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Abstract: Observational indications support the hypothesis that many large earthquakes are preceded
by accelerating-decelerating seismic release rates which are described by a power law time to
failure relation. In the present work, a unified theoretical framework is discussed based on the
ideas of non-extensive statistical physics along with fundamental principles of physics such as the
energy conservation in a faulted crustal volume undergoing stress loading. We define a generalized
Benioff strain function Ωξ(t) = ∑

n(t)
i=1 Eξ

i (t), where Ei is the earthquake energy, 0 ≤ ξ ≤ 1. and a
time-to-failure power-law of Ωξ(t) derived for a fault system that obeys a hierarchical distribution law
extracted from Tsallis entropy. In the time-to-failure power-law followed by Ωξ(t) the existence of a
common exponent mξ which is a function of the non-extensive entropic parameter q is demonstrated.
An analytic expression that connects mξ with the Tsallis entropic parameter q and the b value of
Gutenberg—Richter law is derived. In addition the range of q and b values that could drive the system
into an accelerating stage and to failure is discussed, along with precursory variations of mξ resulting
from the precursory b-value anomaly. Finally our calculations based on Tsallis entropy and the energy
conservation give a new view on the empirical laws derived in the literature, the associated average
generalized Benioff strain rate during accelerating period with the background rate and connecting
model parameters with the expected magnitude of the main shock.
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1. Introduction

Earthquake physics is one of the most fascinating fields in Earth Sciences. It’s not only the
abruptness of the phenomenon that attracts our interest, but also the devastating consequences that
earthquakes can have for the anthropogenic environment. Thus an understanding of its hidden
fundamental physics required in order to mitigate the earthquake risk. The earthquake generation
process is commonly believed to be a complex phenomenon [1–6], although this has been questioned
in [7–9], manifested in the nonlinear dynamics and in the wide range of spatial and temporal scales
that are incorporated in the process [1,2].

The Accelerating Seismic Release (ASR) ideas were applied for first time more than twenty five
years ago [3–6]. The idea of ASR has been adopted and modified properly by many scientists and
in different geotectonic environments [3–6,10–25] (and references therein). In most of the cases the
application of ASR was retrospective, usually after a large earthquake, although there were few
attempts at prediction but unfortunately very few of them were successful (see the discussion in [8]),
suggesting that further study of the physics of the ASR hypothesis is necessary. A large number of
seismological observations show that strong mainshocks are preceded by accelerating generation of
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intermediate magnitude preshocks [11,15,18] (among many others). Theoretical work suggests that the
process of generation of these preshocks can be considered as a critical phenomenon culminating in a
mainshock considered as a critical point [26–28]. In addition rock mechanics laboratory experiments
support the idea that rupture in heterogeneous media is a critical phenomenon [16,29].

Initially the ASR theory has been associated with subcritical crack extension theory where in rocks
under constant stress the small cracks expand rapidly before the occurrence of the main fracture [5,6].
This approach was associated with the critical point concept, since the preparation of an earthquake
was described as a critical phenomenon that leads to a critical point which is the main earthquake
that occurs when fracturing becomes coherently self-organized at different scales [26,30]. The latter
has been correlated with power-law increase in the cumulative Benioff strain release rate prior to the
characteristic earthquake [6,25]. Furthermore, the ASR hypothesis could be explained by the phase
transitions theory and spinodals lines where fault failures are produced from continue evolving and
correlated system [22] (and references therein). We note that in [7–9] an alternative view is proposed,
called non-critical precursory accelerating seismicity theory (NC-PAST). It is based on the assumption
that foreshocks are due to the cumulated effects of constant loading on the fault zone that hosts the
mainshock. In this view, foreshocks are the passive tracers of the preparatory process of the mainshock
and therefore carry information on the upcoming event. In the NC-PAST view some large earthquakes
are potentially predictable, even if in practice no probabilistic model is yet available. We point out that
even NC-PAST presents an alternative view to criticality, the concept of critical point could be used
to explain the origin of ASR [8] and it is a reasonable theory to explain the behavior of earthquake
populations. An extended discussion on this debate, between the critical point holistic view, where the
seismic patterns (universal power-laws) are the signatures of physical interactions at all scales in the
lithosphere, and the NC-PAST reductionalist view, where different loading processes are superimposed
depending on the geometry of the fault network, and where patterns are progressively defined through
space and time by the sum of the different loading components of the system is presented in [8] along
with a long list of references on ASR. We clarify that the present work is based on the critical earthquake
model view [1–6,10–21] which has recently supported in terms of natural time analysis [31] and we
suggest to the reader the works [7–9] for an alternative approach.

The critical earthquake model is based on principles of statistical physics [26–28] and has
been proposed to explain accelerating intermediate magnitude seismicity observed before strong
mainshocks [11,17,21] (among others). Such behavior has been also supported by independent
observations, which suggest that rupture in heterogeneous media is a critical phenomenon [30].
Thus, the critical earthquake model is supported by seismological observations, by principles of
statistical physics and rock mechanics experiments.

Several researchers have investigated properties of the model [6,10,12,25]. Based on a damage
mechanics model, in [6] proposed a power law for the time variation of the cumulative Benioff strain,
which defined as the cumulative of the square root of energy, released by preshocks in the critical
region. The expression proposed was:

Ω(t) = Ω f − B
(

t f − t
)m

(1)

where tf is the failure time (occurrence time of the mainshock) and Ω f , B, and m are model parameters.
The exponent m takes values much smaller than 1 for accelerated energy release, whereas values at
about m~1 correspond to a steady (normal) time variation of the Benioff strain (seismic energy) release.
For m > 1 a deceleration of seismicity is defined. However, results from numerous experimental studies
show that approaching failure m has a mean value close to 0.30, in agreement with several theoretical
considerations and laboratory results [10,32].

It is obvious that the study of seismicity patterns requires methods of statistical physics and
seismicity processes can be seen as the outcome of the irreversible dynamics of a long-range, interacting,
disordered system [33]. The main motivation of this work is starting from fundamental ideas that
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combine a theoretical frame for the ASR method with complexity theory, introducing concepts such as
that of non-extensive statistical mechanics. Our theoretical findings are discussed in comparison with
previously observed empirical scaling expressions.

Non-extensive statistical physics (NESP) is the appropriate methodology to describe seismicity
patterns, where long-range dependence effects are important. NESP was originally introduced
in [34], recently summarized in [35], while its validity in Earth Sciences is reviewed in [36,37]. It is
based on Tsallis entropy, a generalization of the classic Boltzmann-Gibbs entropy and has the main
advantage that it considers all-length scale correlations among the elements of a system, leading
to an asymptotic power-law behavior, very common in Earth Sciences. Non-extensivity represents
one of the most intriguing characteristics of systems that have experienced long-range temporal
correlations [38] which is observed in seismicity and recently has been verified in terms of natural
time analysis [39]. The applicability of NESP in Earth physics has been demonstrated in a series of
recent publications on seismicity [40–47], natural hazards [48,49], plate tectonics [50], geomagnetic
reversals [51], rock physics [52,53], applied geophysics [54] and fault-length distributions [55–57].

The question whether accelerating/decelerating seismicity could be described in terms of NESP
presents a challenge. This is the problem addressed here. Taking into account the different complex
models proposed [10–30], reviewed and criticized in [7–9] it is very attractive to focus our interests on
the results obtained introducing ideas of complexity and NESP. For this scope we generalize a model
originally proposed in [16] where fundamental concepts as that of energy conservation are used to
understand the accelerating seismicity and to demonstrate the physics that governs it.

It is primary target of the present work to discuss a unified theoretical framework based on
the ideas of NESP and Tsallis entropy, along with fundamental principles of physics such as the
energy conservation in a faulted crustal volume undergoing tectonic stress loading, in order to derive
the time-to-failure power-law of a generalized Benioff strain expression Ωξ(t) in a fault system with
earthquake volumes that obey a hierarchical distribution law. We note that the present analysis is based
on already existing observations regarding ASR. Herein we will extent the model proposed in [16] in
order to include the generalized Benioff strain Ωξ(t) and to study its fundamental physical properties,
in view of the NESP approach. Considering the analytic conditions near the time of failure, we derive
from first principles the generalized time-to-failure power-law and we present that a common critical
exponent mξ exists, which is a function of the non-extensive entropic parameter q or in an equivalent
way of the b-value that appears in the Gutenberg-Richter law. Our results based on Tsallis entropy and
the energy conservation, present a physical reason for the validity of the empirical laws observed in a
number of previous works [11,15,17,21] that connect the empirical parameters of the time-to-failure
power-law expression with the magnitude of the main shock.

2. A Non Extensive Statistical Physics Formulation of Seismicity Temporal Pattern

This section is organized as follows: in Section 2.1 we define the generalized Benioff deformation
Ωξ(t) and its basic physical properties based on the fundamental principle of energy conservation in a
stressed fractured volume. In the following Sections 2.2 and 2.3 the non-extensive statistical physics
introduced and linked to the generalized Benioff deformation leading to a relation between the power
law exponent and the Tsallis entropic parameter q or equivalently the b-value in the Gutenberg—Richter
law. Finally in Section 2.4 the fundamental properties of Ωξ(t) are presented and discussed in view of
already published empirical laws.

2.1. The Generalized Benioff Deformation

The earthquake preparatory process results in the generation of several preshock seismicity
patterns. One of these patterns is characterized by accelerating seismicity expressed by the generation
of moderate magnitude earthquakes that occur before a mainshock in a critically deformed region [12].
In contrast a second pattern concerns the seismic quiescence, expressed by the decrease of the observed
seismicity [58–62]. It has been suggested [10–28,58,61] that strong mainshocks are preceded by a
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seismicity pattern where accelerating strain in the region is accompanied by decelerating strain in the
narrow part (in the vicinity of epicenter) seismogenic region. It is obvious that the use of the term
accelerating–decelerating seismic crustal deformation reflects the physical process that takes place at
the critical preshock area.

To describe the accelerating–decelerating seismic crustal deformation the following equation
for modeling the process of energy release during the large earthquake preparation (the time to

failure model) has been used [10–28]: dΩ
dt = k

(t f−t)
1−m or the integral form Ω(t) = Ω f − B

(
t f − t

)m

(as presented in Equation (1)), where B = k
m .

The cumulative Benioff strain, Ω(t), is a measure of the preshock seismicity at time t, defined
as: Ω(t) = ∑

n(t)
i=1 E1/2

i (t), Ei is the seismic energy of the i-th preshock and n(t) is the number of events
till time t. The parameter t f is the occurrence time of the mainshock and B and m are parameters
which can be calculated from available observations. For 0 < m < 1 an accelerated seismicity pattern is
observed, while for m > 1 a decelerated pattern appears.

Seismic energy is usually calculated from the corresponding magnitude of the earthquakes.
Instead of the Benioff strain (roughly proportional to E1/2), other measures, such as the seismic moment
(~E1) or the number of events (~E0), have been used to describe accelerating–decelerating seismicity
patterns. The Ω(t) could be generalized, introducing a new quantity Ωξ(t) = ∑

n(t)
i=1 Eξ

i (t) where
0 ≤ ξ ≤ 1 that we call generalized Benioff deformation. When ξ = 0, then Ω0(t) = N(< t) where
N(< t) is the cumulative number of earthquakes till time t, for ξ = 1/2 we have Ω1/2(t) = Ω(t)
i.e., the well-known cumulative Benioff strain and when ξ = 1, Ω1(t) = ∑ E(t) represents the
cumulative energy released.

Since the system of faults has a fractal structure, [63] and in the fault zone, at a first approximation,
a hierarchical scaling of fractures takes place, it has been suggested that the process of the main
shock preparation is a critical phenomenon [28], which occurs when fracturing becomes coherently
self-organized at different scales. This process develops from below upwards’ following the energy
scales of self-organized fractures and is eventually concentrated in the vicinity of the hypocenter of
the main shock. Seismicity patterns associated with the nucleation of strong earthquakes are often
recorded over the earthquake epicenter in a fairly large area V. We note that the earthquake epicenter
can lie in both central and peripheral parts of this area. The size of the volume V is an order of
magnitude greater than that of the earthquake source region. The stressed crustal volume V is the
region where the preparation process of large earthquake occurs. However, in addition to the volume
V, the earthquake nucleation process should give rise to a potential earthquake source region Veff
developing with time t in which the macrofractures are nucleated. The maximum diameter L of Veff is
of the same order as that of the earthquake source.

In the first initial phase the temporal and spatial distribution of seismic activity within V
is approximately uniform. During the initial phase the flow of tectonic elastic energy into V is
released with weak earthquakes and possibly with an additional aseismic deformation (e.g., creep).
It is straightforward to accept that due to the inhomogeneity of the crust the elastic energy is
concentrated in some subvolumes υ within V (see Figure 1). The latter leads to the increase of
stress in subvolumes and at a critical time the configuration of the stress field specifies the parameters
of the future main shock. To express the energy which supports stress we define as Uin

s the elastic
energy surface density which tectonically flows within V as Uin

s = dUin

dA where A is the area associated
with the external bound of the volume V. The energy is released as seismic activity and we define
Uout

v as the volume density of the elastic energy seismically released as a result of the earthquake
activity within Ve f f . We note that Ve f f is formed by the set of all the earthquake subvolumes υ within
V, (Ve f fC V), while an aseismic term R(t) exists to describe the part of the inflow energy to V which is
not related to the earthquake activity.
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Figure 1. The tectonically stressed volume V. Within V seismic energy is released in the hierarchically
distributed subvolumes υ that form the potential earthquake source region Veff (see text).

According to the fundamental principle of energy conservation we have:

Uin
s A(V) = Uout

V Ve f f + R(t) (2)

or:
Uin

s A(V) = Uout
V Ve f f + λV (2a)

where R(t) = λ V assumed. Motivated from the Voight relation [64], we generalized in Equation (3)
the assumption suggested in [16] (for ξ = 1/2), accepting its validity for the generalized Benioff
strain Ωξ(t) :

dΩξ(t)
dt

= γ
[
Uout

V (t)
]α

= γ1

[
Uin

s A(V)− λ V
Ve f f

]α

(3)

Equation (3) relates the rate of the generalized Benioff deformation with the volume density of
the elastic energy released and it is similar with that used in damage mechanics, where the evolution
of the damage variable is related with the square of the strain [65–67]. If L is the characteristic size
of the volume V then A(V) ∼ Lde−1 and V∼ Lde where de is the Euclidean dimension of V which is
de = 3 when the earthquake activity in embedded in a 3 dimensional space and de = 2 when it is located
in an almost 2-dimensional surface. We clarify that hereafter the term “volume” has to be viewed as
the geometrical size related with the spatial distribution of earthquake events and as mentioned it is
the geometrical volume in the case of a 3-dimensional distribution of preshocks.

2.2. A Non Extensive Statistical Physics View of Generalized Benioff Deformation

We proceed now to the estimation of the probability distribution p(υ) of the sub-volumes υ that
form the Veff. To this direction, we introduce the principles of non-extensive statistical mechanics in
our analysis. Its cornerstone which is recapitulated here, is the non-additive entropy Sq [34,35], which
is non-additive in the sense that it is not proportional to the number of the system’s elements, as in the
Boltzmann-Gibbs entropy SBG. The Tsallis entropy Sq reads as:

Sq = kB
1−∑W

i=1 pq
i

q− 1
, q ∈ R

or in equivalent form as Sq = −kB
∫

pqlnq p dx for a continuum variable x, with lnqX = X1−q−1
1−q

the definition of the q-logarithmic function and kB is Boltzmann’s constant; pi and p(x) are the
probabilities of x; W is the total number of microscopic configurations; and q the entropic index.
This last index is a measure of the non-additivity of the system and for the particular case q = 1,
the Boltzmann-Gibbs entropy SBG is obtained; SBG = −kB ∑W

i=1 pilnpi. We note that for q = 1, we obtain
the well-known exponential distribution [34]. The cases q > 1 and q < 1 correspond to sub-additivity
and super-additivity, respectively. Although Tsallis entropy shares a lot of common properties with
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the Boltzmann-Gibbs entropy, SBG is additive, whereas Sq (q 6= 1) is non-additive [34]. According to
this property, SBG exhibits only short-range correlations, and the total entropy depends on the size of
the systems’ elements. Alternatively, Sq allows all-length scale correlations and seems more adequate
for complex dynamical systems, especially when long-range correlations between the elements of the
system are present.

For a system composed of two statistically independent subsystems, Σ1 and Σ2, the Tsallis entropy
satisfies the equation [34]:

Sq(Σ1 + Σ2) = Sq(Σ1) + Sq(Σ2) +
1− q

kB
Sq(Σ1)Sq(Σ2)

The non-additivity is indicated by the last term on the right side of the equation above and
represents the interaction between the two subsystems Σ1 and Σ2. In order to estimate the probability
distribution p(υ) of the seismic subvolume υ, we maximized the non-extensive entropy under the
appropriate constraints, using the Lagrange-multipliers method with the Lagrangian [34,35]:

Lq = −
∫ ∞

0
pq(υ)lnq p(υ)dυ− λ (

∫ ∞

0
p(υ)dυ− 1)− λ1 (

∫ ∞

0
υPq(υ)dυ− 〈υ〉q)

The first constraint used refers to the normalization condition that reads as:
∫ ∞

0 p(υ)dυ = 1.
Introducing the generalized expectation value (q-expectation value), υq which is defined as: 〈υ〉q = υq =∫ ∞

0 υPq(υ)dυ, where the escort probability is given in [35] as: Pq(υ) =
pq(υ)∫ ∞

0 pq (υ)dυ
, the extremization of Sq

with the above constraints yields to the probability distribution of p(υ) as [68,69]:

p(υ) = Cq

[
1− 1− q

2− q

(
υ

υq

)] 1
1−q

(4)

where Cq is a normalization coefficient. We recall that the Q-exponential function is defined as:

expQ(X) =

{
[1 + (1−Q)X]1/(1−Q) if (1 + (1−Q) X ≥ 0)

0 if (1 + (1−Q) X < 0)

The normalized cumulative number of seismic subvolumes υ can be obtained by integrating the
probability density function p(υ) as:

P(> υ) =
N(> υ)

N0
=

[
1 +

(
q− 1
2− q

)(
υ

υq

)] q−2
q−1

where N(>υ) is the number of events with seismic volume larger than υ. In the latter expression, if we
define = 2− 1

Q , this leads to:

P(> υ) = expQ

(
−
(

υ

υq

))
=

[
1 + (Q− 1)

(
υ

υq

)]− 1
Q−1

having a typical Q-exponential form.
In the frame of non extensive statistical mechanics approach for earthquake volumes bigger

than a given one υo we find a power law description of the distribution function and in such a case

the cumulative distribution is P(> υ) ∼= C
(

υ
υq

)− 2−q
q−1 ∼ υ−β with an exponent β = 2−q

q−1 . To have an
estimate of υo we select the volume where the power law approximation of P(>υ) takes the value

P(>υ) = 1 leading to υ = υq(
2−q
q−1 )

3/2
. We observe that β ≤ 1 leading to 3

2 ≤ q, in agreement with
previous published results on earth physics processes at a broad range of scales from laboratory up to
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geodynamic one [70,71]. It is obvious that the volume distribution p(υ) could lead to an estimation
of Veff as Ve f f =

∫ V
Vmin

υp(υ)dυ which for large volumes (i.e., moderate to significant events) has an

asymptotic behavior Ve f f ∼ V
(2q−3)
(q−1) . or Veff~Ld where d = de

2q−3
q−1 which generalizes and justify the

expression introduced in [16]. The latter expression implies that when d > 0 (q > 3/2), Ve f f ∼ Ld

presents a fractal distribution of earthquake volumes with a fractal dimension de − 1 < d < de, leading
to 2de+1

de+1 < q < 2. The latter expression suggests that within NESP approach the entropic parameter q
is bounded by the Euclidean dimension de of the dmed system. When de = 3 then 7

4 < q < 2, while for
de = 2 we constrain q in the range 5

3 < q < 2.
After introducing Equation (2a) into Equation (3), the generalized Benioff stress rate could be

expressed as follows:
dΩξ(t)

dt
= γ

[
Uin

s
1

Ld−de+1 − λLde−d
]α

(5)

When the time t approaches the time to failure t f and since Uin
s

(
t = t f

)
6= 0 following [16] an

expansion of Uin
s (t) when t→ t f is:

Uin
s = U0in + U1in

( t f − t
Tc

)
+ O

(( t f − t
Tc

)n)
(6)

From Equation (6) it is obvious that U0in = Us

(
t = t f

)
, expressing the elastic energy of tectonic

origin inserted into the deformed area at the time of failure. The third term O(x). presents all the
highest order terms in the expansion that are very small and could be omitted, while the parameter Tc

is the characteristic time that defines the duration of the main shock preparation process starting from
the time where deviation of Ωξ(t) from linearity appears (see Figure 2).
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Figure 2. Evolution of the generalized Benioff strain Ωξ(t). The initial part is linear and the deviation
from linearity starts at t = tf − Tc defining the start of the accelerating deformation stage, where Tc is
the characteristic time expressing the duration of the main shock preparation process.

Approaching the main shock the volume where energy is released, defines a singular point [16],
and the analyticity assumption of L(t) as t→ t f leads to:

L(t) = L0

( t f − t
Tc

)
+ O

(( t f − t
Tc

)n)
(7)
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A detailed discussion of Equation (7) is given in [72,73] where a scale invariance of the process is
assumed in analogy with the theory of phase transitions. We note that when t→ t f , L(t)→ 0 and

L
(

t = t f − Tc

)
= L0. Substituting Equations (6) and (7) into (5) we obtain:

dΩξ(t)
dt

= γ

 U0in[
L0

( t f−t
Tc

)]d−de+1 +
U1in

( t f−t
Tc

)
[

L0

( t f−t
Tc

)]d−de+1 − λ

[
L0

( t f − t
Tc

)]de−d


a

(8)

As t→ t f then
( t f−t

Tc

)
→ 0 . Taking into account that de − d > 0 and d + 1 > de the first term in

(8) dominates and the integration leads to:

Ωξ(t) = Ωξ

(
t = t f

)
− γ

Tc(U0in)
a

La(d−de+1)
0

1
a(de − 1− d) + 1

( t f − t
Tc

)1+a(de−1−d)
(9)

which has the classical form proposed in [4–6,14] where:

Ωξ(t) = Ωξ f − B
(

t f − t
)mξ

with Ωξ f = Ωξ

(
t = t f

)
(10a)

B = γ
Ta(d−de+1)

c (U0in)
a

La(d−de+1)
0

1
a(de − 1− d) + 1

(10b)

mξ = a(de − 1− d) + 1 (10c)

The expression (10c) suggests that, mξ is independent of ξ (0 ≤ ξ ≤ 1) introduced in the definition
of the generalized Benioff strain Ωξ(t) but controlled by the Euclidean dimension de. of the deformed
system and the entropic parameter q which as a measure of long range interactions and of the
complexity of the system, controls the distribution of seismic subvolumes υ and their fractality. It is
worth to mention that the shape of the acceleration curve is controlled primarily by the exponent
mξ . Therefore, two differently sized main shocks with the same mξ value will have similarly shaped
acceleration curves but with different scale.

2.3. A NESP View of the ASR Parameters

The NESP approach could also be used to formulate the earthquake frequency-magnitude
distribution [44]. Moreover, [44] introduced an energy distribution function that shows the influence
of the size distribution of fragments on the energy distribution of earthquakes, including the
Gutenberg—Richter (GR) law as a particular case. [45] revised the fragment-asperity model using
a more realistic relationship between earthquake energy (E) and fragment size. Many recent works
indicated that the q parameter can be used as a measure of the stability of an active tectonic
area [40,41,44,45,70,74]. A significant increase of q indicates strong interactions between the fault
blocks (earthquake volumes) and implies a transition away from equilibrium [36,37,70]. Here we
will modify the above mentioned models in order to formulate a frequency-magnitude distribution,
taking into account the earthquake volume distribution p(υ) and introducing a scaling law between the
released relative energy (E) and the earthquake volume (υ) as has been proposed in [45] in agreement
with the scaling relationship between seismic moment and rupture length. From Equation (4) the
energy distribution function of the earthquakes can be written as follows:

p(E) = Cq

[
1− 1− q

2− q

(
E
Eq

)] 1
1−q

(11)
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Since the probability of the energy is p(E) = n(E)/No, where n(E) corresponds to the number
of earthquakes with energy E and No is the total number of earthquakes, the normalized cumulative
number of earthquakes is given as:

N(> E)
No

=

∞∫
E

p(ε)dε (12)

where N(> E) is the number of earthquakes with energy greater than E. Combining Equations (11)
and (12) the following expression for the earthquake frequency-energy distribution is derived:

N(> E)
No

=

[
1− (1− q)

(2− q)

(
E
Eq

)] 2−q
1−q

. (13)

which for (q−1)
(2−q)

(
E
Eq

)
� 1 suggests a scaling law N(> E) ∼ E−

2−q
q−1 in agreement with the well known

power law scaling N(> E) ∼ E−β with β = 2−q
q−1 [36,37,70,75]. As proposed in [76] the earthquake

magnitude M and the released seismic energy E, are related as M ∼ 2
3 log(E), leading to a b-value in

the Gutenberg—Richter law:

b =
3
2

β =
3
2

2− q
q− 1

(14)

Figure 3 presents the dependence of the b value on q as given in (14). Substituting d = de
2q−3
q−1 into

mξ as given by Equation (10c) and taking into account (14) we find:

mξ = 1− α + αde
2− q
q− 1

= 1 + αde

(
β− 1

de

)
= 1 + α

(
2
3

b de − 1
)

(15)

which connects the non-extensive parameter q and the b-value of the Gutemberg—Richter law with the
mξ parameter of the generalized Benioff strain. We note that in [6] using synthetic data a relationship
between b-value and m1/2 was claimed. For the parameter mξ a positive definition is required (mξ > 0)
and thus de− 1 < d < de− 1− 1

a . Theoretical results and experimental observation [3–6,10–25] suggest
that m1/2 = 0.25− 0.30 and d = 2.3− 2.4, while mξ should be the same for different ξ values, in
agreement with observations that indicate m0 = 0.30 [75]. Substituting mξ ≈ 0.3 and d ≈ 2.3 for de = 3
or d ≈ 1.3 for de = 2 to (10c) we find a = 2.0− 2.1. From here on we will keep a constant value a ≈ 2.0
in agreement with damage mechanics models where the evolution of the damage variable is related
with the square of the strain [65–67].
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Equation (15) along with the constrain mξ > 0 leads to a lower bound for the b value and an
upper bound for the q value, respectively, given as:

b >
3(a− 1)

2ade
and q <

2ade + a− 1
ade + a− 1

(16)

which for α = 2 and de = 3 gives b > 0.25 while for de = 2 , b > 0.375. The maximum permitted value
of q is qmax= 13/7 for de = 3 and qmax = 9/5 for de = 2. For accelerating (decelerating) seismicity mξ < 1
(mξ > 1). Applying Equation (15) shows that in accelerating seismicity q > 2de+1

de+1 which implies a lower
bound of the observed q introduced by the topological Euclidean dimension de of the space where
the earthquakes are embedded. For de = 3, q > 7

4 while for de = 2, q > 5
3 . In a similar way we have

q < 2de+1
de+1 for decelerating seismicity. Furthermore, Equation (15) for mξ < 1 (accelerating seismicity)

leads to b < 3
2de

which (as we approach failure) for de = 3 leads to b < 0.5 and for de = 2 to b < 0.75.
The above expressions introduce a critical value for q and for b where a transition from decelerating
to accelerating seismicity occurs. It is obvious that the decelerating seismicity which is described by
mξ > 1 for de = 3 leads to b > 0.5 and for de = 2 to b > 0.75. Figures 4 and 5 present the dependence
of mξ on q and b, respectively.

Furthermore the above analysis could be applied to connect changes of mξ to b-value variations
which have been reported as precursory effects in a number of significant earthquake events [76–79].
Equation (15) suggests that variations of the b value are associated with the temporal evolution
of mξ during the main event preparation period Tc, following the b values changes as suggested
in [80]. We write b(t) = bo + Λ(t) where bo represents the background b-value and Λ(t) reflects the
time dependent part of b-value that varies during the preparation of the main earthquake event
(see Figure 6). Substituting in (15) we find:

mξ = mξo +
2a
3

deΛ(t) where mξo = 1 + α

(
2
3

bode − 1
)

.
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Figure 6. Pattern of the variation of b and mξ values with time following the mechanism for b value
preseismic changes proposed in [80] (modified from [80]).

For α = 2, bo = 1 and de = 3 we find mξo = 3 while for de = 2, mξo = 1.67, both describing a
decelerating stage of seismicity. As we approach the failure time tf, observational results suggest that

mξ ≈ 0.30− 0.35, leading to Λ
(

t f

)
≈ − 1

6 for de = 3 and Λ
(

t f

)
≈ −1/4 for de = 2, respectively.

Figure 6 exhibits the general pattern of the temporal variation of the mξ parameter following the
temporal variation of the b-value as suggested in [80]. Most of the time after the last main event the
mξ value varies around mξo, which corresponds to the average bo value measured over a long time
period. As the b value increases from bo to a maximum value (thus a seismic quiescense appears in
agreement with [24]), the parameter mξ(t) increases too in a way following Equation (15). After passing
a maximum value mξmax, a decreasing phase of both b and mξ starts, crossing the value mξo and
approaching the transition time tc where mξ(tc) = 1, which defines the passing from the decelerating

to an accelerating stage. At the next step mξ(t) is approaching the value mξ

(
t→ t f

)
which lies in

the range of 0.25–0.35 and suggests the approach to a final stage of the preparation of the mainshock.
The latter is in agreement with [81,82] where b values based on seismicity over a period from 2006 till
immediately before the Tohoku earthquake, revealed a zone of low b value (b ≈ 0.5–0.6) in and around
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the focal area as an indicator of highly stressed patches in the zone, in remarkable similarity to b values
obtained in laboratory experiments [83]. We note that for b ≈ 0.5 Equation (15) gives m1/2 ≈ 0.3 in
agreement with the value m = 0.24 ± 0.09 given in [84].

2.4. Fundamental Properties of the Ωξ Function

Here we study some fundamental properties of the Ωξ(t) function that could be used to
understand the physics of many empirical laws presented in [11,15,17,19,21]. From Equation (10b)
we find:

log B =

log γ
T

1−mξ
c (U0in)

a

mξ L
1−mξ

0

 = log
(

γ

mξ

)
+ α log(U0in) +

(
1−mξ

)
log Tc −

(
1−mξ

)
log L0 (17)

The energy of the main shock is Em ∼ U0in L0
2 or logEm ∼ (log U0in + 2 log L0). Experimental

results and theoretical estimations suggest that the preparation time has a very weak dependence
of the magnitude of the main shock. Substituting to Equation (17) the scaling laws log Em ∼= 1.5M +

const, and log L0 ≈ 0.5 M+ const, we find log B ≈
(

a+mξ−1
2

)
M+ const. Since a ≈ 2, mξ = 0.25− 0.30

we conclude that the scaling factor has a value a+mξ−1
2 ≈ 0.62− 0.65, remarkably close to that observed

in a number of works [11,15,17,19,21].
From Equation (9) we calculate the generalized Benioff strain rate dΩξ/dt:

dΩξ(t)
dt

= γ
(U0in)

a

La(d−de+1)
0

( t f − t
Tc

)a(de−1−d)
(18)

According to Equations (9) and (18) we have:

Ωξ(t) = Ωξ f − γ
U0in

a

mξ

(
Tc

L0

)1−mξ(
t f − t

)mξ

and:
dΩξ(t)

dt
= γU0in

a
(

Tc

L0

)1−mξ 1(
t f − t

)1−mξ

When t f − t = Tc i.e., in the start of the accelerating deformation stage, we have:

Ωξl = Ωξ f − γ
U0in

a

mξ

Tc

L0
1−mξ

(19)

It is physically reasonable to expect a continuity of physical parameters in the transition from
the linear to the accelerating deformation period and to accept that at t = t f − Tc a continuity of the
generalized Benioff strain rate gives:

dΩξ

dt

∣∣∣∣
l
=

dΩξ

dt

∣∣∣∣
(t= t f−Tc)

= γU0in
a 1

L0
1−mξ

(20)

where dΩξ

dt

∣∣∣
l

is the slope of the linear part. We calculate the mean generalized Benioff rate during the
accelerated (deformed) period Tc i.e., from t = t f − Tc to t = t f :

〈
dΩξ

dt

〉
D
=

1
Tc

Tc∫
t f−Tc

dΩξ(t)
dt

dt = γ
U0in

a

mξ

(
1
L0

)1−mξ

(21)
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From (20) and (21) we reach the conclusion that:

〈
dΩξ

dt

〉
D

dΩξ
dt

∣∣∣∣
l

= 1
mξ
≈ 3− 4 Furthermore from (19),

if Ωξl � Ωξ f we have: Ωξ f ≈ γ U0in
a

mξ

Tc

L0
1−mξ

. Combining the latter expression for Ωξ f with Equation

(21) leads to:

Ωξ f ≈
〈

dΩξ

dt

〉
D

Tc (22)

which is exactly the expression proposed in [11,15,17,19,21]. Equation (22) could be written as:

Ωξ f ≈
1

mξ

(
dΩξ

dt

∣∣∣∣
l

)
Tc

which indicates that if we estimate Tc and the slope of the linear part of the generalized Benioff strain
we can estimate at least the order of magnitude of Ωξ f at the time of failure.

Let us assume that the last earthquake prior the main shock appears at a time t1 = t f − δt1.
Applying the time to failure Equation (9) we have:

Ωξ(t1) = Ωξ f − γ
U0in

a

mξ

(
Tc

L0

)1−mξ(
t f − t1

)mξ

or:

Ωξ(t1) = Ωξ f − γ
U0in

a

mξ

(
Tc

L0

)1−mξ

(δt1)
mξ .

Even if our approach is general, from here on, we limit ourselves to the case ξ = 1/2 describing
the Benioff strain which is very commonly applied. In this case the Benioff stain of the main shock is:
Ω 1

2 ,m = Em
1/2 = Ω 1

2 , f −Ω1/2(t1) resulting in:

Em
1/2 = γ U0in

a

m1/2

(
Tc
L0

)1−m1/2
(δt1)

m1/2 =
〈

dΩ1/2
dt

〉
D

(
δt1
Tc

)m1/2
Tc

= 1
m1/2

(
dΩ1/2

dt

∣∣∣
l

)(
δt1
Tc

)m1/2
Tc

(23)

Since the seismic energy is related to seismic magnitude by the relation:

log E = 1.5M + 4.7

Equation (23) leads to:

Mm =
4
3

log
[

1
m1/2

(
dΩ1/2

dt

∣∣∣∣
l

)
Tc

]
+

4m1/2

3
log
(

δt1

Tc

)
− 3.13 (24)

Using previously published observational estimates [11,15,17,19,21] for ξ = 1/2 we have an order
of magnitude estimation for the parameter dΩ1/2

dt

∣∣∣
l
≈ 106 J

1
2 /y, and assuming Tc ≈ 5 years with

m1/2 = 0.25− 0.30 and the last main preshock to appear at: δt1
Tc
≈ 0.1 (i.e., δt1 ≈ 0.5 year), the expected

earthquake magnitude of the main event should be of the order of Mm ≈ 6.3. In addition, since δt1
Tc
≤ 1

from Equation (24) we have the constraint Mm ≤ 4
3 log

[
1

m1/2

(
dΩ1/2

dt

∣∣∣
l

)
Tc

]
− 3.13, which leads to the

conclusion that the maximum expected earthquake magnitude in an area with background Benioff
strain rate dΩ1/2

dt

∣∣∣
l

is:

Mmax
m =

4
3

log
[

1
m1/2

(
dΩ1/2

dt

∣∣∣∣
l

)
Tc

]
− 3.13
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It is obvious that the ratio δt1
Tc

is a crucial parameter to define the final stage of the main event
preparation. [10] proposed a relationship between m1/2 and the normalized energy released Rne which
is defined as the total cumulative square root energy (i.e., ξ = 1/2) divided by the square root of the

energy released by the main shock. Thus Rne =
Ω(t f )
E1/2

m
. From the previous expressions it is obtained

that Rne = ( δt1
Tc
)
−m1/2 which leads to:

m1/2 =
1

log
(

Tc
δt1

) logRne

in which a linear relation between m-parameter and logRne is suggested with a positive slope 1
log
(

Tc
δt1

)
since Tc > δt1). The Figure 7 from [10] is reproduced here (as Figure 7) and a red line with a slope of the
order of 0.8–1.0 is added to the figure that seems to describe the majority of the data points. The latter
slope permits an order of magnitude estimation of the ratio δt1

Tc
, leading to δt1

Tc
= 0.05− 0.1.Entropy 2018, 20, x FOR PEER REVIEW  14 of 18 
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3. Concluding Remarks

The organization patterns that earthquakes and faults exhibit has motivated the statistical physics
approach to earthquake occurrence [85]. Based on non-extensive statistical physics and the Tsallis
entropy a framework that produces the collective pattern of seismicity has been introduced to describe
the macroscopic behavior of complex seismic systems that present strong correlations among their
elements [70]. Observational indications support the hypothesis that many large earthquakes are
preceded by accelerating-decelerating seismic release rates which are described by a power law time
to failure relation. The question whether accelerating/decelerating seismicity is described in terms of
non-extensive statistical physics presents a challenge. This is the problem addressed in the present
work. Motivated by a simple model originally proposed in [16] where fundamental concepts such as
that of energy conservation are used to understand the accelerating seismicity we generalized it by
introducing the concept of generalized Benioff strain which is merged with ideas of complexity and
non-extensive statistical physics.

In the present work, a unified theoretical framework is discussed based on the ideas of
non-extensive statistical physics along with fundamental principles of physics such as the energy
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conservation in a faulted crustal volume undergoing tectonic stress loading. We define a generalized
Benioff strain function Ωξ(t) = ∑

n(t)
i=1 Eξ(t) where 0 ≤ ξ ≤ 1 and a time-to-failure power-law of

Ωξ(t) derived using the fundamental principle of energy conservation in a fault system that obeys a
hierarchical distribution law extracted from Tsallis entropy. In the time-to-failure power-law that Ωξ(t)
follows the existence of a common exponent mξ which is a function of the non-extensive entropic
parameter q is demonstrated.

Since Ωξ(t) = Ωξ f − B
(

t f − t
)mξ

, with Ωξ f = Ω
(

t = t f

)
, B = γ

Ta(d−de+1)
c (U0in)

a

La(d−de+1)
0

1
a(de−1−d)+1 and:

mξ = a(de − 1− d) + 1 = 1− α + α de
2− q
q− 1

= 1 + α de

(
β− 1

de

)
= 1 + α

(
2
3

b de − 1
)

the properties of these parameters have been studied and their upper and lower bound of the
parameters q and b created according the geometrical limitations, the positive definition of mξ and the
condition of the system (accelerating with mξ < 1 or decelerating with mξ > 1). The range of q and b
values that could drive the system into an accelerating stage and to failure has been discussed, along
with the precursory variations of mξ as resulting from the appearance of precursory b-value anomaly.

It has been proved that Ωξ f ≈
〈

dΩξ

dt

〉
D

Tc. where
〈

dΩξ

dt

〉
D

is the mean generalized Benioff sain

rate during the accelerated (deformed) period Tc, while

〈
dΩξ

dt

〉
D

dΩξ
dt

∣∣∣∣
l

= 1
mξ
≈ 3− 4 where dΩξ

dt

∣∣∣
l

refers tthe

generalized Benioff strain rate during the linear stationary part of Ωξ(t). A discussion of a number of
empirical scaling laws is given, among them the scaling of B with the magnitude of the main even
produced from first principles in agreement with the empirical one.

Our calculations based on Tsallis entropy and the energy conservation give a new view on the
empirical laws presented in the literature, the associated average generalized Benioff strain rate during
the accelerating period with the background rate and connected model parameters with the expected
magnitude of the main shock. The need for accurate earthquake catalogues that will support (or not)
further theoretical results which are still in debate [86], is stressed.
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