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Abstract: Text classification is one domain in which the naive Bayesian (NB) learning algorithm
performs remarkably well. However, making further improvement in performance using
ensemble-building techniques proved to be a challenge because NB is a stable algorithm. This work
shows that, while an ensemble of NB classifiers achieves little or no improvement in terms
of classification accuracy, an ensemble of fine-tuned NB classifiers can achieve a remarkable
improvement in accuracy. We propose a fine-tuning algorithm for text classification that is both
more accurate and less stable than the NB algorithm and the fine-tuning NB (FTNB) algorithm.
This improvement makes it more suitable than the FTNB algorithm for building ensembles of
classifiers using bagging. Our empirical experiments, using 16-benchmark text-classification data
sets, show significant improvement for most data sets.

Keywords: text classification; ensembles of classifiers; naive Bayesian learning; fine-tuning naive
Bayesian algorithm; machine learning

1. Introduction

In text classification, the task is to assign a document to a category of a predefined set of
categories. It has many real-world applications, including information retrieval, spam filtering [1],
email routing [2], sentiment analysis, and many other automated document processing applications.
Text classification is also a challenging classification problem for several reasons [3,4]: A typical text
classification data set consists of thousands of features, many of them redundant, which may cause
overfitting and may violate the conditional independence assumption of NB. In addition, the data sets
are likely to be imbalanced in the sense that the number of positive documents may be much smaller
than the number of negative documents.

Building an ensemble of classifiers is a widely-used method to improve the accuracy of machine
learning methods. Bagging [5] and boosting [6,7] are probably the most widely used methods for
building ensembles of classifiers. They train the constituent classifiers using different samples of the
training data. Different samples of training data are used to make sure that the classifiers are diverse
because it would be meaningless to combine several classifiers that make the same predictions.

The naive Bayesian learning algorithm performs remarkably well for text classification [8–11].
However, making further improvement by building an ensemble of several NB classifiers is a challenge
because NB is a stable algorithm [12], in the sense that a small change in the training data does
not lead to a substantially different classifier. This has the advantage of making it robust to noisy
data [13] but, at the same time, limits the improvements that can be achieved from building an
ensemble of NB classifiers using bagging or boosting [7]. In [12], it was argued that, due to its
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stability, little or no improvement can be achieved by building an ensemble of NB classifiers using the
AdaBoost algorithm [7].

In [14], a fine-tuning algorithm for NB classifiers (FTNB) was introduced. Although the algorithm
significantly improves the classification accuracy of the NB algorithm in many application domains,
the algorithm sacrifices the noise tolerance advantage of the NB algorithm [15]. This indicates that
FTNB is less stable than NB and may, therefore, be more suitable for building an ensemble of classifiers
than the NB algorithm. Moreover, the FTNB algorithm uses a learning rate parameter that can be set
to different values to increase the diversity of classifiers.

In this work, we use the fine-tuning method to generate a diverse ensemble of NB classifiers for
text classification. We also modify the fine-tuning algorithm to make it less stable and thus produce
more diverse classifiers. The modifications also make the algorithm more accurate for text classification.
We use Breiman’s bagging method [5] to build the ensembles.

The work is structured as follows: In Section 2, we review the related work on text classification
and building ensembles of classifiers. In Section 3, we review the FTNB algorithm and propose some
modifications. In Section 4, we present the results we obtained from bagging the NB, the FTNB, and the
modified FTNB algorithms. Section 5 is the conclusion.

2. Related Work

This section is divided into two subsections: In the first, we review the related work on ensembles
of classifiers in general, and building ensembles of NB classifiers in particular; in the second, we review
the FTNB algorithm [14] for fine-tuning NB classifiers.

2.1. Building Ensembles of Classifiers

Building ensembles of classifiers has been an active research area since 1990s [16]. Entire
books [16–19], have been devoted to the subject, which reflects the continuing interest in this field.
Building ensembles of classifiers is widely used to enhance the classification accuracy of machine
learning algorithms. The basic idea is to build an ensemble of classifiers that collectively gives better
classification accuracy than any of the constituent classifiers. However, there are two conditions
that must be satisfied for the ensemble to be more accurate than its constituent classifiers [20]: First,
the error rate of each individual classifier must be less than 50%; second, the classifiers must be diverse.
Diversity is a key and challenging issue [16], because it would be meaningless to combine several
classifiers that make the same predictions. Diversity can be achieved in different ways, and perhaps the
most widely used method is to build classifiers using different samples of the training data, which is
usually done either by bagging [5] or boosting [6].

Bagging draws a random sample of the training set, and uses it to construct a constituent classifier.
The sample is of the same size as the training set and, as a result, many of the training instances
may occur more than once in a sample. Bagging uses a uniform probability distribution to construct
each sample, giving all instances an equal probability of being selected. Boosting, on the other
hand, uses a probability distribution in sampling that favors the instances that were misclassified by
previous classifiers.

Bagging and Boosting work well with learning algorithms that are not stable [16]. A learning
algorithm is unstable if a small change in the training data produces a substantially different classifier.
Diversity can also be achieved by using different learning parameters [21], such as the initial weights of
connections in artificial neural networks. Other methods achieve diversity by using different features
to build classifiers [22].

The NB algorithm is known to be a stable classifier [12]. Though stability makes the NB algorithm
robust to noise [13], it also makes it difficult to construct an ensemble of NB classifiers using an
ensemble building method that relies on data sample manipulation, such as bagging and boosting.
This is actually the case with any stable classifier [16]. The reason behind it is the fact that slightly
different data samples do not cause a base learner to generate sufficiently diverse classifiers [16]. In [12],
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it was shown that little or no improvement can be achieved by building an ensemble of NB classifiers
using the AdaBoost algorithm, and it was suggested that a tree structure be built into the NB algorithm.
In [23], it was reported that, unlike the case of neural network and decision tree classifiers, bagging NB
classifiers did not reduce the classification error for morphological galaxy classification. In an attempt
to increase the diversity of NB classifiers, [24] generalizes the random forest (RF) approach [25] to NB.
The RF approach for building an ensemble of classifiers uses resampling by bagging and a random
set of features to build each classifier. However, [24] reports a slight increase in the accuracy of
NB as a result of generalizing RF to NB.In [26], an ensemble of heterogeneous Bayesian network
classifiers were proposed, diversity was mainly achieved by building ensembles of Bayesian classifiers
of different structures.

2.2. Fine-Tuning the NB Algorithm

The NB algorithm uses Bayes’ conditional probability rule for classifying instances. To classify an
instance of the form < a1, a2, · · · , am >, Bayes’ rule (Equation (1)) is used to find the class that has the
maximum probability given the instance’s attribute values,

class = argmax
c∈C

p(a1, a2, · · · , am|c)·p(c)
p(a1, a2, . . . , am)

, (1)

where C is a vector of all class attribute values. p(c) is the probability of class c. p(a1, a2, . . . , am)

is the probability that attributes 1, 2, . . . , m will take the values a1, a2, · · · , am, respectively.
p(a1, a2, · · · , am|c) is the probability that attributes 1, 2, . . . , m will take the values a1, a2, · · · , am,
given that the instance is of class c.

The algorithm makes the naive assumption that all attribute values are conditionally independent
given the class values; therefore,

p(a1, a2, · · · , am|c) = ∏j p(aj|c), (2)

Additionally, because, given a certain instance, the denominator p(a1, a2, . . . , am) is the same for
all classes, Equation (1) can be simplified as

class = argmax
c∈C

p(c)·∏j p(aj|c), (3)

Clearly, the accuracy of the NB algorithm depends on finding accurate estimates for the
probability terms p(c) and p

(
aj
∣∣c), which are estimated using the available training data. This

could be challenging, especially in domains with limited training data. The FTNB algorithm [14,15]
aims to find better estimations for the probability terms used by the NB algorithm. Finding better
estimations for the probability terms is particularly important in domains where the training data
(labeled data) is limited. The algorithm builds an initial NB classifier and then uses it to determine
the misclassified training instances. These misclassified instances are used in the fine-tuning stage
to find better estimations of the probability terms responsible for the error. If a training instance,
inst, of the form < a1, a2, · · · , am >, is misclassified, it means that the predicted class, cpredicted,
has higher probability than the actual class, cactual , given the instance’s other attribute values.
During the fine-tuning stage, the probability terms involved are modified in such a way that
decreases the conditional probability of cpredicted given the instance’s other attribute values (i.e.,

p
(

cpredicted

∣∣∣ a1, a2, · · · , am

)
), and increases the conditional probability of cactual given the instance’s

other attribute values (i.e., p(cactual | a1, a2, · · · , am)). The process continues so long as the classification
accuracy continues to improve. Algorithm 1 shows the details of the FTNB algorithm.

The probability terms that need to be decreased are those that are involved in computing
p
(

cpredicted

∣∣∣ a1, a2, · · · , am

)
, namely p

(
cpredicted

)
and p

(
ai

∣∣∣cpredicted

)
, where ai is the value of the ith
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attribute of the instance. On the other hand, the probability terms p(cactual) and p(ai|cactual), which are
involved in computing the p(cactual | a1, a2, · · · , am), need to be increased.

Increasing p(cactual) and decreasing p
(

cpredicted

)
give little or no improvement in classification

accuracy [14], probably because these two terms are estimated using a large number of instances
compared to p

(
ai

∣∣∣cpredicted

)
and p(ai|cactual). Following [14], we do not try to fine-tune these two

terms in this work.
Equations (4) and (5) determine the amount to update p(ai|cactual) and p

(
ai

∣∣∣cpredicted

)
, respectively.

δt+1(ai, cactual) = η·(α·p(maxi|cactual)− p(ai|cactual))·error, (4)

δt+1

(
ai, cpredicted

)
= η·

(
α·p

(
ai

∣∣∣cpredicted

)
− p

(
mini

∣∣∣cpredicted

))
·error, (5)

Algorithm 1 FTNB (training_instances)

phase 1
Use training_instances to estimate the values of each probability term used by the NB algorithm
phase 2
t = 0
while training classification accuracy improves do

for each training instance, inst, do
let cactual be the actual class of inst
let cpredicted = classi f y(inst)
if cpredicted <> cactual //misclassified instance

compute classification error
for each attribute value, ai, of inst do

let pt+1(ai| cactual) = pt(ai| cactual) + δt+1(ai, cactual)

let pt+1

(
ai

∣∣∣ cpredicted

)
= pt

(
ai

∣∣∣ cpredicted

)
− δt+1

(
ai, cpredicted

)
endfor

endif
endfor
let t = t + 1

endwhile

The update steps δt+1(ai, cactual) and δt+1

(
ai, cpredicted

)
are proportional to the error, which is

computed as
error =

∣∣∣P(cactual)− P(cpredicted)
∣∣∣, (6)

where

P(co) =
p(co|inst)

∑m
k p(ck|inst)

, (7)

Equation (7) is used to normalize the probabilities.
The update steps are also proportional to a learning rate, η, which is a value between zero and

one that is used to decrease the update step. Equation (4), which calculates the update step size for the
probability term p(ai|cactual), is designed so that the update step (the increment) is large for small terms
and small for large terms. This explains why the update step is proportional to α·p(maxi|c)− p(ai|c),
where α is a constant and maxi is the value of the ith attribute with the maximum probability given
cactual . Equation (5), which computes the decrement for p

(
ai

∣∣∣cpredicted

)
, ensures that large probability

terms are decreased by a large step value while small terms are decreased by a smaller update step;
we used α·p

(
ai

∣∣∣cpredicted

)
− p

(
mini

∣∣∣cpredicted

)
, where mini is the value of the ith attribute with the

minimum probability, given that cpredicted. α is a constant (greater than or equal to one), which is
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used to control the amount of update for p(maxi|c) and p
(

mini

∣∣∣cpredicted

)
. Setting α to one means

these terms gets zero as the update step size. Following [14], we set α to two in all our experiments.
Algorithm 1 shows the FTNB algorithm in detail.

In [27], a fine-tuning method was proposed to fine-tune Bayesian networks. In [28], differential
evolution was used to find better estimations for the probability terms used by NB for text classification.
In [29], differential evolution was used to find better estimations for the probability terms used in some
distance measures, used in instance-based learning [30], such as the VDM [31] and ISCDM [32].

3. Bagging NB and the Fine-Tuning Algorithms

In this section, we present the results we obtained by bagging the NB and the FTNB algorithms
for text classification. Then, we propose some modifications to the FTNB algorithm to make it less
stable and more accurate for text classification, and thus more suitable for bagging.

3.1. Bagging the NB and FTNB Algorithms for Text Classification

We conducted several experiments to verify our assumptions and claims, which were: (1) Bagging
the NB for text classification does not produce significant improvement, whereas (2) bagging a
set of fine-tuned NB classifiers achieves better results. In all experiments, we used 16-benchmark
text-classification data sets obtained from the Weka [33] website. Table 1 gives a brief description of the
used data sets. All ordinal attributes were discretized using Fayyad et al. [34] supervised discretization
method, as implemented in Weka [33]. All of our algorithms were implemented within the Weka
framework. Ten-fold cross validation was used in all our experiments. A paired t-test with a confidence
level of 95% was used to determine if each difference was statistically significant.

Table 1. A description of the data sets used in the experiments.

Dataset #Documents #Words #Classes

Fbis 2463 2000 17
La1s 3204 13,196 6
La2s 3075 12,433 6
Oh0 1003 3182 10
Oh10 1050 3238 10
Oh15 913 3100 10
Oh5 918 3012 10
Re0 1657 3758 25
Re1 1504 2886 13
Tr11 414 6429 9
Tr12 313 5804 8
Tr21 336 7902 6
Tr31 927 10,128 7
Tr41 878 7454 10
Tr45 690 8261 10
Wap 1560 8460 20

Our results showed that bagging the NB did not really improve the classification accuracy for
text classification. Figure 1 summarizes our results as box plots. One box plot shows the results we
obtained from bagging an ensemble of 10 NB classifiers, denoted in the figure as ENB. The figure also
shows a box plot representing the results we obtained using NB classifiers (trained using all training
instances). The figure shows that NB and ENB achieved comparable results. The two methods had
very close minimum and maximum values, first quartiles, medians, and third quartiles. They also
had close outliers, denoted in the figure using Xs. In fact, the ENB achieved slightly lower average
classification accuracy than NB. It achieved an average classification accuracy of 81.96%, whereas NB
achieved an 81.98% average accuracy. Moreover, the ensemble achieved significantly better results for
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one data set and significantly worse results for three data sets. The results show that bagging the NB
does not really improve the classification accuracy for text classification.
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Figure 1. Building ensembles using the naive Bayesian (NB) learning algorithm for text classification.
ENB: Ensemble of NB classifiers.

In a similar way we conducted, a set of experiments to compare FTNB classifiers with an ensemble
of 10 FTNB classifiers, built using bagging [5]. To ensure more diversity, we also used a random learning
rate in the range 0–0.0099 to fine-tune each classifier. The results showed that the ensemble actually
achieved better results than both the NB and FTNB algorithms, with an average accuracy of 85.26%.
More importantly, the ensemble achieved significantly better results than the FTNB classifier for five
data sets and worse results for two data sets. Compared with the NB algorithm, the ensemble achieved
significantly better results for eight data sets and significantly worse results for four data sets. Figure 2
summarizes our results as two box plots denoted by EFTNB, for the ensemble of FTNB classifiers,
and FTNB for the fine-tuned classifiers. The box plots show that the ensembles had higher values
for the minimum, maximum, first quartiles, and third quartiles. The only exception was the median,
where FTNB had a higher median than EFTNB. These results support our suspicion that the fine-tuning
algorithm would produce diverse classifiers, which makes bagging them as an ensemble of classifiers
worthwhile. Without being sufficiently diverse an ensemble of bagged classifiers cannot outperform a
base classifier trained using all training instances.

Our results also showed a substantial increase in the average classification accuracy of the FTNB
algorithm compared to the NB algorithm. The average classification accuracy of the FTNB and NB
algorithms were 85.14% and 81.98%, respectively. Furthermore, comparing the box plots for NB
(Figure 1) and FTNB (Figure 2) showed that the FTNB had higher values for the minimum value, first
quartile, median, and third quartile. The only exception was the maximum value, where FTNB had a
slightly lower maximum value. Comparing the first quartiles of the two algorithms showed that 75%
of the data sets had accuracies above 77.28% and 79.02% using NB and FTNB, respectively.

However, the FTNB algorithm achieved significantly better results than NB for seven data sets
and significantly worse results for five data sets. This indicated that the FTNB algorithm was not well
suited for the text classification problem. The average number of the fine-tuning iterations performed
by the FTNB was 3.93 iterations. This number was relatively small, which indicated that, for the
FTNB algorithm to achieve better results for text classification, the fine-tuning process should be more
delicate and the update steps should be smaller. This finding was despite the fact that we used a
learning rate of 0.001 in our experiments, which was much smaller, and gave better results, than the
learning rate of 0.01 recommended in [14]. The parameter α was set to two, as recommended by [14].
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To further improve the results of the fine-tuned classifiers and the ensemble of classifiers,
we believe that we need to make the fine-tuning process more gradual (or more delicate) and we need
to increase the diversity of the produced classifiers. In the next section, we propose some modifications
to the fine-tuning algorithm that makes it more gradual and less stable. By making it less stable,
we aim to produce classifiers that are more diverse and thus more suitable for building ensembles of.

3.2. A More Gradual Fine-Tuning Algorithm (GFTNB)

As previously discussed, building an ensemble of classifiers is beneficial if the machine-learning
algorithm used is unstable enough to produce diverse classifiers. For this reason, we introduce two
modifications to the FTNB algorithm that makes it even less stable and thus more likely to produce
diverse classifiers. Moreover, the modifications we propose make the weight update process more
gradual by making the fine-tuning steps smaller.

3.2.1. Modifying the Update Equations

We modify the probability update Equations (4) and (5) by replacing each of them with Equation (8).

δt+1(ai, cactual) = η/t·error, (8)

where t is the iteration number. Equation (8) is different from Equation (4) in two ways. First, it does
not use the expression (α·p(maxi|cactual)− p(ai|cactual)) because this expression actually condenses
the size of the update step and consequently makes the value of the probability terms, in the different
classifiers, closer to each other. However, eliminating such subexpression increases the size of the
update step, which is good for increasing diversity, but it could decrease the classification accuracy of
each constituent classifier. To compensate for this, we use a decaying learning rate by dividing η by the
iteration number, t, which reduces the size of the update step in later iterations. Replacing Equation (5)
with (8) aims to achieve the same result for δt+1

(
ai, cpredicted

)
.

Therefore, the modification ensures that we use relatively large update steps at early fine-tuning
iterations, and that these steps get smaller at later iterations. This helps to diversify the classifiers by
setting them on different paths. At later iterations, the fine-tuning steps become smaller and smaller,
which makes the fine-tuning process more gradual.

Table 2 shows the results we obtained by the modified algorithm for the 16-benchmark
text-classification data sets compared to the FTNB and NB algorithms. We call the new algorithm the
Gradual FTNB (GFTNB) algorithm. We used the 16-benchmark text-classification data sets to compare
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the classification accuracy of the GFTNB algorithm with the FTNB and NB algorithms. The table shows
the results of bagging an ensemble of 10 GFTNB classifiers (EGFTNB) compared with a single GFTNB
classifier. Each figure in Table 2 is the average of the 10-fold experiments, as 10-fold cross validation
was used in all experiments. The better results are highlighted in bold, and the significantly better
results are highlighted in bold and underlined. The last two rows in the table present the number of
data sets for which the methods achieved better accuracy and significantly better accuracy.

Table 2. The results ofGFTNB and EGFTNB vs. NB and FTNB.

Data Set
FTNB vs. GFTNB #Iterations NB vs. GFTNB GFTNB vs. EGFTNB #Iterations NB vs. EGFTNB

FTNB% GFTNB% FTNB GFTNB NB% GFTNB% GFTNB% EGFTNB% EGFTNB NB% EGFTNB%

Fbis.wc 77.55 77.67 10.3 13.1 69.96 77.67 77.67 81.20 68.1 69.96 81.20
La1s.wc 86.33 89.79 2.8 5 86.55 89.79 89.79 91.26 57.1 86.55 91.26
La2s.wc 84.26 89.63 3.1 6.1 87.48 89.63 89.63 91.71 53.7 87.48 91.71
Oh0.wc 89.63 91.63 3.3 4.1 91.43 91.63 91.63 93.12 46.3 91.43 93.12
Oh5.wc 85.73 88.13 3.2 5.9 84.42 88.13 88.13 89.98 50.6 84.42 89.98
Oh10.wc 77.62 82.10 2.8 5.7 83.05 82.10 82.10 83.62 50.1 83.05 83.62
Oh15.wc 83.24 85.21 2.6 4.9 85.43 85.21 85.21 86.09 52.3 85.43 86.09
Re0.wc 79.06 80.19 6.7 5 74.47 80.19 80.19 82.71 54.3 74.47 82.71
Re1.wc 78.76 79.72 3 3.5 77.37 79.72 79.72 83.40 47 77.37 83.40
Tr11.wc 86.96 87.92 4 4.4 77.29 87.92 87.92 87.68 45.3 77.29 87.68
Tr12.wc 92.33 92.97 2.9 3 94.89 92.97 92.97 92.65 39.5 94.89 92.65
Tr21.wc 88.39 88.39 4.1 2.6 58.04 88.39 88.39 91.67 41.5 58.04 91.67
Tr31.wc 94.07 94.50 5.3 5.6 90.61 94.50 94.50 95.90 40 90.61 95.90
Tr41.wc 91.23 92.14 2.6 4.2 92.14 92.14 92.14 92.94 43.6 92.14 92.94
Tr45.wc 88.12 87.97 3.1 5.1 77.25 87.97 87.97 93.04 44.3 77.25 93.04
Wap.wc 78.91 82.76 3.1 5.4 81.35 82.76 82.76 81.67 54.9 81.35 81.67
average 85.14 86.92 3.93 5.23 81.98 86.92 86.92 88.67 49.29 81.98 88.67
#better 1 14 3 12 3 13 1 15

#Sig
Better 0 7 1 10 0 11 1 12

Our results showed that the GFTNB algorithm outperformed the FTNB algorithm in terms of the
average classification accuracy for the 16 text-classification data sets, and in terms of the number of
data sets for which it achieved better and significantly better average accuracy. The average accuracy
of the GFTNB algorithm was 86.92%, whereas the average accuracy of the FTNB algorithm was 85.14%.
The GFTNB algorithm achieved better results than the FTNB algorithm for 14 data sets; seven of them
were significantly better results. On the other hand, the FTNB algorithm achieved better results for
one data set but that result was not significantly better. The results were also statistically significant
according to the Wilcoxon signed rank test at 95% confidence.

However, in terms of the fine-tuning iterations, the GFTNB algorithm required more fine-tuning
iterations for most data sets. The average number of fine-tuning iterations for the GFTNB and FTNB
algorithms were 5.23 and 3.93, respectively, which indicated that the GFTNB algorithm was actually a
more gradual fine-tuning algorithm than the FTNB.

Compared with the NB algorithm, the GFTNB algorithm achieved better results for 12 data sets;
10 of which were significantly better results, whereas NB achieved better results for three data sets,
only one of which was a significantly better result. The average accuracy of the NB algorithm for all
data sets was 81.98%, which was lower by 4.94% than the average accuracy of the GFTNB algorithm.

Figure 3 summarizes our results using a box plot for each of the three algorithms: NB, FTNB,
and GFTNB. It can be easily seen that the GFTNB algorithm had a higher minimum value, first
quartile, median, and third quartile than the NB and FTNB algorithms. The NB algorithm had a
slightly higher maximum value than the two fine-tuning algorithms. Comparing the medians of NB,
FTNB, and GFTNB, showed that 50% of that data had an average accuracy above 83.74%, 86.03%,
and 88.05%, respectively. Similarly, comparing the third quartiles showed that 25% of the data sets had
a classification accuracy above 88.26%, 88.70%, 90.25%, using NB, FTNB, and GFTNB, respectively.
All these results indicated that the proposed GFTNB outperformed FTNB and NB for text classification.
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Figure 3. Comparing the FTNB, GFTNB, and NB algorithms.

Table 2 also shows the result of an ensemble of 10 GFTNB (EGFTNB) classifiers compared with
the GFTNB and NB classifiers. We constructed EGFTNB in the same way we constructed EFTNB.
The ensemble was even more accurate than a single GFTNB classifier, trained using all training
instances, for 13 data sets, 11 of which were significantly better results, and less accurate for three
data sets, but none of which were significantly worse results. The average accuracy of the ensemble
was 88.67%, which was higher by 1.75% than the average accuracy of GFTNB. Recall that EFTNB
(an ensemble of 10 FTNB classifiers) achieved better results than FTNB for 10 data sets, only five of
which were significantly better results. Moreover, EFTNB achieved worse results than FTNB for six
data sets, two of which were significantly worse results. Comparing the box plots of EGFTNB and
GFTNB (see Figure 4), showed that the ensemble had a higher minimum value, first quartile, median,
third quartile, and maximum value, by more than 2% than the corresponding values of GFTNB.
Comparing EGFTNB with NB showed that the EGFTNB outperformed NB for 15 data sets, of which
12 were significantly better results, whereas NB outperformed EGFTNB for one data set and that
result was statistically significant (see Table 2). We compared the results of EFTNB and EGFTNB using
Wilcoxon signed-rank test and found out that EGFTNB was significantly better at 99% confidence.
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These results show that the GFTNB algorithm produced more suitable classifiers for bagging than
the classifiers produced by FTNB. The fact that an ensemble of GFTNB classifiers produced far better
results than a single GFTNB classifier (trained using all training instances) indicates that the GFTNB
algorithm produced a more diverse ensemble of classifiers.

It is worth mentioning that we also constructed an ensemble of 20 GFTNB classifiers (EGFTNB-20).
EGFTNB-20 achieved an average accuracy of 89.18%, which was an increase of 0.51% compared to the
average accuracy of EGFTNB (10 classifiers). However, the number of data sets for which EGFTNB-20
achieved better and significantly better results than the NB classifier remained the same as those of
the EGFTNB. Fine-tuning EGFTNB-20 required an average of 97.36 fine-tuning iterations, whereas
EGFTNB-10 required an average of 49.29 iterations.

3.2.2. Modifying the Termination Condition

To further increase the diversity among the constituent classifiers, we modified the fine-tuning
termination condition. Each constituent classifier was fine-tuned for a random number of iterations,
between 5 and 15, and the probability values that gave the best training accuracy were taken as the
result of the fine-tuning process.

We constructed two ensembles of 10 classifiers and 20 classifiers. We called them GFTNB-10
and GFTNB-20, respectively. The latest modification increased the average classification accuracy of
the ensemble of 10 classifiers from 88.67% (the average accuracy of EGFTNB) to 88.83%, whereas the
ensemble of 20 classifiers increased the average to 89.17%. Moreover, the GFTNB-10 outperformed
the NB classifier for 15 data sets, 12 of which were statistically significant, whereas the NB
classifier outperformed the GFTNB-10 for only one data set, but not in a statistically significant
way. The performance of the GFTNB-20 was even better; it outperformed the NB classifier for 15 data
sets, 13 of which were statistically significant, whereas NB outperformed the GFTNB-20 for only one
data set, but not in a statistically significant way. This modification increased the number of fine-tuning
iterations. The GFTNB-10 required, on average, twice the number of iterations to fine-tune than the
EGFTNB. Obviously, fine-tuning the twenty classifiers in the GFTNB-20 required even more iterations;
the GFTNB-20 required, on average, 190.79 iterations. Figure 5 shows the box plots diagrams for
GFTNB-10 and GFTNB-20.
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Table 3 summarizes the performance of each algorithm compared with the NB algorithm, in terms
of the number of the data sets for which the algorithm achieved significantly better results (wins),
the number of data sets for which no algorithm achieved significantly better results (ties), and the
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number of data sets for which the NB algorithm achieved significantly better results (losses). Table 3
also shows the average improvement in accuracy achieved by each algorithm compared to the average
of the NB algorithm (i.e., the difference in average).

Table 3. The performance of each algorithm compared to NB.

Algorithm Average Higher by Wins Ties Losses

ENB −0.02% 1 12 3
FTNB 3.16% 7 4 5

EFTNB 3.28% 5 9 2
GFTNB 4.92% 10 5 1

EGFTNB 6.69% 12 3 1
GFTNB-10 6.85% 12 4 0
GFTNB-20 7.19% 13 3 0

4. Conclusions

This work addresses the issue of constructing an ensemble of NB classifiers for text classification
using the bagging method [5]. It empirically shows that an ensemble of NB classifiers achieves little or
no improvement in classification accuracy. However, an ensemble of fine-tuned NB classifiers achieves
significantly more accurate results for many data sets. This study also proposes a more accurate
fine-tuning algorithm for text classification, and empirically shows that this algorithm is more suitable
for building an ensemble of fine-tuned classifiers than the original fine-tuning algorithm, using the
bagging method. This work uses the bagging method for ensemble construction, combined with
parameter modification (learning rate and the number of fine-tuning iterations) to increase diversity.
Future work may investigate using boosting as a method for constructing an ensemble of fine-tuned
NB classifiers for text classification. Fine-tuning other variants of NB for text classification, such as
multinomial NB [35], and constructing ensembles of such fine-tuned classifiers might be an interesting
future research area.
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