Laplacian signals,
Gaussian autoregressive processes, maximum entropy spectral estimates, and AR decompositions
into deterministic and nondeterministic components. We then use the log ratio of entropy power
expression with MMSPEs substituted for the entropy powers and study AR modeling of speech and
applications to speech coding analysis. The analyses allow us to associate a specific performance gain
in terms of bits/sample with the reduction in MSPE provided by the predictor for speech waveform
coding. For CELP coding the overall reduction in MSPE can be interpreted in terms of a change
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in mutual information, which allows us to decompose the mutual information between the input
speech being coded and the reconstructed speech into a sum of mutual informations and conditional
mutual informations provided by the codec components. We also develop approaches to apply the

new

quantity to the AR models used for seismic exploration, EEG classification, and ECG classification.

We feel that the log ratio of entropy powers is an insightful new tool for the analysis of AR models and
for the analysis of AR models used in many different types of applications.
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Abbreviations

The following abbreviations are used in this manuscript:

ADPCM  Adaptive differential pulse code modulation
AMR Adaptive multirate

AR

Autoregressive

CELP Code-excited linear prediction
DPCM Differential pulse code modulation

ECG
EEG
EVS

Electorcardiogram
Electroencephalogram
Enhanced voice services

MSPE Mean squared prediction error
MMSPE  Minimum mean squared prediction error

MMSE Minimum mean squared error

PCM Pulse code modulation

SNR Signal to noise ratio

SPER Signal to prediction error ratio

VoIP Voice over Internet Protocol
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