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Abstract: In this paper, an investigation of the maximum temperature propagation in a finite medium
is presented. The heat conduction in the medium was modelled by using a single-phase-lag equation
with fractional Caputo derivatives. The formulation and solution of the problem concern the heat
conduction in a slab, a hollow cylinder, and a hollow sphere, which are subjected to a heat source
represented by the Robotnov function and a harmonically varying ambient temperature. The problem
with time-dependent Robin and homogenous Neumann boundary conditions has been solved by
using an eigenfunction expansion method and the Laplace transform technique. The solution of
the heat conduction problem was used for determination of the maximum temperature trajectories.
The trajectories and propagation speeds of the temperature maxima in the medium depend on the
order of fractional derivatives occurring in the heat conduction model. These dependencies for the
heat conduction in the hollow cylinder have been numerically investigated.

Keywords: fractional heat conduction; single-phase-lag model; propagation of the maximum
temperature; Caputo derivative; Robotnov function

1. Introduction

The classical Fourier’s law of the heat conduction establishes the relationship between the heat
flux vector and the gradient of the temperature [1]

q(r, t) = −k∇T(r, t) (1)

where q is the heat flux vector, r is the point in the considered region, t is the time, k is the thermal
conductivity of the material, ∇ is the gradient operator and T is the temperature. This relationship
implies a nonphysical infinite speed of a thermal signal in the medium. To avoid this disagreement
between the mathematical model and the observations, the single-phase-lag was introduced to the
heat conduction model. Namely, the relationship (Equation (1)) is replaced by the following one [2]

q(r, t + τ) = −k∇T(r, t) (2)

where τ is the phase lag of the heat flux. Expanding the left-hand side of Equation (2) into the Taylor
series with respect to variable τ and taking into account two terms of this series (assuming that the
phase lag τ is small), Equation (2) can be approximated by

q(r, t) + τ
∂q
∂t

(r, t) = −k∇T(r, t) (3)
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Equation (3) was proposed by Cattaneo [3] and Vernotte [4] and currently it is known as the
Cattaneo–Vernotte constitutive equation [5].

The heat flux vector occurring in Equation (3) can be eliminated by using the energy equation [6]

−∇·q(r, t) + g(r, t) = ρCp
∂T
∂t

(4)

where g(r, t) is the rate of the heat generation per unit volume, ρ is the density of the material and Cp

is the specific heat capacity. As a result, the single-phase-lag heat conduction equation is obtained:

∂2T
∂t2 (r, t) +

1
τ

∂T
∂t

(r, t) =
κ

τ
∇2T(r, t) +

κ

k

(
∂g(r, t)

∂t
+

1
τ

g(r, t)
)

(5)

where κ = k/
(
ρCp

)
is the thermal diffusivity. This hyperbolic type of equation describes the heat

transfer in the wave form. The finite speed of the heat wave in the medium determines the square root
of the ratio κ/τ. In the literature, there are numerous applications of the Equation (5) for modelling of
the heat conduction. For instance, recently, works [7–11] have been published in which the hyperbolic
model of heat conduction was applied.

The description of transport processes with the use of fractional derivatives was proposed
by Compte and Metzler [12]. In the presented mathematical model, a generalization of the
Cattaneo–Vernotte constitutive equation was utilized. This generalization consists of replacing the
time-derivative in the constitutive equation (Equation (3)) by the fractional derivative. The resulting
generalized constitutive equation has the following form:

q(r, t) + τα ∂αq
∂tα

= −k∇T(r, t), 0 < α ≤ 1 (6)

where ∂α

∂tα denotes the fractional derivative with respect to variable t of order α. Scalar multiplying
Equation (6) by the vector ∇ and then using Equation (4), the heat flux vector q can be eliminated.
As a result, the fractional heat conduction equation is obtained:

∂α

∂tα

(
∂T
∂t

(r, t)
)
+

1
τα

∂T
∂t

(r, t) =
κ

τα
∇2T(r, t) +

κ

k

(
∂αg(r, t)

∂tα
+

1
τα

g(r, t)
)

(7)

A large variety of generalizations of the constitutive equation for the heat transfer and their
applications are presented in the literature [13–19].

A generalization of the heat conduction model can be obtained by replacing the time derivative
in Equation (4) with the fractional derivative of order β. The obtained generalized fractional energy
equation has the form

−∇·q(r, t) + g(r, t) = ρCpνβ−1 ∂βT
∂tβ

, 0 < β ≤ 1 (8)

In this equation, the coefficient νβ−1 is introduced to keep the accordance of dimensions.
The generalized constitutive equation (Equation (6)) in combination with the generalized
energy equation (Equation (8)), results in the single-phase-lag heat conduction equation with
fractional derivatives

∂α

∂tα

(
∂βT
∂tβ

(r, t)
)
+

1
τα

∂βT
∂tβ

(r, t) =
κ

τανβ−1∇
2T(r, t) +

κ

kνβ−1

(
∂αg(r, t)

∂tα
+

1
τα

g(r, t)
)

(9)

The notation of the first term on the left-hand side of Equation (9) is dictated by the fact that
in general, the fractional derivatives are noncommutative operators [20]. It can be noted that this
equation for β = 1 is of the form of fractional Equation (7), and for α = β = 1, it has the form
of hyperbolic Equation (5). In the literature, there are no works devoted to the propagation of the
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maximum temperature in a medium based on the heat conduction model in which the non-local and
phase-lag properties are considered.

In applications of the fractional calculus, the Riemann–Liouville and the Caputo derivatives are
often used. The definitions and properties of these fractional derivatives are presented in the books
by Diethelm [21], Kilbas et al. [22], Mainardi [20], Podlubny [23] and Povstenko [24]. In this paper,
the Caputo derivative and its properties will be used. The fractional Caputo derivative of order α with
the lower limit zero, is defined as

∂α f (r, t)
∂tα

= C
0 Dα

t f (r, t) =


1

Γ(n−α)

t∫
0
(t− τ)n−α−1 ∂n f (r,τ)

∂τn dτ, n− 1 < α < n

∂n f (r,t)
∂tn , α = n, n ∈ N

(10)

From Equation (10), it follows that the fractional derivatives occurring in the differential equation
describing the state of the system contain information about its past state. This non-local property of the
fractional derivatives is the important advantage of using fractional calculus in mathematical modeling.

The fractional differential Equation (9) is completed by initial and boundary conditions. A solution
to this initial–boundary value problem is the temperature distribution as a function of time and space
variables. This function for a fixed time variable can achieve a local maximum value with respect
to the space variable. The point of the maximum propagates with a finite speed in the considered
region. The propagation problem of the maximum point of a fundamental solution to a fractional
equation was considered by Luchko et al. [25]. The presented results concern the Cauchy problem for
a one-dimensional time-fractional diffusion-wave equation in an unbounded region.

In this paper, a solution to the heat conduction problem according to the time-fractional
single-phase-lag model is presented. The solution in the Laplace transform domain includes the
one-dimensional heat conduction in a slab, a hollow cylinder, and a hollow sphere. The obtained
temperature distribution for the tracking of the propagation of the maximum temperature in the
considered region was used. The presented numerical results concern the hollow cylinder with
the Robin–Neumann boundary conditions, which is subjected to a variable ambient temperature or
impulsive heat source.

2. Formulation of the Problem

Let us consider the heat conduction governed by the time-fractional differential equation
(Equation (9)). This equation is valid in the region which is specified by a medium in the space.
We will deal with heat conduction in a slab, a hollow cylinder, and a hollow sphere. In the each of the
three cases, assuming one dimensional heat conduction, we denote the space variable by “x” where
a ≤ x ≤ b. For the slab, the heat conduction in the direction of x-axis of a rectangular coordinate
system is considered, for the cylinder—in a radial direction of a cylindrical coordinate system and for
the sphere—in a radial direction of a spherical coordinate system. The operator ∇2 in Equation (9) for
the slab, cylinder and sphere can be written in the form [1]

∇2T =
1
xp

∂

∂x

(
xp ∂T

∂x

)
, p = 0, 1, 2 (11)

where p = 0 for the slab, p = 1 for the cylinder and p = 2 for the sphere.
Equation (9) is complemented by boundary and initial conditions. We assume the Robin–

Neumann boundary conditions:

k
∂T
∂x

(a, t) = −ha(Ta(t)− T(a, t)) (12)

∂T
∂x

(b, t) = 0 (13)
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and the following initial conditions:
T(x, 0) = f (x) (14)

∂βT
∂tβ

(x, 0) = h(x) (15)

where ha is the convective heat transfer coefficient, Ta(t) is the ambient temperature, f (x) is the initial
temperature, and h(x) is the fractional time-derivative of order β of the temperature at an initial time.

The function T(x, t) is a solution of the initial–boundary problem (Equations (9) and (12)–(15))
with a non-homogenous boundary condition. In the first stage of solving this problem, we present the
function T(x, t) in the form of the sum

T(x, t) = Ta(t) + θ(x, t) (16)

The function θ(x, t) satisfies the non-homogenous differential equation

∂α

∂tα

(
∂βθ

∂tβ

)
+

1
τα

∂βθ

∂tβ
=

κ

τανβ−1∇
2θ + G(x, t)−Q(t) (17)

and the following homogenous boundary conditions

k
∂θ

∂x
(a, t)− haθ(a, t) = 0 (18)

∂θ

∂x
(b, t) = 0 (19)

where

G(x, t) =
κ

kνβ−1

(
∂αg(x, t)

∂tα
+

1
τα

g(x, t)
)

(20a)

Q(t) =
dα

dtα

(
dβTa(t)

dtβ

)
+

1
τα

dβTa(t)
dtβ

(20b)

The initial conditions for the function θ(x, t) are obtained using Equations (14)–(16)

θ(x, 0) = f (x)− Ta(0) (21)

∂βθ

∂tβ
(x, 0) = h(x)− dβTa

dtβ

∣∣∣∣
t=0

(22)

The function θ(x, t) as a solution of the initial–boundary problem (Equations (17)–(22)), will be
determined in the form of an orthogonal series, and then the Laplace transform technique will be used.

3. Solution to the Problem

We can search for a solution to the problem (Equations (17)–(22)) in the form of a series:

θ(x, t) =
∞

∑
i=1

Λi(t)Φi(x) (23)

where the functions Φi(x) are solutions of the following eigenproblem

∇2Φ(x) + λ2Φ(x) = 0 (24)

kΦ′(a)− haΦ(a) = 0 (25)

Φ′(b) = 0 (26)
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The general solution to Equation (24) can be written in the form

Φ(x) = Aϕ(x) + Bψ(x) (27)

where A, B are constants and the functions ϕ(x) and ψ(x) are independent, particular solutions to
this equation. Taking into account the boundary conditions (Equations (25) and (26)) and using the
standard procedure, we obtain the eigenvalue equation(

kϕ′(a)− ha ϕ(a)
)
ψ′(b)−

(
kψ′(a)− haψ(a)

)
ϕ′(b) = 0 (28)

which is solved with respect to λ. The obtained roots create an infinite sequence of eigenvalues: λi,
i = 1, 2, . . .. In turn, assuming Ai = ψ′i(b) and using Equations (26) and (27) for λ = λi, i = 1, 2, . . .,
we find Bi = −ϕ′i(b). Hence, the eigenfunctions Φi(x) corresponding to the eigenvalues λi can be
rewritten as

Φi(x) = ψ′i(b)ϕi(x)− ϕ′i(b)ψi(x), for i = 1, 2, . . . (29)

The functions ϕi(x) and ψi(x) for the three cases of the operator ∇2 given by Equation (11) are
presented in Table 1.

Table 1. The functions ϕi(x) and ψi(x) for the slab (p = 0), hollow cylinder (p = 1) and hollow sphere
(p = 2).

p ϕi (x) ψi (x)

0 cos(λix) sin(λix)
1 J0(λix) Y0(λix)

2 cos(λi x)
x

sin(λi x)
x

The functions Φi(x) satisfy the orthogonality condition in the form

b∫
a

xpΦi(x)Φj(x)dx =

{
0 for i 6= j

Ni for i = j
(30)

where the normalization integrals Ni are determined according to the formula

Ni =

b∫
a

xp(Φi(x))2dx (31)

The eigenfunctions Φi(x), eigenvalue equations, and normalization integrals Ni for the eigenvalue
problem (Equations (24)–(26)) for a slab, a hollow cylinder, and a hollow sphere, are presented in Table 2.
The presented approach can be applied to the fractional single-phase-lag heat conduction problem
obtained by replacing the Neumann boundary condition (Equation (13)) with the homogeneous
Dirichlet boundary condition: T(b, t) = 0.

In order to derive an equation that will be used to determine the functions Λi(t) occurring in
Equation (23), we substitute the series (Equation (23)) into Equation (17), then we multiply the resulting
equation by the function xpΦj(x) and we integrate it over the interval [a, b]. Using the condition from
Equation (30), we obtain the equation in the form

dα

dtα

(
dβΛi

dtβ

)
+

1
τα

dβΛi

dtβ
+

κ

τανβ−1 λ2
i Λi =

1
Ni

b∫
a

xpΦi(x)G(x, t)dx− Q(t)
Ni

b∫
a

xpΦi(x)dx (32)
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Table 2. The eigenfunctions Φi(x), eigenvalue equations and normalization integrals Ni for the slab
(p = 0), hollow cylinder (p = 1) and hollow sphere (p = 2).

p Eigenfunction Eigenequation Normalization Integral

0 Φi(x) = cos(b− x)λi sin(b− a)λ− ha
kλ cos(b− a)λ = 0 Ni =

b−a
2

(
1 + sin 2λi(b−a)

2λi(b−a)

)
1

Φi(x) = Y1(bλi)J0(λix)

−J1(bλi)Y0(λix)

ha
kλ (J1(bλ)Y0(aλ)− J0(aλ)Y1(bλ))

+J1(bλ)Y1(aλ)− J1(aλ)Y1(bλ) = 0

Ni =
2

π2λ2
i
− a2

2

(
1 +

(
ha
kλi

)2
)
·

(J1(bλi)Y0(aλi)− J0(aλi)Y1(bλi))
2

2
Φi(x) = 1

x (cos λi(b− x)

− 1
bλi

sin λi(b− x))

(
1 + k

ha

(
1
a + 1

b (bλ)2
))

sin(b−a)λ
bλ

−
(

1 + k
ha

(
1
a −

1
b

))
cos(b− a)λ = 0

Ni =
b2λ2

i−1
4b2λ3

i
sin 2λi(b− a) + 1

2b2λ2
i
·(

(b− a)(bλi)
2 − a + b cos 2λi(b− a)

)

Similarly, multiplying both sides of Equations (21) and (22) by xpΦj(x) and integrating over the
interval [a, b], the following initial conditions are obtained:

Λi(0) =
1
Ni

b∫
a

xpΦi(x)( f (x)− Ta(0))dx (33)

dβΛi

dtβ
(0) =

1
Ni

b∫
a

xpΦi(x)
(

h(x)− dβTa

dtβ

∣∣∣∣
t=0

)
dx (34)

We find a solution to the initial problem (Equations (32)–(34)) by using the Laplace transform
technique. The Laplace transform L[ f (t)] = f (s) of a function f (t) is defined as

f (s) =
∞∫

0

f (t)e−stdt (35)

where s is a complex parameter. We utilized the linearity property of the Laplace transform and the
following rule [20]:

L
{

dµ

dtµ f (t)
}

= sµF(s)−
m−1

∑
k=0

sµ−1−k f (k)
(
0+
)
, m− 1 < µ ≤ m (36)

Using the rule (Equation (36)), the Laplace transform of the solution to the problem
(Equations (32)–(34)), after some transformation, can be presented in the form

Λi(s) = 1
Niσ

α,β
i (s)

[
b∫
a

xpΦi(x)G(x, s)dx−Q(s)
b∫
a

xpΦi(x)dx

]

+ 1
Niσ

α,β
i (s)

[(
sα+β−1 + 1

τα sβ−1
) b∫

a
xpΦi(x)( f (x)− Ta(0))dx + sα−1

b∫
a

xpΦi(x)
(

h(x)− dβTa
dtβ

∣∣∣
t=0

)
dx

] (37)

where
σ

α,β
i (s) = sα+β + τ−αsβ + τ−αν1−βκλ2

i (38)

and

Q(s) =
(
sα + τ−α

)(
sβTa(s)− sβ−1Ta(0)

)
− sα−1 dβTa(t)

dtβ

∣∣∣∣
t=0

(39)

is the Laplace transform of the function Q(t) given by Equation (20b). The complete solution to the
problem in the Laplace transform domain will be determined for an established function describing
the rate of the heat generation g(x, t) and functions occurring in the initial and boundary conditions:
f (x), h(x) and Ta(t).
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We find the Laplace transform G(x, s) assuming the function g(x, t) in Equation (20a) in the form

g(x, t) =
g0

2πaτα
Fα

(
−τ−α, t

)
δ(x− a) (40)

where g0 is the strength of the heat source per unit length of the surface [26], δ(·) is the Dirac delta
function, Fα(λ, z) is the Robotnov function [27]:

Fα(λ, z) = zα−1Eα,α(λzα) (41)

and Eα,β(z) is the two-parameter Mittag–Leffler function defined by the power series

Eα,β(z) =
∞

∑
n=0

zn

Γ(αn + β)
, α > 0, β > 0 (42)

The Robotnov function is called the “impulse response” of the fundamental fractional order
differential equation because it satisfies the differential equation [28]

∂αFα(−λ, t)
∂tα

+ λFα(−λ, t) = δ(t) (43)

Using Equations (38), (39) and (43) and the Laplace transform pair [24]

L
[
tβ−1Eα,β(−λtα)

]
=

sα−β

sα + λ
(44)

the Laplace transform of the function G(x, t) defined by Equation (20a), can be written as

G(x, s) =
g0κ

2πakτανβ−1 δ(x− a) (45)

The functions Ta(t), f (x) and h(x) occurring in the boundary and initial conditions (12) and in
Equations (14) and (15), we assume that

Ta(t) = P1 + P2 sin ωt, t ≥ 0 (46a)

f (x) = Ta(0), h(x) = 0 for x ∈ [a, b] (46b)

Considering Equations (39) and (45), in Equation (37) we obtain the Laplace transform Λi(s) in
the form

Λi(s) =
1

Niσ
α,β
i (s)

g0κ

2πakτανβ−1 apΦi(a)− (sα + τ−α)sβ

Niσ
α,β
i (s)

Ta(s)
b∫

a

xpΦi(x)dx (47)

where
Ta(s) =

P1

s
+

P2ω

s2 + ω2 (48)

For the purpose of deriving the inverse Laplace transform L−1[Λi(s)
]
, we use the convolution

theorem [20]

L−1
[

f (s)g(s)
]
=

t∫
0

f (u)g(t− u)du (49)

Introducing the function Uα,β,γ
i (t) defined as

Uα,β,γ
i (t) = L−1

[
sγ

σ
α,β
i (s)

]
(50)
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and using the properties in Equation (49), we can write the inverse Laplace transform Λi(t) in the form

Λi(t) =
g0κ

2πakτανβ−1 Ni
apΦi(a)Uα,β,0

i (t)

− P2ω
Ni

t∫
0

(
τ−αUα,β,β−1

i (u) + Uα,β,α+β−1
i (u)

)
cos ω(t− u)du

b∫
a

xpΦi(x)dx
(50)

Finally, the temperature distribution T(x, t) is given by Equations (16), (23), (27) and (51).
The function Uα,β,γ

i (t), as an inverse Laplace transform, can be determined in an analytical form
but only for some values of the fractional orders α and β. For example, if α = 0.5, β = 1.0 and γ = 0; 0.5,
this function can be written in the form

Uα,β,γ
i (t) =

3
∑

j=1

Z2γ
ij

ζij
F0.5
(
Zij, t

)
for γ = 0; 0.5 (52)

where ζij =
3

∏
k=1,k 6=j

(
Zij − Zik

)
and Zij (j = 1, 2, 3) are roots of equation: z3 + τ−0.5z2 + τ−0.5κλ2

i = 0.

For γ = −0.5, the sum in Equation (52) should be complemented with a term τα

κλ2
i
√

π
.

4. Numerical Analysis and Discussion

The temperature distribution in the medium is given by the formula which contains the inverse
Laplace transform (Equation (50)). This inverse Laplace transform for established values of α, β, and γ

can be determined numerically. In the literature, many different algorithms are available for numerical
Laplace inversion [29–31]. In order to find an effective algorithm for precise numerical inversion of the
Laplace transforms appearing in the presented solution, several algorithms were tested. On the basis
of these numerical tests, the Fixed-Talbot algorithm for further computations was chosen. Applying
this algorithm, the values of a function f (t) = L−1

[
f (s)

]
are computed using the formula [29]

f (t, M) ≈ p
M

{
1
2

f (p) exp(pt) +
M−1

∑
k=1

Re
[
exp(tµ(θk)) f (µ(θk))(1 + iσ(θk))

]}
(53)

where µ(θ) = pθ(ctgθ + i), σ(θ) = θ + (θctgθ − 1)ctgθ, p = 2M/(5t), θk = kπ/M, i =
√
−1 and M is

the number of precision decimal digits.
Numerical results computed using the Fixed-Talbot procedure were compared with those obtained

by using of the analytical form of the inverse Laplace transform (Equation (52)) for the function
Uα,β,γ

1 (t) with α = 0.5, β = 1.0 and γ = −0.5; 0.0; 0.5. In Table 3, absolute values of the relative errors

Eα,β,γ(t, k) =

∣∣∣∣ Ũα,β,γ
1 (t)−Uα,β,γ

1 (t)

Uα,β,γ
1 (t)

∣∣∣∣ are presented where Ũα,β,γ
1 (t) are obtained by using the numerical

inversion of the Laplace transform and Uα,β,γ
1 (t) are values of the function in Equation (52). The small

relative errors justify the use of the Fixed-Talbot procedure for numerical inversion of the Laplace
transform given by Equation (50).

Table 3. The relative errors Eα,β,γ(t, k) of the results obtained by using the Fixed-Talbot procedure and
exact values of the function Uα,β,γ

1 (t) for α = 0.5, β = 1.0 and γ = −0.5; 0; 0.5.

t̂ = κt/(b−a)2 γ = −0.5 γ = 0 γ = 0.5

0.5 3.36748× 10−7 2.22232× 10−6 2.52736× 10−5

1 4.85927× 10−7 2.84182× 10−6 5.47403× 10−5

1.5 2.51907× 10−7 1.83325× 10−5 5.94386× 10−4

2 5.96577× 10−7 5.66522× 10−6 1.12375× 10−3

2.5 6.85496× 10−7 7.71945× 10−6 1.77174× 10−4
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The temperature T(x, t) for fixed time t as a function of the space variable x, defined on the
interval [a, b], can achieve a maximum value in the open interval (a, b). The maximum temperature
location moves in the medium with a finite speed in the direction appointed by the decreasing
temperature gradient. The numerical analysis presented in this section concerns the problem of
propagation of the maximum temperature in a finite hollow cylinder that is heated by a heat
source or through an operation of variable ambient temperature. Numerical calculations were
performed to obtain the following data: The inner and outer radii of the cylinder are a = 0.4 m and
b = 0.6 m, respectively, the thermal diffusivity is κ = 8.418×10−5 m2/s, the thermal conductivity is
k = 204 W/(m·K), the heat transfer coefficient at the inner surface of the cylinder is ha = 800 W/

(
m2K

)
,

and the ambient temperature at the initial time t = 0 is Ta(0) = 100 ◦C. In obtaining the numerical
results, the following non-dimensional quantities were used: x̂ = x−a

b−a , t̂ = κt
(b−a)2 , τ̂ = κτ

(b−a)2 , T̂ = T
Ta(0)

.

The computations were carried out using the Mathematica package [32].
Let us consider the hollow cylinder heated at the inner surface by the heat source described by the

Robotnov function specified by Equation (40) with g0 = 108 W·s/m. The graphs of the temperature
distributions T̂

(
x̂, t̂
)

as functions of the space variable x̂ for different moments of time t̂ are shown
in Figure 1. For a fixed dimensionless time t̂, the function of variable x̂ assumes a maximum T̂max at
a point x̂max. The thick red line in Figure 1 is created by the points

(
x̂max, T̂max

)
which are observed

at different times t̂. The points of the maximum temperatures propagate with time in the direction
of the region of lower temperature. The temperature of the cylinder decreases with time, therefore
the maxima, after some time, are small. For this reason, the observation of the temperature maxima
is limited to the interval of non-dimensional space variable x̂ ∈ [0, 0.5]. The presented curves were
obtained for α = 0.15, β = 0.9, τ̂ = 0.01, and P2 = 0.
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Figure 1. Temperature distributions T̂
(

x̂, t̂
)

in the hollow cylinder as functions of the space variable x̂
for α = 0.15, β = 0.9 and different dimensionless time t̂.

Assuming that an operation of the Robotnov heat source defined by Equation (40),
the non-dimensional temperature T̂

(
x̂, t̂
)

for a fixed value t̂ takes a maximal value at x̂ ∈ (0, 1)
if the following condition is fulfilled:

∂T̂
(
x̂, t̂
)

∂x̂
= 0 (54)

Solving this equation with respect to x̂ for t̂ > 0, we obtain a curve of locations of the maxima
temperatures in the plane Ot̂x̂. These curves, for different orders of derivatives α and β, are presented
in Figure 2. The results indicate an important significance of the orders of fractional derivatives
occurring in the heat conduction equation for the time of the propagation of the maximal temperature
in the cylinder. The time of the propagation of the maximal temperature is significantly

Shorter for higher values of the derivative orders in the heat conduction model. The curves
presented in Figure 2 show that the replacement of the Caputo derivative order β = 0.9 by β = 1.0
leads to a shortening by half of the transition time of the maximum temperature in the cylinder
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from x̂ = 0 to x̂ = 0.5, i.e., the change of the derivative order β results in a change of speed of the
propagation of the maximum temperature in the medium.

The non-dimensional speed of propagation of the maximum temperature v̂ is given by the formula
v(t) = dx(t)/dt, where x̂(t̂) is an implicit function defined by Equation (54). Differentiating both sides
of Equation (54) with respect to t̂ and using Equation (16), we find the derivative of the function x̂(t̂)
in the form

v̂(t) = −
∂2θ̂
(
ξ, t̂
)

∂ξ∂t̂
/

∂2θ̂
(
ξ, t̂
)

∂ξ2

∣∣∣∣∣
ξ=x̂(t̂)

(55)

whereas θ̂ = θ
Ta(0)

,
∂θ̂(ξ,t̂)

∂ξ

∣∣∣∣
ξ=x̂(t̂)

= 0 and
∂2 θ̂(ξ,t̂)

∂ξ2

∣∣∣∣
ξ=x̂(t̂)

6= 0. The curves of propagation speed of

the maximum temperature in the hollow cylinder subjected to the Robotnov heat source for β = 1.0
and different α values, are presented in Figure 3. It can be noticed that the propagation speed of the
maximum temperature strongly depends on the derivative order α, occurring in the fractional heat
conduction equation.
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The solution presented in the previous section includes a case of the fractional heat conduction
in a hollow cylinder when the temperature inside the cylinder changes harmonically according to
Equation (46a). The numerical computation of the temperature distribution in the hollow cylinder was
performed assuming that no other heat sources occur. In Figure 4, the 3D graphs and contour plots
of the function T̂

(
x̂, t̂
)

for P2/P1 = 0.5, ω = 0.005s−1, β = 0.9 and different values of α are presented.
The maxima and minima of temperatures propagate in the hollow cylinder from the inner to outer
boundary. The amplitude of the temperature decreases with the space variable in all cases of the values
of α. The higher amplitude of the temperature changes at the outer boundary of the cylinder occur for
the heat conduction model with the higher order fractional differential equation.
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5. Conclusions

The solution to the heat conduction problem based on the fractional single-phase-lag model
was derived. The formulation and solution of the problem concern the heat conduction in a slab,
a hollow cylinder, and a hollow sphere. The considered 1D problem with time-dependent Robin and
homogenous Neumann boundary conditions were solved by the use of the eigenfunction expansion
method with respect to the space variable and the Laplace transform technique with respect to time.
It was assumed that the medium is exposed to a heat source represented by the Robotnov function
and the sinusoidaly changing ambient heat. The derived temperature distribution in a hollow cylinder
helped in the numerical investigation of propagation of the maximum temperature. It was stated
that fractional orders of the Caputo derivatives occurring in the differential equation governing the
heat conduction have a significant influence on the propagation of the maximum temperature in
the cylinder subjected to the Robotnov heat source. The trajectories of the maximum temperatures
show that a slight increase of the fractional derivative orders can cause a considerable decrease of the
occurrence time of the maximum temperature in the cylinder. It was observed that the propagation
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speed of the maximum temperature in the cylinder is higher for a higher fractional order of the
differential heat conduction equation. The maximum and minimum temperature propagates in the
medium also when the ambient temperature changes harmonically. The amplitude of these changes
in the medium decrease with increasing distance from the heated boundary. This decreasing of the
amplitudes of the temperature oscillations is greater for smaller orders of the fractional derivative in
the heat conduction model. This observation leads to a physical interpretation of the parameter α as a
thermal damping coefficient in the fractional heat conduction model.
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