

Correction

Correction: Naudts, J. Quantum Statistical Manifolds. Entropy 2018, 20, 472

Jan Naudts

Departement Fysica, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk Antwerpen, Belgium; jan.naudts@uantwerpen.be

Received: 6 September 2018; Accepted: 12 October 2018; Published: 17 October 2018

Abstract: Section 4 of "Naudts J. Quantum Statistical Manifolds. *Entropy* **2018**, *20*, 472" contains errors. They have limited consequences for the remainder of the paper. A new version of this Section is found here. Some smaller shortcomings of the paper are taken care of as well. In particular, the proof of Theorem 3 was not complete, and is therefore amended. Also, a few missing references are added.

Theorem 1.

Theorem 2.

1. Corrections in Section 3

The display on top of page 5 should read

$$\begin{aligned} ||f_{\rho,K}|| &= \sup_{A \in \mathcal{A}} \left\{ f_{\rho,K}(A) : ||A|| \le 1 \right\} \\ &= \sup_{A \in \mathcal{A}} \left\{ (\pi(A)K\Omega_{\rho}, \Omega_{\rho}) : ||A|| \le 1 \right\} \\ &= |||K|^{1/2}\Omega_{\rho}||^{2} \\ &\le |||K|^{1/2}||^{2} = ||K||. \end{aligned}$$

The operator K is replaced by |K| because K need not be positive.

The sentence "This is a prerequisite for proving in the next Theorem that this map is the Fréchet derivative of the chart ξ_{ρ} ." should read "This is a prerequisite for proving in the next Theorem that this map is the Fréchet derivative of the inverse of the chart ξ_{ρ} ."

The proof of the following Theorem is amended.

Theorem 3. The inverse of the map $\xi_{\rho} : \mathbb{M} \mapsto \mathcal{B}_{\rho}$, defined in Theorem 2, is Fréchet-differentiable at $\omega = \omega_{\rho}$. The Fréchet derivative is denoted F_{ρ} . It maps K to $f_{\rho,K}$, where the latter is defined by (10).

Proof. Let $K = \xi_{\rho}(\omega_{\sigma})$. One calculates

$$||\omega_{\sigma} - \omega_{\rho} - F_{\rho}K|| = \sup_{A \in \mathcal{A}} \left\{ |\omega_{\sigma}(A) - \omega_{\rho}(A) - F_{\rho}K(A)| : ||A|| \le 1 \right\}$$

$$= \sup_{A \in \mathcal{A}} \left\{ |(\pi(A)\Omega_{\rho}, [e^{K-\alpha(K)} - \mathbb{I} - K]\Omega_{\rho})| : ||A|| \le 1 \right\}$$

$$\le ||e^{K-\alpha(K)} - \mathbb{I} - K||$$

$$\le |\alpha(K)| + o(||K - \alpha(K)||). \tag{11}$$

Note that

$$|\alpha(K)| \le \log ||e^K|| \le ||K||$$

Entropy **2018**, 20, 796

and

$$||K - \alpha(K)|| \le 2||K||.$$

In addition, if ||K|| < 1 then one has

$$\alpha_{\rho}(K) \le \log(1 + ||K\Omega_{\rho}||^2) \le ||K\Omega_{\rho}||^2.$$

This holds because $\lambda \leq 1$ implies $\exp(\lambda) \leq 1 + \lambda + \lambda^2$. One concludes that (11) converges to 0 faster than linearly as ||K|| tends to 0. This proves that $F_{\rho}K$ is the Fréchet derivative of $\xi_{\rho}(\omega_{\sigma}) \mapsto \omega_{\sigma}$ at $\sigma = \rho$. \square

2. New Version of Section 4

Propositions 1 and 2 of [1] are not correct. This only has consequences for one sentence in the Introduction of [1] and for the results reported in Section 4 of [1]. The text in the Introduction "Next, an atlas is introduced which contains a multitude of charts, one for each element of the manifold. Theorem 4 proves that the manifold is a Banach manifold and that the cross-over maps are linear operators." should be changed to "Next, an atlas is introduced which contains a multitude of charts, one for each element of the manifold. Theorem 4 proves that the manifold is a Banach manifold and that the cross-over maps are continuous."

A new version of Section 4 follows below:

4. The Atlas

Following the approach of Pistone and collaborators [1,3,4,24], we build an atlas of charts ξ_{ρ} , one for each strictly positive density matrix ρ . The compatibility of the different charts requires the study of the cross-over map $\xi_{\rho_1}(\sigma) \mapsto \xi_{\rho_2}(\sigma)$, where ρ_1, ρ_2, σ are arbitrary strictly positive density matrices.

Simplify notations by writing ξ_1 and ξ_2 instead of ξ_{ρ_1} , respectively ξ_{ρ_2} . Similarly, write Ω_1 and Ω_2 instead of Ω_{ρ_1} , respectively Ω_{ρ_2} , and F_1 , F_2 instead of F_{ρ_1} , respectively F_{ρ_2} .

Proposition 1. RETRACTED

Continuity of the cross-over map follows from the continuity of the exponential and logarithmic functions and from the following result.

Proposition 2. Fix strictly positive density matrices ρ_1 and ρ_2 . There exists a linear operator Y such that for any strictly positive density matrix σ and corresponding positive operators X_1 , X_2 in the commutant \mathcal{A}' one has $X_2 = YX_1Y^*$.

Proof. Using the notations of the Appendix of [1], one has

$$X_i = J_i(\rho_i^{-1/2}\sigma\rho_i^{-1/2}\otimes \mathbb{I})J_i^*, \quad i=1,2.$$

Note that the isometry J depends on the reference state with density matrix ρ . Therefore, it carries an index i. The above expression for X_i implies that

$$X_2 = YX_1Y^*$$
 with $Y = J_2(\rho_2^{-1/2}\rho_1^{1/2} \otimes \mathbb{I})J_1^*$.

Entropy **2018**, 20, 796

Theorem 4. The set \mathbb{M} of faithful states on the algebra \mathcal{A} of square matrices, together with the atlas of charts ξ_{ρ} , where ξ_{ρ} is defined by Theorem 1, is a Banach manifold. For any pair of strictly positive density matrices ρ_1 and ρ_2 , the cross-over map $\xi_2 \circ \xi_1^{-1}$ is continuous.

Proof. The continuity of the map $X_1 \mapsto X_2$ follows from the previous Proposition. The continuity of the maps $K_1 \mapsto X_1$ and $X_2 \mapsto K_2$ follows from the continuity of the exponential and logarithmic functions and the continuity of the function α . \square

3. Corrections in Section 9

In the proof of Proposition 4, the symbol Ω_{ρ} is missing five times in obvious places. It has been added.

4. Added References

In the overview of papers devoted to the study of the quantum statistical manifold in the finite-dimensional case, the references [2,3] should be added. A quantum version of the work of Pistone and Sempi [4], alternative to [5], is found in [6]. Reference [7] to the work of Ciaglia et al. has been updated.

References

- 1. Naudts, J. Quantum Statistical Manifolds. Entropy 2018, 20, 472. [CrossRef]
- 2. Petz, D.; Sudar, C. Geometries of quantum states. J. Math. Phys. 1996, 37, 2662–2673. [CrossRef]
- 3. Jenčová, A. Geometry of quantum states: Dual connections and divergence functions. *Rep. Math. Phys.* **2001**, 47, 121–138. [CrossRef]
- 4. Pistone, G.; Sempi, C. An infinite-dimensional structure on the space of all the probability measures equivalent to a given one. *Ann. Stat.* **1995**, *23*, 1543–1561. [CrossRef]
- 5. Streater, R.F. Quantum Orlicz spaces in information geometry. *Open Syst. Inf. Dyn.* **2004**, *11*, 359–375. [CrossRef]
- 6. Jenčová, A. A construction of a nonparametric quantum information manifold. *J. Funct. Anal.* **2006**, 239, 1–20. [CrossRef]

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).