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Abstract: In this study, we consider a method for investigating the stochastic response of a nonlinear
dynamical system affected by a random seismic process. We present the solution of the probability
density of a single/multiple-degree of freedom (SDOF/MDOF) system with several statically stable
equilibrium states and with possible jumps of the snap-through type. The system is a Hamiltonian
system with weak damping excited by a system of non-stationary Gaussian white noise. The solution
based on the Gibbs principle of the maximum entropy of probability could potentially be implemented
in various branches of engineering. The search for the extreme of the Gibbs entropy functional is
formulated as a constrained optimization problem. The secondary constraints follow from the
Fokker–Planck equation (FPE) for the system considered or from the system of ordinary differential
equations for the stochastic moments of the response derived from the relevant FPE. In terms of the
application type, this strategy is most suitable for SDOF/MDOF systems containing polynomial type
nonlinearities. Thus, the solution links up with the customary formulation of the finite elements
discretization for strongly nonlinear continuous systems.

Keywords: Boltzmann solution; Fokker–Planck equation; Gibbs entropy functional; maximum
entropy probability density principle; random earthquake process; stochastically proportional system
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1. Introduction

A seismic wave that propagates horizontally in the upper subsoil layers mostly has a stochastic
character, where its predominance increases with the distance from the earthquake epicenter. This fact
originates from the filtering of a seismic wave through a continuum with randomly distributed
non-homogeneity. A large number of records and data analyses have confirmed this approach.
In principle, the seismic wave has three-dimensional characteristics composed of a number of partial
waves that propagate with different velocities and other attributes, which change with the distance
from the epicenter.

The propagation of a seismic wave through a non-homogeneous continuum and its transformation
into a nearly stochastically homogeneous process has been investigated widely in theoretical and
experimental studies. These have been conducted under laboratory conditions using special equipment,
or directly in situ under the conditions of a real earthquake field. Many previous studies have addressed
this issue in recent decades, including seismological investigations (e.g., [1,2]), numerical analyses
(e.g., [3]), and theoretical analyses with overlap from seismic to poly-crystalline material features
(e.g., [4,5]) or waves generated due to scattering on randomly rough inter-layer limits (e.g., [6]).

If the structure is large in a plane view and its horizontal dimensions are comparable or higher than
the typical seismic wavelengths, then the distortion due to excitation processes acting on individual
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points of the basement should be considered (see the studies cited above). In particular conditions,
either the phase shift of the excitation process in different points of the basement needs to be considered,
or different random processes with non-zero cross-correlation are assumed to act on the corresponding
points (e.g., see [7,8], where many additional attributes are also discussed).

In general, seismic processes are non-stationary. This fact is well documented and considered in
models of the dynamic behavior of structures subjected to this special type of excitation (see [9,10]
and monographs devoted to stochastic differential equations (SDEs) and random processes with
engineering applications, such as [11,12]). Seismic processes are non-stationary in terms of both their
amplitude and frequency, but the rough upper estimate of a structural response can be evaluated
by considering a hypothetical stationary random process with suitable parameters [7,8]. Indeed,
regardless of their non-stationarity, seismic processes generally have special characteristics, which is
clear from the usual shape of their spectral density as a function of the time and frequency. Moreover,
it is important to remember the great efforts that have been made to understand the basic mechanisms
of these processes and the possibility of simplifying them as stationary events, such as the specific tools
employed for their investigation [13,14], empirical mode decomposition analysis [15], and suitable
methods for the analysis of seismic signals and data mining (e.g., [16,17]).

To demonstrate the characteristics of these processes and to justify this simplifying hypothesis,
Figures 1 and 2 show the displacement records plotted for the Sierra Madre earthquake taken at
Altadena, Eaton Canyon Park station on 28 June 1991, with an epicentral distance of 49.3 km for
the E–W component (for additional details of the analysis of this record, please refer to [18,19]).
The assumption stated above is generally the standard in this area when the dynamic characteristics
of seismic processes are considered. However, most recommendations are satisfied by only a certain
static equivalent (e.g., see Eurocodes 8 and 9, and [20], as well as related studies). Another study [19]
also indicated the discrepancies between the analytical results obtained based on rigorous stochastic
dynamics and two standards.
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Figure 1. Non-stationary stochastic characteristics of an original record of a seismic shock—decomposition
of the Sierra Madre earthquake record (five components i = 1–5). (a) Narrow band components
mi(t) · vsi(t) [m]. (b) Amplitude modulation mi(t) [m]. (c) Stationary process vsi(t) [.]. (d) Spectral density
Φi(ω) [s] and its approximation (smooth curves).
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Figure 2. Displacement variance [m2] in the middle node of a simplified bridge (lumped mass,
five degrees of freedom) subjected to excitation in the Sierra Madre earthquake record. (a) Simple
amplitude modulation—exponential. (b) Simple amplitude modulation—BN spline. (c) Split Fourier
spectra—BN spline. (d) Wavelet decomposition—BN spline.

The transmission of vibrations in the contact subsoil structure is usually characterized by
significant nonlinearities in terms of both the stiffness and damping. Moreover, various types of
nonlinearities emerge from vibration at large amplitudes when non-elastic and hysteretic processes
are considered. Geometric nonlinearities cannot be neglected in some configurations (e.g., see [21,22]).
The analysis of these nonlinearities is outside the scope of this study, but it is important to be
aware that although the stationary part of the random excitation process can be considered Gaussian
(e.g., see [1,9,10]). However, the response differs from a Gaussian probability density function (PDF)
and it should be investigated in an appropriate manner (e.g., [11]).

By summing up the considerations given above, and assuming that the structure itself can be
modeled as a multi-degree of freedom (MDOF) system, the following system of SDEs can be written:

dxj(t)
dt

= f j(x, t) + gjr(x, t)wr(t) , j = 1, ..., 2n, n− dynamic degrees of freedom (1)

- x = [x1, x2, .., x2n]
T—response components (space variables in the following): (i) x2j−1—

displacements; (ii) x2j—velocities (j = 1, ..., n),
- wr(t)—Gaussian white noise with constant cross-density in terms of the stochastic moments

Krs = E{wr · ws}; r, s = 1, m, m—number of acting noises
- E{·}—mathematical mean value operator in the Gaussian meaning,
- f j(x, t), gjr(x, t)—continuous deterministic functions of state variables x and time t; j = 1, 2n.

The SDE system in Equation (1) can be considered a governing differential system, which allows us
to model the various responses of an engineering structure for many types of seismic random processes.
Various modifications of the system in Equation (1) can be found in numerous monographs that deal
with deterministic or stochastic versions of this basic mathematical model. Rigorous mathematical
analyses of its basic properties, limitations of its applicability, and the assumptions that should
be satisfied in order for the system to be meaningful have been presented in previous studies
(e.g., see [11,12,23,24]). It should be noted that wr(t) must be Gaussian processes or they need to
be prepared using a suitable filtering method, or by considering the specific spectral properties of the
processes considered (e.g., see [1,2,23]).

If Equation (1) is linear and the excitation processes are only of additive type, then various
modifications of the spectral and correlation type solution methods are applicable because the response
of a linear system under additive Gaussian excitation is a vector of Gaussian processes. Therefore,
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only the first two stochastic moments (mean value vector and variance square matrix) need to be
determined to obtain a full description of the stochastic system response considered. Other dynamic
systems produce non-Gaussian responses and they should be investigated using different methods.

The Fokker–Planck Equation (FPE) appears to be the most frequently used tool for solving the
cross-PDF of a dynamic system excited by a vector of random processes wr(t), as shown in Equation (1).

If the input processes wj, wr can be considered Gaussian, then the respective FPE for an unknown
PDF with the variables x, t can be associated with Equation (1) as follows:

∂p(x, t)
∂t

= − ∂

∂xj

(
κj(x, t) · p(x, t)

)
+

1
2

∂2

∂xj∂xk
(κjk(x, t) · p(x, t)) (2)

κj(x, t) = lim
∆t→0

E{∆xj}/∆t ; κjk(x, t) = lim
∆t→0

E{∆xj · ∆xk}/∆t (3)

- κj(x, t)—drift coefficients;
- κjk(x, t)—diffusion coefficients, j, k = 1, . . . , n .

Random inputs affect the system as additive or multiplicative processes. Many previous studies
have considered this well-known partial differential equation, which has mostly linear characteristics,
although more complex definitions also exist (for a comprehensive explanation, see [11,12,23–25]).
The processes wr(t) can be considered stationary or non-stationary. In principle, they do not need
to be perfectly delta-correlated but quite complicated formulae are required for their evaluation
(e.g., see [11,23]), and they affect the system as additive or multiplicative processes.

Analytical and semi-analytical methods for obtaining the FPE solution have been described
previously. One of the most important was given by [26]. Several studies specifically addressed the
analytical or semi-analytical FPE solution procedures (e.g., [27,28]). We note that although there are
boundaries between the relevant groups, some of them are rather blurred. Fourier decomposition-based
procedures are used particularly widely in theoretical physics, where they are based on a separability
p(x, t) = p(x) · ϕ(t), and the drift and diffusion coefficients should be time independent. A Boltzmann
type solution is used frequently as a basic step in the subsequent analysis by employing perturbation
techniques. The Galerkin–Petrov method is probably the most general and suitable approach
for investigating the majority of problems formulated in terms of the FPE. Many other specific
case-oriented methods are based on the idea of completing various potentials, first integrals and their
combinations, free parameter fitting, and other operations. Despite the strengths of these methods and
the excellent results obtained, they have many disadvantages due to the highly limited dimensionality
of FPE, the possibility of configuring the boundary conditions, and problems when analyzing any
non-stationary problems.

Numerical methods are a suitable alternative and various generally formulated procedures with
respect to large dimensionality have been presented and tested (e.g., see [29]). Nevertheless, the finite
element method (FEM) seems to be the most promising approach (e.g., see [30–32] and the references
therein). The FEM is affected by several common shortcomings in the same manner as every numerical
method but it provides options that are lacking in other methods such as the possibility of analyzing
transitions and quasi-periodic processes.

Among the strategies mentioned, one principle has been neglected in recent years, possibly due
to the overwhelming dominance of purely numerical methods. This principle is based on the Gibbs
entropy of probability and it lies between analytical and numerical methods. Indeed, it can serve as
the backbone of a large group of FPE solution methods. We provide some examples of this method in
the following.

2. Gibbs Entropy of Probability

Entropy is a physical idea that was introduced into the theory of thermodynamic systems in the
19th century as a quantity for characterizing some macroscopic property, and it is indispensable for



Entropy 2018, 20, 790 5 of 23

describing the relationships among mechanical, thermic, and other fields. The statistical concept of
micro-mechanics absorbed this concept very early, where Gibbs and other theoreticians demonstrated
how the entropy with a suitable meaning could be used for statistically describing the uncertainties of
internal processes. Subsequent studies by Jaynes [33] and Kullback [34] integrated information theory
with statistical mechanics (on micro-level) to allow the possibility of expressing an indeterminacy
based on the entropy. In principle, they showed that the actual PDF of a system state supplies the
maximum with respect to a certain functional among all other PDF distributions belonging to the
admissible states. Based on such a procedure the so-called b-value in the Gutenberg–Richter law for
earthquakes, which states the (cumulative) number of earthquakes with magnitude greater than M
occurring in a specified area and time is given by (N(> M) ≈ 10−bM), was determined in [35] by
applying the maximum entropy principle to data analyzed in a new time domain termed natural
time [36]. Thus, the response PDF can be found for a particular system provided we have a complete
description of the system with the boundary and initial conditions.

This principle led to a revolution in quantum mechanics and thermo-mechanics. The macroscopic
properties of a particular system can be described further in terms of statistical parameters based on
the properties and state of its microscopic particles. This advance represented a significant step change
in solid-state physics and many other areas. Information theory is very closely related to the random
characteristics of micro-particles and advanced rapidly as a consequence. This principle has been
applied in many disciplines such as data mining and signal processing (as well as stochastic resonance
and other areas; e.g., see [37–39]), sea level description [40] (indirect information), and laser technology
(e.g., [41]). The maximum entropy principle has proved very useful in studies of earthquake recurrence
(e.g., see [42]) as well as physiology and applications in human medicine (e.g., [43]).

The consideration of entropy (as the entropy of probability) in investigations of the dynamics
of macroscopic systems in engineering occurred in the late 1980s and early 1990s (e.g., see [44–49]).
The delay in the inclusion of entropy compared with solid-state physics and other disciplines may have
been due to the somewhat opposite formulation of the problem (from known elements to the unknown
PDF of the system response), and thus the use of different mathematical formulation strategies and the
subsequent solutions. Projecting entropy into the mathematical formulation means that the unknown
PDF is searched for under certain boundary conditions and auxiliary constraints are associated via an
unknown Lagrange multiplier. The specific solution procedures appear to be a compromise between
(semi-) analytical and numerical methods.

Let us formulate a closed mathematical system that allows us to receive satisfactory information
about the PDF of the system response given by Equation (1) together with adequate boundary and
initial conditions. The basic principle is associated with the functional introduced by Gibbs [50] in the
form intended for the domain of micro-particles, as follows.

S = −κB

∫
(x)

p(x, t) · lg p(x, t) · dx, (4)

- κB—Boltzmann constant assigning S its physical meaning,
- x = |x1, x2, · · · , x2n|T , see Equation (1)

The entropy of the state of the system in the form of Equation (4) was introduced based on
a theoretical study of the probability of the state of the gas particle distribution in a closed vessel
(see [51]). Except for the multiplication constant, the same expression can be obtained if we examine
the rate of indeterminateness in the description of an object or phenomenon in information theory [33].

The quantity in Equation (4) is a measure of the indeterminateness at moment t and it characterizes
the incompleteness of our information regarding the processes occurring at the microscopic level.

In the case of irreversible processes, the entropy of the state of disequilibrium increases
continuously with time. The state of equilibrium for a perfectly isolated system is characterized
by the maximum entropy because it holds that:
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∂S
∂t
≥ 0. (5)

Consequently, the transition to the state of equilibrium is characterized by an increase in
indeterminateness and a decrease in the information level. Thus, in terms of Equation (5), the state of
equilibrium has an extreme character, as follows.

Sstac. = max (6)

Therefore, the probability density of the state for the equilibrium does not depend on time.
The entropy value is maximized compared with all preceding moments for the transition state directed
at attaining this equilibrium state. However, the equilibrium state does not need to be unique in the
final volume of the phase space because it corresponds to nonlinear systems.

Similar to all other methods, this procedure is not fully universal and it may be recommended
as effective for only a special group of systems. This is due to the basic philosophy of the principle
and mainly because of the need to obtain a solution with sufficient effort to provide transparent
results that allow a physical interpretation. However, some potential problems affect the appropriate
techniques used for searching for an extreme of the Gibbs functional. These approaches can work
correctly in the case of systems with highly distinct nonlinear normal modes (NNMs) with minimal
mutual interaction and the marginal influence of local modes. The problems are closely related to the
possibility of effectively employing Boltzmann type solutions (e.g., see [23]) as a starting approximation
for subsequent iterative steps.

The practical application of the functional based on Equation (4) to problems in statistical physics
is based on the fact that the probability density p(v, t) is considered to be a known quantity determined
in experiments, or based on independent partial considerations according to the specific conditions
of the system. For instance, Gibbs introduced the so-called micro-canonic probability distribution
for the adiabatic process in gases. However, the statistical mechanics of systems must be based on
the assumption that the probability density of a response is an unknown function, particularly for
nonlinear systems.

If the input or output are not characterized by the presence of white noise, Equation (6) is not
sufficient for determining p(x, t), and it does not contain any information about the structure of
the system. However, every potential system is described by the equations of motion Equation (1),
with which p(x, t) must also comply. Therefore, we can formulate the following variation of the
problem as finding the cross-probability density p(x) of a stationary response process where the
functional Equation (4):

S = −
∫
(x)

p(x) · lg p(x)dx, (7)

attains the maximum and the equations of motion Equation (1) comply with the statistical meaning,
such as the meaning of the stochastic moments. Thus, we seek the weak solution of the problem in
terms of the stochastic meaning, which differs from a weak solution in terms of the classical meaning.
In Equation (7), we can use κB = 1 because the entropy will be evaluated only as a relative value when
searching for the maximum from a set of admissible functions p(x) and not as an absolute physical
quantity. Some attributes considered in extreme search by [52] can provide inspiration, but care should
be taken because the functional Equation (7) is not quadratic. Therefore, basic theorems regarding the
extreme existence do not hold.

3. Formulation of the Secondary Constraints

As mentioned in Section 2, following Equation (6), the maximum of S should be searched for with
respect to the secondary constraints. The secondary constraints on the extreme may be selected in
various ways, but they should specify an exact structure for the dynamic system considered in every
case. This structure is primarily given by Equation (1). In terms of the stochastic meaning, the most
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natural system character specification follows from the FPE, i.e., Equation (2) with a scalar unknown
quantity PDF. The coefficients of the FPE include all of the characteristics of Equation (1).

For the stationary case of the FPE, Equation (2) has the form:

∂
(
κj(x)p(x)

)
∂xj

− 1
2

∂2(κjk(x) · p(x))
∂xj∂xk

= 0, (8)

where κj(x), κjk(x), j, k = 1, . . . , n—drift and diffusion coefficients (moments of the 1st and 2nd orders)
of the n-dimensional processes, which are now limited to Gaussian white noise independent of time t.

In this case, the drift and diffusion coefficients in Equation (3) can be simplified significantly and
written as closed formulae:

κj(x) = f j(x) +
1
2

Krs · gls(x)
∂jr(x, t)

∂xl
; κjk(x) = Krs · gjr(x, t)gks(x, t), (9)

where:

- Krs = E{wr(t)ws(t)}—matrix of white noise intensities (independent of time).
- E—operator of mathematical mean value.

It should be noted with respect to Equation (3) that the drift and diffusion coefficients can be
evaluated also in more complicated cases when the spectral densities of input processes are not
constant. The following formulae can be used:

κj(x) = f j(x) +
0∫

−∞

gls(xt+τ , t + τ)
∂

∂xl
gjr(xt, t)Rrs(τ)dτ,

κjk(x) =
∞∫
−∞

gjr(xt, t)gks(xt+τ , t + τ)Rrs(τ)dτ.

(10)

where Rrs(τ) is a general cross-correlation function of processes wr, ws. When the correlation function
degenerate to Dirac functions Rrs = Krsδ(τ) as it corresponds with white noises, expressions
Equation (10) turn into (9). Application of formulae Equation (10) for processes with bi-modal spectral
densities is shown for instance in [11] or [53]. However, from the viewpoint of demonstration of the
maximum entropy principle in dynamics this aspect does not play a significant role and the reduced
relations (9) are valid.

In the case considered, the probability density must satisfy the boundary conditions as follows:

p(x)
∣∣∣
xj→±∞

= 0 ;
∂p(x)

∂xj

∣∣∣∣∣
xj→±∞

= 0 (11)

If we substitute according to Equation (1) into coefficients κj, κjk following Equation (9), or into
Equation (3) with the time omitted, we obtain the following.

κj =− f j(x1, · · · , xn)

κjk =gjl(x1, · · · , xn)glk(x1, · · · , xn)sll
(12)

In these conditions, we can consider Equation (8) as the secondary constraints on the functional
Equation (7) extreme. Thus, the problem has been determined and it is possible to begin searching for
the stationary point or points, if any exist.

In this particular case, it is best to formulate the secondary constraints in the form of stochastic
moments for clarity. The equations can be deduced from the FPE. In the case of a linear system excited
by a Gaussian process, if the solution exists, then using only the first and the second moments will
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be sufficient for its full description. In the case of nonlinear systems, an infinitely large system of
mutually bound equations will emerge and this type of system is generally nonlinear. In general,
the series of stochastic moments must be convergent and the cumulants should then be considered
instead. Nevertheless, for brevity, let us assume that the stochastic moments are convergent, which
allows us to restrict the system using some criterion (e.g., declaring the moments only up to a certain
order as independent and the moment of a higher order as their functions, e.g., the Gaussian closure in
the simplest case).

Thus, if the number of moments and the number of equations is limited, it is generally possible to
find a high number of probability densities p(x) that satisfy these equations. If the number of moments
remaining in the problem increases, then the size of the set from which we seek the maximum also
decreases. In the limit, this set will contain only one element in an arbitrarily small neighborhood and
the functional Equation (7) will only characterize the given state. However, the whole phase space
may contain a countable number of such stationary points, which correspond to different equilibrium
states according to the different levels of the functional value in Equation (7). In this case, the whole
philosophy of the variational solution to p(x) is similar to the philosophy of the direct variational
methods used in the theory of elasticity as an example. It should be noted that this overall approach is
only applicable close to the stationary point where the state of the system can be considered at least
approximately quasi-stationary, and thus time can be considered as a parameter. In addition, it should
be noted that the notion of entropy can be extended by expanding the manipulation space ensuring
non-stationary processes can also be investigated (e.g., see [54]). However, only stationary problems
are considered in the present study and this extension is not addressed.

4. One-Component Systems

4.1. Directly Finding the Extreme—Boltzmann’s Solution

The one-dimensional diffusion process is described by a stochastic equation of first order:

ẋ + f (x) = w(t), (13)

where f (x) is a smooth integrable function. The system is excited by Gaussian white noise w(t) with
intensity s on the right side. This equation (reduced Langevin type) appears frequently in applied
physics and engineering, particularly in earthquake-related problems regarding wave propagation in
a significantly pronounced hysteretic continuum where inertia forces are marginal and dissipation
forces are dominant.

The coefficients Equation (12) associated with Equation (13) have the form:

κ1(x) = f (x) , κ11 = s2 , (14)

therefore, the FPE reads:
∂

∂x
( f (x)p(x)) +

1
2

s
∂2 p(x)

∂x2 = 0. (15)

Equation (15) with the respective boundary conditions unequivocally satisfies the Boltzmann
type solution:

p(x) = C exp
(
−2

s

∫
f (x)dx

)
. (16)

In this process, it is necessary to impose certain conditions on f (x) because p(x) must comply
with the requirements imposed on the density of the probability distribution (normalization, existence
of moments, etc.).

However, Equation (16) can also be obtained by searching for the maximum of the functional
Equation (7) with the secondary constraint Equation (15), which can be satisfied by the weak solution
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in terms of the statistical meaning. For odd functions f (v), it is possible to obtain a derivation from
Equation (15) for statistical moments:

∞∫
−∞

(
xk f (x)− 1

2
skxk−1

)
p(x)dx = 0. (17)

In addition, it is necessary to respect the normalization constraint:

∞∫
−∞

p(x)dx = 1. (18)

Thus, the maximum of the functional Equation (7) is limited by the secondary constraints
Equations (17) and (18). Using the Lagrange multipliers, we arrive at the problem of the unconditional
extreme of the functional:

S = −
∞∫
−∞

p(x) lg p(x)dx− (λ0 − 1)
∞∫
−∞

p(x)dx−
∞∫
−∞

p(x)
∞

∑
1

λk

(
xk f (x)− 1

2
skxk−1

)
dx, (19)

where λ0, λk are the unknown Lagrange multipliers. λ0 is related to the normalization of the PDF.
The annulment of the variation for expression Equation (19) with respect to p(x) using the

continuity of the integrand in Equation (19) yields the general expression for the extreme, as follows.

p(x) = e−λ0 · exp

(
−

∞

∑
k=1

λk

(
xk f (x)− 1

2
skxk−1

))
(20)

The coefficient λ0 can be determined from the normalization constraint and λk by re-substituting
Equation (20) into Equation (17). In this manner, we arrive at the following relation after
several modifications.

∞

∑
k=1

λk

(
xk f (x)− 1

2
skxk−1

)
=

2
s

(
1

1! · 2 f ′0x2 +
1

3! · 4 f ′′′0 x4 +
1

5! · 6 f v
0 v6 + · · ·

)
(21)

However, the right-hand side of Equation (21) is the Taylor’s series of the indefinite integral for the
odd continuous function f (x). Thus, Equation (19) has a form that is entirely identical to Equation (15),
which we aimed to prove. Therefore, according to Equation (16), p(x) determines the extreme value
of the functional Equation (7) while complying with the secondary constraint Equation (15). In this
simple case, we have successfully complied with an infinite number of these conditions (in terms
of the moments). Therefore, the selection of the set is reduced to a single element Equation (16),
which simultaneously satisfies the equation or the secondary constraint Equation (15) in terms of the
statistical meaning as well as the classical solution.

The secondary constraints mentioned several times in this study are symbolically treated in the
form of the stationary version of the FPE in Equation (8). This method is preferable given that the basic
considerations have general characteristics. The decomposition of the stochastic moments is preferable
for obtaining practical solutions to particular problems (although other approaches are also suitable).
We consider several applications of this strategy in the following sections of this study. Therefore, it is
useful to consider the basic character of convergence when manipulating using this decomposition.

Let us return to the series comprising Equation (17) and the normalization constraint Equation (18).
We assume the cubic characteristic f (x) = ax + bx3. The first approximation is obtained for k = 1,
which means that:

p(x) = C exp
(
−λ1

(
x
(

ax + bx3
)
− 1

2
s
))

. (22)
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By introducing Equation (22) into Equation (17) for k = 1, we obtain an algebraic equation for the
multiplier λ1:

∞∫
−∞

(
x(ax + bx3)− 1

2
s
)

C exp
(
−λ1

(
x
(

ax + bx3
)
− 1

2
s
))

dx = 0. (23)

The integrals in Equation (23) can be evaluated exactly in cylindric functions, e.g.,

∞∫
−∞

exp
(
−λ1

(
ax2 + bx4 − 1

2
s
))

dx =

√
a

4b
exp

(
1
2

λ1

(
s +

a2

4b

))
· K1/4

(
λ1a2

8b

)
, (24)

where K1/4(
λ1a2

8b ) is the Macdonald function. Clearly, in the case of common applications, the integrals
in Equation (24) should be evaluated numerically, which causes some difficulties because unknown
values or the values of λk are parts of the arguments of the exponential functions. Nevertheless,
for this example, we can plot (see Figure 3) curves where we illustrate the variance σ2

x of the response
x for the stochastically linearized case in curve (a), those evaluated at the levels of the first and
second approximations q = 1, 2 in curves (b) and (c), respectively, and those obtained with the exact
Boltzmann solution using Equation (16) in curve (d). Even the very simple approximation obtained
using the probability entropy maximum strategy is effective and it converges very rapidly to the exact
solution. The results obtained for the second approximation and the Boltzmann solution are almost
indistinguishable.

� �✁✂

�✁✂

�✁✄

�✁☎

�✁✆
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✞✟✠

✡☛☞✌✍✎✏✑✑

✒
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✔✠✕

✔✞✕

✔✖✕
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Figure 3. Comparison of the variance σ2
x evaluated for: (a) system with stochastic linearization;

(b) system with the maximum entropy of probability, as the first approximation q = 1; (c) the second
approximation q = 2; (d) Boltzmann solution.

4.2. First Order System with Complex Characteristics

We illustrate the effectiveness of the maximum entropy probability principle for another case
with a one-component response process, which is produced by a nonlinear system of first order with
relatively complex characteristics:

dx
dt

+ ax + bx2 + cx3 lg
|x|
α

= w(t), (25)

where

- a, b, c > 0, α > 0 are real coefficients,
- w(t) is a Gaussian white noise with intensity K.
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The detailed analysis was reported by Sobczyk and Trebicki [46,47]. A small number of previous
studies focused on the principle result obtained with respect to Equation (25). In addition to
these studies, mathematical models related to Equation (25) can be found in seismicity research
in investigations of the passage of nonlinear waves through a well-saturated medium containing a
liquid material. In addition, the aero-elasticity of systems with super-critical damping is related to an
equation of this type, as well as the theory of diffusive chemical processes.

The relevant drift and diffusion coefficients are:

κ1 = −
(

ax + bx2 + cx3 lg
|x|
α

)
, κ11 = s2. (26)

With respect to the Boltzmann general solution for Equation (16), it holds that:

p(x1) = C exp
(
− x2

s2

(
a +

2
3

bx +
1
2

cx2
(

lg
|x|
α
− 1

4

)))
, (27)

where C is a normalizing constant. Using Equation (27), the exact stochastic moments can be evaluated
to demonstrate the fidelity of an exact PDF characterization, as plotted in Figure 4 for the exact PDF,
where Equation (27) and the PDFs are determined based on q = 2, 4, 6 first stochastic moments.
The specific values of the parameters are as follows: a = 0.5, b = −0.25, c = 5.2, α = 1.0, s = 1.0.
For q = 2, a Gaussian distribution is provided and thus the result is unacceptable. Nevertheless q = 4
and q = 6 exhibit very rapid convergence and they can represent a satisfactory approximation of the
PDF according to Equation (27). It should be noted that the exact PDF exhibits approximately bi-modal
characteristics. Therefore, the basic approximation for q = 2 should pass very quickly from the uni- to
bi-modal type of the PDF.
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✳✴✵
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✿❀❁

❂❃❄

❅❆❇

Figure 4. Comparison of the exact PDF (Boltzmann) and the PDFs determined using the given stochastic
moments (q = 2, 4, 6).

Next, we consider a limited number of equations for the first stochastic moments (q = 2, 4, 6).
According to the general method for deriving the equations for the stochastic moments of the relevant
Ito equations (e.g., [11,12,23]), the following hierarchy of equations for stochastic moments can
be deduced:

∞∫
−∞

κ1xk−1dx +
1
2
(k− 1)

∞∫
−∞

κ1/2
11 xk−2dx = 0, k = 1, 2, ..., q, (28)

where κ1, κ11 are given by Equation (26). The standard codes using a homotopy background were
used to evaluate some example results. The values of the parameters were identical to those employed
above: a = 0.5, b = −0.25, c = 5.2, α = 1.0, s = 1.0. The exact PDF and the PDFs corresponding to two
and four given moments are shown in Figure 5. Clearly, the PDF determined using the maximum
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entropy principle is very close to the exact PDF even when using four stochastic moment equations,
Equation (28). The convergence can be assessed using the objective Kullback–Leibler divergence
criterion (see [34,55]):

∆pp∗ =

∞∫
−∞

p(x) · lg p(x)
p∗(x)

dx (29)

where

- p(x)—the exact PDF,
- p∗(x)—the approximate PDF corresponding to q = 2, 4, 6, respectively.

�
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Figure 5. Comparison of the exact PDF (Boltzmann) and the PDFs determined with various numbers
of stochastic moment equations (q = 2, 4, 6).

The respective divergence parameter ∆pp∗ has values of:

∆(2)
pp∗ = 0.01053260, ∆(4)

pp∗ = 0.00014443, ∆(6)
pp∗ = 0.00000278, (30)

which demonstrates the rapid convergence of the approximate PDFs to the exact solution of the
Boltzmann type. There is no clear difference between the solutions based on the Boltzmann type
method and q = 6 maximum entropy (see Figure 5), as also shown in Section 4.1 and Figure 3.

5. Two-Component Systems

5.1. System with Diffusion Additive Excitation

We next describe a direct procedure for finding the PDF using the maximum entropy probability
principle. We consider Equation (13):

ẋ + f (x) = η(t), (31)

where f (x) is a smooth function that is integrable on a limited interval and the process η(t) follows
from a filtering of white noise through a linear differential filter of the first order:

η̇ + αη = w(t)v, (32)

where s = 2ασ2
η is the intensity of the white noise w(t). The relevant spectral density of the η process

(see Figure 6) is given by the formula:

Φη(ω) =
σ2

π

α

ω2 + α2 . (33)
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Figure 6. Spectral density Φη(ω) of a diffusion process η(t) for various parameters α.

Hence, we can define a two-component random process in terms of the meaning of the system in
Equation (1):

ẋ1 = − f (x1) + x2

ẋ2 = −αx2 + w(t).
(34)

The cross-PDF p(x1, x2) of a stationary state can be described with respect to Equation (8) and the
coefficients in Equation (9) by the following FPE:

1
2

s
∂2 p
∂x2

2
+ α

∂(x2 p)
∂x2

+
∂

∂x1
(( f (x1)− x2)p) = 0. (35)

The closed form solution of the FPE in Equation (35) cannot be obtained. Therefore, we try to
apply probability entropy maximization to the functional S (see Equation (7)).

Let us multiply Equation (35) successively by the factors x2
1, x1x2, x2

2, and subsequently apply
integration on the infinite two-dimensional phase space. After several integration by parts steps with
respect to the homogeneous boundary conditions in infinity for both components x1, x2, we obtain
three equations for the stochastic moments, which should be completed by the fourth equation to
represent the constraints on normalization:

∞∫∫
−∞

(x1 f (x1)− x1x2) p(x1, x2)dx1dx2 = 0,

∞∫∫
−∞

(
x2 f (x1) + αx1x2 − x2

2

)
p(x1, x2)dx1dx2 = 0,

∞∫∫
−∞

(
1
2 K− αx2

2

)
p(x1, x2)dx1dx2 = 0,

∞∫∫
−∞

p(x1, x2)dx1dx2 = 1.

(36)

The extended functional S∗ including the secondary and normalization constraints with the
corresponding Lagrange multipliers is:
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S∗ = −
∞∫∫
−∞

p lg pdx1dx2 −
∞∫∫
−∞

[
(λ0 − 1) + λ1 (x1 f (x1)− x1x2) +

+λ2

(
x2 f (x1) + αx1x2 − x2

2

)
+ λ3

(
1
2 s− αx2

2

)]
p dx1dx2 .

(37)

According to the principle of maximum entropy, the PDF with the maximum entropy for the
functional in Equation (37) has the form:

p(x1, x2) = C exp
[
−λ1 (x1 f (x1)− x1x2)− λ2

(
x2 f (x1) + αx1x2 − x2

2

)
− λ3

(
1
2 s− αx2

2

)]
, (38)

where C = exp(−λ0).
By substituting Equation (38) back into Equation (36), we obtain four algebraic equations for

λ0 − λ3, which need to be solved for a particular case of the function f (x1). This rather complicated
algebraic system can be solved effectively by employing the same packages that are commonly used
for homotopy continuation methods.

A good initial approximation can serve as a function corresponding to the Gaussian PDF and
linear characteristic f (x1) = cx1:

p0(x1, x2) = C exp

(
− 1

2(1− r2)

(
x2

1
σ2

1
− 2rx1x2

σ1σ2
+

x2
2

σ2
2

))
, (39)

where

- σ2
1 , σ2

2 —variances of x1, x2 for the adjoint linear system,
- r—correlation of these coordinates.

For the cubic nonlinearity of the system characteristic, f (x1) = ax1 + bx3
1 was evaluated fully as an

example problem where the following values were used: a = 1, b = 0.1, α = 0.5, σ2
1 = σ2

2 = s/2α = 1.
The plot in Figure 7 shows the one-dimensional PDFs reduced to coordinate x1, as usual:

p(x1) =

∞∫
−∞

p(x1, x2)dx2. (40)

Figure 7 shows the PDF evaluated based on the stochastic linearization as curve (b),
the approximation after maximization of the functional S∗ with Equation (37) as curve (c) at the
level of q = 2, and the raw histogram obtained for x1 by stochastic simulation as the stepped curve
in (a). A comparison of curves (a) and (c) clearly shows that the approximation of the second order
moments provides acceptable results, whereas the linearization is far from correct.

Figure 7. (a) PDF in x1 following the histogram of the output process x1. (b) Stochastic linearization.
(c) Second moments approximation.
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5.2. Dynamic System with a Single Degree of Freedom

The vibrations of a system with one degree of freedom excited by white noise are described by a
normal system of Equation (1) type, where n = 1 and thus it contains two components x1, x2:

ẋ1 = x2

ẋ2 = (2ωbx2 + ω2
0x1 + f (x1)) + w(t),

(41)

where the argument t in x1, x2 is omitted for brevity, therefore x1(t) = x1 ; ẋ1(t) = x2(t) = x2. Hence,
the FPE is:

− ∂(x2 p)
∂x1

+
∂

∂x2

((
2ωbx2 + ω2

0x1 + f (x1)
)

p
)
+

1
2

s
∂2 p
∂x2

2
= 0, (42)

where:

- p = p(x1, x2)—cross-probability density of x1(t), x2(t)
- s—intensity of white noise w(t).

The solution may be obtained for Equation (42) with the boundary conditions in Equation (11) by
using the Fourier method in the following form.

p(x1, x2, t) = C exp

(
−4ωb

s
x2

2
2

)
· exp

(
−4ωb

s

(
ω2

0x2
1

2
+
∫

f (x1)dx1

))
(43)

Thus, the displacement and displacement velocity are statistically independent. However,
similarly to the preceding case, Equation (11) can be arrived at by finding the extreme of the functional
Equation (7) with the secondary constraint in Equation (42).

If f (x) is an odd function, then based on Equation (42):

∞∫∫
−∞

xk
1xl

2

(
−∂(x2 p)

∂x1
+

∂

∂x2

((
2ωbx2 + ω2

0x1 + f (x1)
)

p
)
+

1
2

K
∂2 p
∂x2

2

)
dx1dx2 = 0, (44)

from which and after several adjustments, we obtain:

∞∫∫
−∞

Pkl(x1, x2) · p(x1, x2)dx1dvx = 0 (45)

Pkl(x1, x2) = kxk−1
1 xl+1

2 − 2lωbxk
1xl

2 − lω2
0xk+1

1 xl−1
2 − lxk

1xl−1
2 f (x1) +

1
2

sl(l − 1)xk
1xl−2

2 . (46)

The whole functional with an unconstrained extreme has the form:

S∗ = −
∞∫∫
−∞

p · lg p · dx1dx2 − (λ0 − 1)
∞∫∫
−∞

pdx1dx2 −
∞∫∫
−∞

p
∞

∑
k,l=1

λkl · Pkl(x1, x2)dx1dx2, (47)

and thus the extreme follows as:

p(x1, x2) = C · exp

(
−

∞

∑
k,l=1

λkl · Pkl(x1, x2)

)
(48)

and λ0 is included in the normalization constant C. The constants λkl can be obtained by re-substituting
Equation (48) into Equation (46). After analogous operations to those in Section 4.1, a similar procedure
to that described in Section 4.1 brings us from Equation (48) to Equation (43).

Next, we demonstrate this procedure based on the Mieses strutted frame with one degree of
freedom, as shown in Figure 8. The fact that the system exhibits the snap-through effect does not affect



Entropy 2018, 20, 790 16 of 23

the numerical aspects of the procedure in terms of the numerical stability or convergence velocity.
The governing system reads:

ẋ1 = x2

ẋ2 =
1
m
(−2bx2 − K(2h2x1 − 3hx2

1 + x3
1)) +

w(t)
m

,
(49)

where:

- h—Mieses strutted frame rise,
- K = EF/L3—“longitudinal stiffness” of one bar of the strutted frame,
- m—concentrated mass in the movable node of the strutted frame.

Figure 8. Mieses strutted frame as a nonlinear SDOF system with white noise excitation.

If w(t) is a stationary white noise, the relevant FPE has the form:

−∂x2 p
∂x1

+
∂

∂x2

((
2b
m

x2 +
K
m
(2h2x1 − 3hx2

1 + x3
1)

)
p
)
+

s
2m2

∂2 p
∂x2

2
= 0. (50)

Equation (50) has an analytic Boltzmann solution (e.g., as described by [12] or [23]):

p(x1, x2) = C · exp
(
−2bm

s
· x2

2

)
· exp

(
−4bK

s
· x2

1(
1
2

x1 − h)2
)

, (51)

where C is a normalization constant (see Equation (48)).
This solution can be obtained based on the maximum of the only functional Equation (7) with the

secondary constraints in Equation (50). If we consider q = 4 terms of the infinite series in Equation (48),
then for the moments, we can write: µkl(k, l = 0, . . . , 4; k + l ≤ 4), with 62 equations in total for 15
unknown quantities. As an example, we only select the first two of these equations to obtain the values
of the unknown quantities that differ from zero:

2b
m
− s

m2 µ20 +
s

2m2 µ2
10 = 0

2µ02 −
2b
m

µ11 −
4Kh2

m
µ20 −

3s
m2 µ31 +

2s
m2 µ10µ21 +

2s
m2 µ11µ20 = 0

etc.

(52)

Equation (52) have the following solution:

µ20 =
2bm

s
; µ02 =

4bKh2

s
; µ03 = −4bKh

s
; µ04 =

bK
s

, (53)

which coincides perfectly with the Boltzmann solution. Other values of µkl vanish, except for µ00,
which serves as the normalization constant, exp(µ00) = C, and it is also determined after Equation (48)
has been cleaned of all terms where µkl is equal to zero. Equation (49) comprise a typical system
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with a marked non-Gaussian bi-modal response. Maximizing the functional in Equation (7) using
Equation (47) with the known polynomials Pkl(x1, x2) to search for the unknown multipliers λkl yields
the final result. The solution to Equation (48) characterizes this situation well and leads to the known
classical solution, which confirms the validity of the maximum entropy principle for determining
the PDF of a dynamic system. The numerical experiments also confirmed the rapid convergence
with q = 4 as a satisfactory value to match the Boltzmann solution with Equation (51). Stochastic
simulation was also used as an independent tool for verification. Careful numerical processing should
be performed due to the stochastic character of the original stochastic differential system in terms of
integration stepping and the corrector steps for improving the stability (e.g., see [56]).

6. Dynamic Systems with Many Degrees of Freedom

6.1. General Formulation

The motion of a system of concentrated masses with n degrees of freedom and potential links is
described by Equation (1). In order to maximize the functional S according to Equation (7) and with
the secondary constraints in Equation (8) in either the direct form of the FPE or the form of stochastic
moments, we can investigate any admissible dynamic system response PDF. Nevertheless, as shown
in the previous sections, the maximization techniques for particular cases can be complicated and
ineffective, especially when n > 2 and higher. However, some special classes of dynamic systems
allow significant simplification despite a high value of n, particularly when the stochastic moments are
convergent and this allows us to approximate the respective PDF with any arbitrary precision.

The original system Equation (1) can be rewritten in the form:

ẋ1 = x2

mẋ2 = −2εx2 −
∂U
∂x1

+ Gw
(54)

where:

- m ∈ Rn×n—diagonal square matrix of concentrated masses mj acting in individual degrees
of freedom,

- ε ∈ Rn×n—diagonal matrix of viscose damping coefficients ε j,
- x1, x2 ∈ Rn—vectors of displacement or velocity, respectively, in individual degrees of freedom,
- w(t) ∈ Rm—vector of white noise with intensity sj applied as excitation forces
- G ∈ Rn×m—rectangular matrix transforming white noise w into relevant degrees of freedom,
- U = U (x1)—potential energy (scalar function of displacements x1) of the system.

For example, Equation (54) can model the motion of a system of concentrated masses with large
amplitudes if the individual masses are mutually interconnected by massless springs and the damping
is affected by a “slightly” viscous environment, thereby allowing the definition of a framework with
hinged nodes if the masses of the bars are concentrated in nodes.

The basic idea is obvious, i.e., searching for an alternate system (AS) that is close to the original
and that exhibits some special properties to allow radical simplification in terms of degrees of freedom.
In particular, this means that subsystems (precisely or approximately) can occur that work more or
less independently of the remaining parts of the AS to provide a suitable functional basis (forming
a separable functional space in the ideal case). If any can be found, the probabilistic problem can be
solved based on the AS using suitable conventional solution methods. The result, such as a one point
p0(x) or multiple point p0i(x) basis, then serves as a zero approximation when using the maximum
entropy probability principle in the decomposition of stochastic moments. We outline two possibilities
in the next two subsections.
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6.2. Stochastically Proportional Systems

Provided that the conditions:

mj = const. ; ε j/sj = η = const. (55)

are satisfied it is possible to use the methods described in the previous sections to find the maximum of
the functional Equation (7) with secondary constraints constructed based on Equation (54). The result
is the formula corresponding to the Boltzmann solution (see [23]):

p(x1, x2) =
1
J

exp (−4η (U +K)) , (56)

where K = K(x1, x2) is the kinetic energy of the system.
It should be noted that the satisfied constraints leading to the PDF according to Equation (56)

indicate the stochastic independence of the velocities x2 with respect to the displacements x1, which
confirms the validity of the Heisenberg principle of indeterminacy. A system endowed with the
property in Equation (55) can be referred to as a stochastically proportional system (SPS).

A system of equations for the unknown parameters λ with a higher number of degrees of freedom
can only be constructed with a computer. The solution is complicated because the system of equations
is nonlinear. The system and its solution can be simplified if the system approaches the proportional
Hamiltonian system. In this case, it is possible to write the Boltzmann solution and use it as the initial
approximation for the gradient method of the solution to the system for the parameters λ. These ideas
form the basis of a computer program that generates a nonlinear system of equations for computing
the parameters λ for a given geometry of the system (coordinates of nodes, rigidities Ck, masses mj,
damping matrices ε, and incidence tables T) considered as an oriented graph, excitation intensities
K (diagonal in a special case), and the upper limit q of the degree of the polynomial in Equation (48).
At present, the program only works for stationary cases, i.e., with constant sj. Therefore, the system of
equations is algebraic and can be solved using standard methods.

The original code was assembled in order to verify the general strategies described above.
The test examples are rather hypothetical. In order to fulfill the conditions in Equation (55), damping
parameters εj and white noise intensities sj were selected and the AS was examined. Next, settings
that differed slightly from the conditions in Equation (55) were employed and the entropy probability
was maximized.

Two systems were examined as follows.

1. The Mieses strutted frame with one mass and two degrees of freedom, as shown in Figure 9a, while
only considering the SDOF system (vertical displacement) described in Section 5.2. At the level
of q = 4, the algebraic system contained 70 unknown parameters λ and most of them equaled
zero. Compared with Equation (55), the results did not differ qualitatively where the stochastic
coherence velocity/displacement was still negligible, although the excitation acted only on one
degree of freedom.

2. A non-symmetrical strutted frame with two masses and four degrees of freedom, as shown in
Figure 9b, at the level of q = 4. Again, the velocity and displacement interaction was negligibly
small (it was impossible to determine based simply on the approximate character of the overall
solution process). The stochastic relationship of the individual displacements varied considerably
in terms of the dependence on the excitation intensity. This relationship was small when the
excitation was generally small and local snap-through did not occur with high probability.
However, it increased steeply locally or globally immediately after overcoming some energy
barrier that kept the motion within local limits. The signs of the coefficients λ for the fourth
powers of the polynomial in the exponent of the function p(x1, x2) were positive. Therefore,
the boundary conditions in Equation (11) were satisfied without difficulty.



Entropy 2018, 20, 790 19 of 23

Figure 9. Testing strutted Mieses type frames with white noise excitation: (a) system with two degrees
of freedom; (b) system with four degrees of freedom.

6.3. Transformation of the System with Respect to Nonlinear Normal Modes

Another suitable strategy appears to be using a combination of the maximum entropy probability
principle with the preliminary involvement of NNM transformation. NNM was first proposed by
Rosenberg [57] and extended subsequently (see [58,59]).

Analogous to the classical linear eigenmodes, the NNM is a tool for expressing the dynamic
response of a system in certain generalized coordinates, which are energetically separated as far as
possible from each other and thus they exhibit minimal interaction. If introduced correctly, they can
be investigated individually and subsequently evaluated in terms of their interaction. At present,
some commercial codes for dealing with the NNM are available. However, care should be taken
because NNM can be “cheated” due to multivalent meanings. Therefore, local modes should be
avoided. In general, a suitable manifold should be composed. If it is constructed successfully,
the NNM can provide good quality results when used as zero iteration points for probability entropy
maximization. A well separated NNM can lead to the very rapid convergence of the stochastic
moments to obtain the final PDF of the system response. This is beneficial and the NNM strategy is
actually used in earthquake engineering, and thus subsequent stochastic analysis based on entropy
probability maximization can be facilitated by the NNM based on the results of previous activities.

7. Conclusions

Every earthquake event is a random process with a specific character. The occurrence of whatever
seismic shock and a relevant ground motion at a particular site is not predictable. Therefore, the seismic
process should be unavoidably considered as a stochastic process. This attribute has been adopted in
the earthquake engineering many years ago and, therefore, we have a rich material providing wide
possibilities to evaluate adequate dynamic characteristics of a stochastic nature.

In order to employ effectively collected data advanced methods of stochastic analysis of dynamic
systems must be available. The method based on the maximum entropy probability density principle
is worth to be considered. It seems to be very flexible from the viewpoint of structural variability
and, moreover, it makes possible to intervene into parametric areas which are inaccessible for other
methods. Therefore, this method enables also to serve as a tool for verification of results earned using
other methods. It concerns predominantly structures which can be modeled as MDOF systems with
concentrated masses, as it is a typical case of structures made of 1D elements (frameworks, trusses,
etc.). Furthermore, all systems with well pronounced cyclic structure, easily transformable into state
with well separable NNM, or systems close to those enabling closed form solutions of Boltzmann type
are appropriate to be analyzed using this way. Many structures of this type can be encountered in
industry and traffic engineering.

The problem of finding the probability density for a random movement of a system due to
external random excitation can be considered as the problem of finding the constrained maximum
of the functional of the entropy of the probability density. In the case of a system with polynomial
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nonlinearities, these properties of the extreme can satisfy the secondary constraints derived from the
FPE and they may be described best by a multidimensional exponential function with the exponent
in the form of a complete polynomial of a certain degree with unknown coefficients. This can
be determined from the FPE equation for the system considered by using the stochastic moment
decomposition strategy. Our comparison of the results with analytically solvable cases demonstrated
their good agreement, with very rapid convergence of the first stochastic moments for the PDF
approximation. The advantage of this procedure is the certainty of the positive probability density
values in the whole phase space. The disadvantage is the great number of unknown parameters λ,
and the need to monitor their positive sign in the highest powers of the phase variables. In the opposite
case, the problem loses stochastic stability in terms of the probability. The test cases based on simple
MDOF systems indicated good numerical feasibility, although the test cases were located in close
proximity to proportional systems or in the neighborhood of the dominant NNM.

Our general analysis and the results obtained for some particularly simple cases demonstrated
how the response of a nonlinear system differed significantly from a Gaussian process even though
the excitation had Gaussian characteristics. In addition, the principle considered in this investigation
allowed us to prove that according to the number of processes with equal dispersal, a very normal
process has the probability density with the highest entropy. Thus, the system always tends to produce
a Gaussian response if it is permitted by the internal structure of the system. This is also the reason
why Gaussian processes occur most frequently in nature.

An open problem comprises the possible existence of a greater number of extremes for a single
fixed input and the practical procedure for finding them, particularly with respect to their initial
approximation. This problem requires the prior elimination of some parameters λ because their
number increases exponentially as both the number of degrees of freedom and the level of q increase.
Experience indicates that most of the parameters λ have values that are either equal to zero or
insignificant. Thus, the related stochastic moments are either negligible or they vanish. In addition,
the problem of how to select the equations remains unsolved, where the number for a given level of q
is several times higher than the number of unknown parameters λ. Some of these problems are closely
related and they should be solved as a single group.

Obvious difficulties occur due to the increase in the number of independent phase variables xj as
the degrees of freedom increase in the system considered. However, these problems affect all methods
for solving the FPE unless they are developed for a narrow class of systems with special properties,
or if searching for only some special attributes of the solution. In the maximum entropy probability
method, these cases can be considered as systems with well separated generalized coordinates by
using the NNM in the preliminary step, or systems that are close to those that can be solved exactly,
e.g., by employing the Boltzmann solution or systems with very weak nonlinearity. When searching for
suitable classes of systems, this step is related to each specific FPE solution method or the qualitative
investigation. An important strength of the strategy based on maximizing the probability entropy is
the fact that it affects different classes where it has been proved effective, and thus it complements a
set of existing methods for solving or investigating the FPE.
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