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Abstract: Recent experimental breakthroughs produced the first nano heat engines that have the
potential to harness quantum resources. An instrumental question is how their performance measures
up against the efficiency of classical engines. For single ion engines undergoing quantum Otto cycles
it has been found that the efficiency at maximal power is given by the Curzon–Ahlborn efficiency.
This is rather remarkable as the Curzon–Alhbron efficiency was originally derived for endoreversible
Carnot cycles. Here, we analyze two examples of endoreversible Otto engines within the same
conceptual framework as Curzon and Ahlborn’s original treatment. We find that for endoreversible
Otto cycles in classical harmonic oscillators the efficiency at maximal power is, indeed, given by
the Curzon–Ahlborn efficiency. However, we also find that the efficiency of Otto engines made of
quantum harmonic oscillators is significantly larger.
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1. Introdcution

It is a standard exercise of thermodynamics to compute the efficiency of engines, i.e., to determine
the relative work output for devices undergoing cyclic transformations on the thermodynamic
manifold [1]. Like few other applications the study of heat engines illustrates the versatility of
thermodynamic concepts, since universally valid bounds can be obtained purely from macroscopic,
phenomenological knowledge about physical systems. However, all ideal cycles, such as the Carnot,
Stirling, Otto, Diesel, etc. cycles are only of limited practical importance, as they are comprised of
quasistatic, infinitely slow state transformations. Therefore, the power output of an ideal engine is
strictly zero [1].

All real engines operate in finite time, and thus their working medium is almost never in
equilibrium with the environment. Moreover, a more practical question is to determine the efficiency at
maximal power output, rather than focusing only at the ideal, maximal efficiency (at zero power). In a
seminal paper [2], Curzon and Ahlborn tackled this problem within the framework of endoreversible
thermodynamics [3].

At the core of endoreversible thermodynamics is the idea of local equilibrium: Imagine an engine,
whose working medium is in a state of thermal equilibrium of temperature T. However, T is not
equal to the temperature of the environment, Tbath, and thus there is a temperature gradient at
the boundaries of the engine. One then studies the engine as it slowly undergoes a cyclic state
transformation, where slow means that the working medium remains locally in equilibrium at all times.
However, since the cycle does operate in finite time, the working medium never fully equilibrates
with the environment. Therefore, from the point of view of the environment the device undergoes an
irreversible cycle. Such state transformations are called endoreversible [3], which means that locally the
transformation is reversible, but globally irreversible.
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Curzon and Ahlborn showed [2] that the efficiency of a Carnot engine undergoing an
endoreversible cycle at maximal power is given by,

ηCA = 1−

√
Tc

Th
, (1)

where Tc and Th are the temperatures of the cold and hot reservoirs, respectively. Remarkably, it has
been found that ηCA (1) is also assumed by many, physically different engines at maximal power,
such as an endoreversible Otto engine with an ideal gas as working medium [4], the endoreversible
Stirling cycle [5], Otto engines in open quantum systems in the quasistatic limit [6], or a single ion in
a harmonic trap undergoing a quantum Otto cycle [7,8]. On the other hand, it also has been shown
that whether or not a finite time Carnot cycle assumes ηCA is determined by the “symmetry” of
dissipation [9], and the efficiency of an Otto engine working with a single Brownian particle in a
harmonic trap is determined by the specific parameterization of the trap’s stiffness [10].

In particular, the recent experimental breakthroughs in the implementation of nanosized heat
engines [11,12] that could principally exploit quantum resources [13–24] pose the question whether
their behavior can be universally characterized. For instance, Reference [6] suggested that to describe
the efficiency at maximal power ηCA could be such a universal result, at least for a class of engines.
However, the Curzon–Ahlborn efficiency (1) was originally derived for endoreversible Carnot cycles,
which is independent on the nature of the working medium. On the other hand, a standard textbook
exercise shows that the Otto efficiency is dependent on the equation of state, i.e., on the specific
working medium [1]. Therefore, it would actually be more natural to expect that the efficiency at
maximal power strongly depends on the nature of working medium. Similar conclusions have been
drawn, for instance, in the thermodynamic analysis of photovolatic cells [25–27].

In addition, the quantum Otto cycle is typically comprised of two thermalization and two
unitary strokes [28–30]. For cycles involving only unitary strokes [7,8] the assumption of local
equilibrium is almost never justified, and thus it becomes even more remarkable that at maximal power
output a quantum Otto cycle in a parametric, harmonic oscillator operates with the Curzon–Ahlborn
efficiency [7,8]. Also see Reference [6] for a more detailed treatment from open quantum dynamics.
Therefore, the question arises whether this is a peculiarity of the quantum Otto cycle in the harmonic
oscillator, or whether there is something more fundamental and universal about ηCA.

The purpose of the present work is to revisit these longstanding questions and study the
endoreversible Otto cycle in a conceptually simple and pedagogical approach similar to Curzon
and Ahlborn’s original treatment [2]. To this end, we compute the efficiency at maximal power for
two examples of endoreversible Otto engines. We start with a classical version, for which the working
medium is a single Brownian particle in a harmonic trap. Maximizing the power output with respect
to the compression ratio, we find analytically that the efficiency is indeed given by ηCA (1). As a second
example we study a quantum engine, whose working medium is a quantum harmonic oscillator
ultraweakly coupled to the thermal environment. We find that in this case the efficiency is larger
than ηCA (1), which demonstrates that the Curzon–Ahlborn efficiency is not universal at maximal
power. An advantage of the present treatment is that it is somewhat more pedagogical than earlier
works on the topic. The present derivation is entirely based on the phenomenological framework
of endoreversible thermodynamics. Thus, e.g., neither the full quantum dynamics [6] nor the linear
response problem [10] have to be solved.

2. Carnot Engine at Maximal Power

We begin by briefly reviewing the main gist of Reference [2] and by establishing notions and
notation. In particular, we focus on the limits and assumptions that lead to the Curzon–Ahlborn
efficiency (1) for endoreversible Carnot engines.
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The ideal Carnot cycle consists of two isothermal processes during which the systems absorbs/exhausts
heat and two thermodynamically adiabatic, i.e., isentropic strokes [1]. During the isentropic strokes the
working medium does not exchange heat with the thermal reservoirs, and thus its state can be
considered to be independent of the environment. Therefore, we only have to modify the treatment
of the isothermal strokes during which the working medium will be in a local equilibrium state at
different temperature than the temperature of the hot and cold reservoir, respectively.

In particular, during the hot isotherm the working medium is assumed to be a little cooler than
the hot environment at Th. Thus, during the whole stroke the system absorbs the heat

Qh = λhτh (Th − Thw) , (2)

where τh is the stroke time, Th,w is the temperature of the working medium, and λh is a constant
depending on thickness and thermal conductivity of the boundary separating working medium and
environment. Note that Equation (2) is nothing else but a discretized version of Fourier’s law for heat
conduction [1]. We will see shortly that for Otto cycles the rate of heat flux can no longer be assumed
to be constant, since we need to account for the change in temperature during the isochoric strokes.

Similarly, during the cold isotherm the system is a little warmer than the cold reservoir at Tc.
Hence, the exhausted heat can be written as

Qc = λcτc (Tcw − Tc) (3)

where λc is the cold heat transfer coefficient.
As mentioned above, the adiabatic strokes are unmodified, but note that the cycle is taken to be

reversible with respect to the local temperatures of the working medium. Hence, we can write

∆Sh = −∆Sc and thus
Qh
Thw

=
Qc

Tcw
. (4)

Equation (4) allows to relate the stroke times τh and τc to the heat transfer coefficients λh and λc.
We are now interested in determining the efficiency at maximal power. To this end, we write the

power output of the cycle as

P(δTh, δTc) =
Qh −Qc

γ(τh + τc)
(5)

where δTh = Th − Thw and δTc = Tcw − Tc. In Equation (5) we introduced the total cycle time
τcyc = γ(τh + τc), and thus γ ≡ τcyc/(τh + τc). Note that this neglects any explicit dependence of
the analysis on the lengths of the adiabatic strokes. We exclusively focus on the isotherms, i.e, on the
temperature differences between working medium and the hot and cold reservoirs.

It is worth emphasizing that in the present problem we have four free parameters, namely hot and
cold temperatures of the working substance, Thw and Tcw, and the stroke times τh and τc. The balance
equation for the entropy (4) allows to eliminate two of these, and Curzon and Ahlborn chose to
eliminate τh and τc [2].

Thus, we maximize the power P(δTh, δTc) as a function of the difference in temperatures between
working substance and environment. After a few lines of algebra one obtains [2],

Pmax =
λhλc

γ

(√
Th −

√
Tc√

λh +
√

λc

)2

, (6)

where the maximum is assumed for

δTh
Th

=
1−
√

Tc/Th

1 +
√

λh/λc
and

δTc

Tc
=

√
Th/Tc − 1

1 +
√

λc/λh
(7)
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From these expressions we can now compute the efficiency. We have,

η =
Qh −Qc

Qh
= 1− Tcw

Thw
= 1− Tc + δTc

Th − δTh
(8)

where we used Equation (4). Thus, the efficiency of an endoreversible Carnot cycle at maximal power
output becomes

ηCA = 1−

√
Tc

Th
, (9)

which only depends on the temperatures of the hot and cold reservoirs.
In the following, we will apply exactly the same reasoning to the endoreversible Otto cycle.

3. Endoreversible Otto Cycle

The standard Otto cycle is a four-stroke cycle consisting of isentropic compression, isochoric
heating, isentropic expansion, and ischoric cooling [1]. Thus, we have in the endoreversible regime:

3.1. Isentropic Compression

During the isentropic strokes the working substance does not exchange heat with the environment.
Therefore, the thermodynamic state of the working substance can be considered independent of the
environment, and the endoreversible description is identical to the equilibrium cycle. From the first
law of thermodynamics, ∆E = Q + W, we have,

Qcomp = 0 and Wcomp = E(T2, ω2)− E(T1, ω1) (10)

where Qcomp is the heat exchanged, and Wcomp is the work performed during the compression.
Moreover, ω denotes the work parameter, such as the inverse volume of a piston or the frequency of a
harmonic oscillator (20).

3.2. Isochoric Heating

During the isochoric strokes the work parameter is held constant, and the system exchanges heat
with the environment. Thus, we have for isochoric heating

Qh = E(T3, ω2)− E(T2, ω2) and Wh = 0 . (11)

In complete analogy to Curzon and Ahlborn’s original analysis [2] we now assume that the
working substance is in a state of local equilibrium, but also that the working substance never fully
equilibrates with the hot reservoir. Therefore, we can write

T(0) = T2 and T(τh) = T3 with T2 < T3 ≤ Th , (12)

where as before τh is the duration of the stroke.
Note that in contrast to the Carnot cycle the Otto cycle does not involve isothermal strokes, and,

hence, the rate of heat flux is not constant. Rather, we have to explicitly account for the change in
temperature from T2 to T3. To this end, Equation (2) is replaced by Fourier’s law [1],

dT
dt

= −αh (T(t)− Th) (13)

where αh is a constant depending on the heat conductivity and heat capacity of the working substance.
Equation (13) can be solved exactly, and we obtain the relation

T3 − Th = (T2 − Th) exp (−αhτh) . (14)
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In the following, we will see that Equation (14) is instrumental in reducing the number of
free parameters.

3.3. Isentropic Expansion

In complete analogy to the compression, we have for the isentropic expansion,

Qexp = 0 and Wexp = E(T4, ω1)− E(T3, ω2) . (15)

3.4. Isochoric Cooling

Heat and work during the isochoric cooling read,

Qc = E(T1, ω1)− E(T4, ω1) and Wc = 0 , (16)

where we now have

T(0) = T4 and T(τc) = T1 with T4 > T1 ≥ Tc . (17)

Similarly to above (13) the heat transfer is described by Fourier’s law

dT
dt

= −αc (T(t)− Tc) , (18)

where αc is a constant characteristic for the cold stroke. From the solution of Equation (18) we
now obtain

T1 − Tc = (T4 − Tc) exp (−αcτc) , (19)

which properly describes the decrease in temperature from T4 back to T1.

4. Classical Harmonic Engine

To continue the analysis we now need to specify the internal energy E. As a first example,
we consider a classical Brownian particle trapped in a harmonic oscillator. The bare Hamiltonian reads,

H(p, x) =
p2

2m
+

1
2

mω2x2 , (20)

where m is the mass of the particle.
For a particle in thermal equilibrium the Gibbs entropy, S, and the internal energy, E, are

S
kB

= 1 + ln
(

kBT
h̄ω

)
and E = kBT , (21)

where we introduced Boltzmann’s constant, kB.
Note, that from Equation (21) we obtain a relation between the frequencies, ω1 and ω2 and the

four temperatures, T1, T2, T3, and T4. To this end, consider the isentropic strokes, for which we have

S(T2, ω2) = S(T1, ω1) and S(T4, ω1) = S(T3, ω2) , (22)

which is fulfilled by
T1 ω2 = T2 ω1 and T3 ω1 = T4 ω2 . (23)

We are now equipped with all the ingredients necessary to compute the endoreversible efficiency,

η = −Wtot

Qh
. (24)
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In complete analogy to fully reversible cycles [1], Equation (24) can be written as

η = 1− T4 − T1

T3 − T2
, (25)

where we used the explicit from of the internal energy E (21). Further, using Equations (23) the
endoreversible Otto efficiency becomes

η = 1− ω1

ω2
≡ 1− κ , (26)

which defines the compression ratio, κ. Observe that the endoreversible efficiency takes the same form
as its reversible counter part [1]. However, in Equation (25) the temperatures correspond the local
equilibrium state of the working substance, and not to a global equilibrium with the environment.

Similarly to Curzon and Ahlborn’s treatment of the endoreversible Carnot cycle [2] we now
compute the efficiency for a value of κ, at which the power (5) is maximal. We begin by re-writing the
total work with the help of the compression ratio κ and Equations (23) as,

Wtot= Wcomp + Wexp = (κ − 1) kB (T2 − T3) . (27)

Further using Equation (14) we obtain

Wtot = (κ − 1) (1− exp (−αhτh)) kB (T2 − Th) , (28)

which only depends on the free parameters T2, κ, and τh. Of these three, we can eliminate one more,
by combing Equations (14) and (19), and we have

T2 =
Tc (eαcτc − 1) + κ Th (1− e−αhτh)

κ (eαcτc − e−αhτh)
. (29)

Finally, the power output (5) takes the form,

P =
2(κ − 1) kB (Tc − κ Th)

γκ(τc + τh)

sinh (αcτc/2) sinh (αhτh/2)
sinh [(αcτc + αhτh)/2]

. (30)

Remarkably the power output, P(κ, τh, τc), factorizes into a contribution that only depends on the
compression ratio, κ, and another term that is governed by the stroke times, τc and τh,

P(κ, τh, τc) = f1(κ) f2(τh, τc) . (31)

It is then a simple exercise to show that P(κ, τh, τc) is maximized for any value of τh and τc if we have,

Pmax = P(κmax) with κmax =

√
Tc

Th
. (32)

Therefore, the efficiency at maximal power reads,

η = 1−

√
Tc

Th
. (33)

In conclusion, we have shown that for the classical harmonic oscillator the efficiency at maximal
power of an endoreversible Otto cycle (24) is indeed given by the Curzon–Ahlborn efficiency (1).

It is worth emphasizing that for the endoreversible Otto cycle we started with six free parameters,
the four temperatures T1, T2, T3, and T4, and the two stroke times, τh and τc. Of these, we succeeded in
eliminating three, by explicitly using Fourier’s law for the heat transfer, Equations (13) and (18), and the
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explicit expressions for the entropy and the internal energy (21). Therefore, one would not expect to
obtain the same result (33) for other working substances such as the quantum harmonic oscillator.

5. Quantum Harmonic Engine

For the remainder of this analysis we will be interested in a quantum harmonic oscillator in the
ultraweak coupling limit [31]. In this limit, a “small” quantum system interacts only weakly with a
large Markovian heat bath, such that the stationary state is given by a thermal equilibrium distribution.
This situation is similar to the model studied in Reference [6], however in the present case we will not
have to solve the full quantum dynamics.

The equilibrium state is given by a Gibbs state, ρ ∝ exp (−H/kBT), where ρ is the density operator.
Accordingly, the internal energy reads

E =
h̄ω

2
coth

(
h̄ω

2kBT

)
(34)

and the entropy becomes

S
kB

=
h̄ω

2kBT
coth

(
h̄ω

2kBT

)
− ln

[
1
2

sinh
(

h̄ω

2kBT

)]
. (35)

Despite the functional form of S being more involved, we notice that the four temperatures and
the two frequencies are still related by the same Equation (23). Thus, it can be shown [6] that the
efficiency of an endoreversible Otto cycle in a quantum harmonic oscillators also reads,

η = 1− κ . (36)

Following the analogous steps that led to Equation (30) we obtain for the power output of an
endoreversible quantum Otto engine,

P = csch
[

h̄ω2 κ

2
eαcτc+αhτh − 1

Tc (eαcτc − 1) + κTh eαcτc (eαhτh − 1)

]
csch

[
h̄ω2 κ

2
eαcτc+αhτh − 1

Tc eαhτh (eαcτc − 1) + κTh (eαhτh − 1)

]
× h̄ω2

2
1− κ

τc + τh
sinh

[
h̄ω2 κ

2
(κTh − Tc) (eαcτc+αhτh − 1) (eαhτh − 1) (eαcτc − 1)

(Tc (eαcτc − 1) + κTh eαcτc (eαhτh − 1)) (Tc eαhτh (eαcτc − 1) + κTh (eαhτh − 1))

] (37)

where we set kB = 1. We immediately observe that in contrast to the classical case (30) the expression
no longer factorizes. Consequently, the value of κ, for which P is maximal does depend on the stroke
times τh and τc.

Due to the somewhat cumbersome expression (37) we chose to find the maximum of P(κ, τh, τc)

numerically. In Figure 1 we illustrate our findings in the high temperature limit, h̄ω2/kBTc � 1.
Consistently with our classical example, the efficiency is given by Equation (33), which was also
found in Reference [6] for quasistatic cycles. It is worth emphasizing that Figure 1 was obtained
numerically for a specific choice of parameters. However, the above, classical analysis revealed that in
the limit of high temperatures the result, namely that the efficiency at maximal power is given by the
Curzon–Ahlborn efficiency (33), becomes independent of all parameters but the temperatures of the
hot and cold reservoirs.
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Figure 1. Efficiency of the endoreversible Otto cycle at maximal power (red, solid line), together with
the Curzon–Ahlborn efficiency (purple, dashed line) and the Carnot efficiency (blue, dotted line) in the
high temperature limit, h̄ω2/kBTc = 0.1. Other parameters are αc = 1, αh = 1, and γ = 1.

Figure 2 depicts the efficiency at maximal power (36) as a function of Tc/Th in the deep
quantum regime, h̄ω2/kBTc � 1. In this case, we find that the quantum efficiency is larger than
the Curzon–Ahlborn efficiency (33). From a thermodynamics’ point-of-view this finding is not really
surprising since already in reversible cycles the efficiency strongly depends on the equation of state.

Figure 2. Efficiency of the endoreversible Otto cycle at maximal power (red, solid line), together with
the Curzon–Ahlborn efficiency (purple, dashed line) and the Carnot efficiency (blue, dotted line) in the
deep quantum regime, h̄ω2/kBTc = 10. Other parameters are αc = 1, αh = 1, and γ = 1.

In conclusion, we have shown explicitly that contrary to anecdotal evidence in the
literature [4,6–8,12] the efficiency at maximal power is not universally given by the Curzon–Ahlborn
efficiency—not even for the harmonic oscillator. The natural question now is if and how this
“quantum supremacy” can be exploited in the design and experimental implementation of nano
engines. This, however, we leave for future work.
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6. Concluding Remarks

In the present work we have computed the efficiency at maximal power for two examples of
the endoreversible Otto engine. We have found that in the case of a classical harmonic oscillator the
efficiency is identical to the Curzon–Ahlborn expression originally found for endoreversible Carnot
cycles. However, we have also shown that for engines operating with quantum harmonic oscillators
the efficiency significantly differs from the classical expression. These findings are consistent with
References [6,10], where it was argued that the efficiency should be governed by internal friction
and specific driving protocols, respectively. The advantage of the present analysis is, however,
that our results were obtained entirely from the phenomenological equations of endoreversible
thermodynamics. Neither the quantum master equation [6] nor the linear response problem [10]
had to be solved explicitly.

Finally, we note that the present conclusions are a consequence of the differing equations of
state for the classical and quantum harmonic oscillator. More precisely, the maximal power output
is governed by the different expressions for the internal energies. As such, the conclusions drawn in
this work are more “thermodynamical” as they are “quantum”. By this we mean, that it is entirely
possible to find classical working substances, for which the efficiency at maximal power is not given
by the Curzon–Ahlborn efficiency. We also have not excluded the existence of other quantum working
substance, for which are described by the Curzon–Ahlborn efficiency. However, the hunt for these
systems we also leave for future work.
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