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Abstract: The effects of variable thermal conductivity on heat transfer and entropy generation
in a flow over a curved surface are investigated in the present study. In addition, the effects
of energy dissipation and Ohmic heating are also incorporated in the modelling of the energy
equation. Appropriate transformations are used to develop the self-similar equations from the
governing equations of momentum and energy. The resulting self-similar equations are then solved
by the Generalized Differential Quadrature Method (GDQM). For the validation and precision of
the developed numerical solution, the resulting equations are also solved numerically using the
Runge-Kutta-Fehlberg method (RKFM). An excellent agreement is found between the numerical
results of the two methods. To examine the impacts of emerging physical parameters on velocity,
temperature distribution and entropy generation, the numerical results are plotted against the various
values of physical flow parameters and discussed physically in detail.

Keywords: irreversibility analysis; generalized differential quadrature method (GDQM); heat
transfer; variable thermal conductivity; energy and magnetic dissipation; curved surface

1. Introduction

The first law of thermodynamics gives a quantitative estimate of heat and work interactions
between some system and surroundings if the system undergoes a thermodynamic process or a cycle.
However, it does not say whether the process or the cycle in a particular direction would occur or
not. Further, the first law does not indicate whether conversion of energy from one form to another
are performed perfectly or whether some forms are completely converted to others. The first law
establishes the equivalence of heat and work and shows there is a fixed rate of exchange between
heat and work. It does not talk about the conditions under which the transformations of energy are
possible. Second law of thermodynamics puts a condition on the conversion of energy from one form
to another. The second law states that it is not possible to convert heat energy completely into work.
That part of heat energy which cannot be converted into work is known as unavailable energy and
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must be rejected as a low-grade energy. This means that, the availability of energy in a thermal system
decreases. The phenomenon of increasing unavailable energy in a thermal process is called entropy
generation. The thermal efficiency reduces with increasing entropy generation and therefore needs to
examine the factors that reduces the entropy generation. Bejan [1] introduced the innovative idea of
reducing the unavailable energy (entropy generation) in a convective heat transfer problem. After the
pioneering work of Bejan [1], analysis of entropy generation in fluid flow problems are reported by
many researchers. Recently, Afridi et al. [2] studied the entropy generation of carbon nanotubes CNTs
nanofluids in a flow over a thin needle by incorporating the effects of nonlinear thermal radiation and
viscous dissipation. Makinde [3] reported the effects of variable viscosity on inherent irreversibility in
a flow over a flat plate with Newtonian heating and uniform magnetic field. The combined effects of
linear thermal radiation and viscous dissipation on entropy generation in a Blasius flow are reported by
Butt et al. [4]. Recently, Afridi and Qasim [5] examined the influences of frictional heating on entropy
production rate in a three-dimensional flow. Entropy generation in a non-linear convection flow over a
vertical plate with convective boundary condition and porous medium is studied by Vasu et al. [6].
Afridi et al. [7] studied the exact effects of viscous dissipation, Joule heating and heat transfer on
entropy generation in a flow of Newtonian fluid over an elastic stretching boundary. The heat transfer
and irreversibility analysis of nanofluid flow containing copper nanoparticles with water as a base
fluid is reported by Butt et al. [8]. Makinde and Eegunjobi [9] studied the heat transfer effects in a
couple stress fluid flow inside a vertical channel filled with porous medium with entropy analysis.
Rashidi et al. [10] investigated the entropy generation in a nanofluid flow over a rotating disk under
the influence of uniform magnetic field.

Boundary layer flows have significant number of applications in industrial and engineering
processes such as extraction of polymer sheet, glass-fiber production, spinning of fibers, wire drawing,
extruded plastic sheets, paper production, hot rolling and materials handling conveyors. Boundary
layer flow is the corner stone of modern fluid dynamics due to vital application in manufacturing
processes [11]. After the seminal work of Sakiadis [12], many researchers examined the boundary
layer flow either by using analytic techniques or by utilizing various numerical methods. Crane [13]
reported the exact solution of boundary layer flow driven by a stretching surface. Gupta and Gupta [14]
reported the effects of transpiration on heat and mass transfer in a flow over a stretching boundary.
Flow driven by a stretching cylinder is reported by Wang [15]. Wang [16] also reported the rotating
fluid flow over a stretching boundary. The thin film flow over a stretching surface with variable fluid
properties is studied by Dandapat et al. [17]. Vajravelu and Rollins [18] reported the flow of second
grade fluid under the effect of magnetic field. Pal and Mondal [19] examined the effects of prescribed
surface temperature (PST) and prescribed heat flux (PHF) on the mixed convection fluid with variable
transport properties. The effects of energy dissipation with prescribed surface temperature on a
power-law fluid flow driven by a permeable boundary are examined by Yazdi et al. [20]. Hsiao [21]
analyzed the influences of viscous dissipation on viscoelastic fluid. The flow over a slender stretching
sheet with Hall effects and variable fluid properties is studied by Vajravelu et al. [22]. Mixed convection
flow of Casson fluid over a vertical flat surface is investigated by Vajravelu et al. [23]. Some of other
recent studies on a boundary layer flow over a flat surface and curved surface are referenced in [24–29].
The effects of magnetic field on fluid flow are investigated in [30–32].

The objective of the present article is to study the heat transfer effects in a dissipative fluid flow
over an elastic curved surface with variable thermal conductivity. One of the most important effect in
the boundary layer flow knowns as viscous dissipation is also considered by adding the dissipation
function the energy equation. Besides this, the entropy generation analysis is also performed.
Numerical solutions of the transformed set of highly nonlinear differential equations are obtained
and utilized to compute the entropy generation number. Generalized Differential Quadrature Method
(GDQM) is used to get the numerical solutions. The numerical results are presented graphically
and discussed.
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2. Problem Formulation

Let us consider a two-dimensional incompressible steady flow of a Newtonian electrically
conducting fluid over a linearly curved stretching surface as schematically described in Figure 1.
Moreover, this curved boundary (i.e., r = R) is taken to be coiled in a circle of radius R. In this
investigation, we consider that the induced boundary layer flow is significantly affected by a radial
magnetic field with constant strength B0, in which the fluid is flowing under the combined effects
of viscous dissipation and Joule heating with the presence of a temperature dependent behavior for
the thermal conductivity in the form k* = k ω(T). In order to define the flow geometry, we choose to
employ the curvilinear coordinates (r,s) as the best way for modelling the present problem, where r is
the radial coordinate measured from the center O of the curved surface, whereas s is the coordinate
of the arc length along the flow direction. Furthermore, the stretching velocity and temperature of
the curved sheet are taken to be in the form uw(s) = uos and Tw(s) = Tb + Tos2, respectively, where Tb
represents the temperature of the bulk fluid, so that uo and T0 are two dimensional constants.
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Based on the Prandtl boundary layer approximations and the afore-mentioned assumptions, the
basic equations of continuity, momentum and thermal energy are written as follows:

∂

∂r
(rur) + R

∂us

∂s
= 0 , (1)

1
r

u2
s =

1
ρ

∂p
∂r

, (2)

ρ

(
ur

∂us

∂r
+

R
r

us
∂us

∂s
+

1
r

usur

)
= −R

r
∂p
∂s

+ µ

(
∂2us

∂r2 +
1
r

∂us

∂r
− 1

r2 us

)
− σB2

o us , (3)

ρcp

(
ur

∂T
∂r

+
R
r

us
∂T
∂s

)
=

1
r∗

∂

∂r

(
rk∗

∂T
∂r

)
+ µ

(
∂us

∂r
− 1

r
us

)2
+ σB2

o u2
s . (4)

Here, the symbols ρ, µ, σ and k* represents the thermo-physical properties of the electrically
conducting fluid. These quantities denote the density, dynamic viscosity, electrical conductivity and
thermal conductivity of the studied fluid, where r is the reduced radial variable, where r = r + R.

Additionally, it is worth noting here that the characteristic function ω(T) mentioned above is
taken in the form:

ω(T) = 1 + τ

(
T − Tb

Tw − Tb

)
, (5)

where τ is an adjusted parameter showing the importance of the temperature dependence in the
thermal conductivity k*.

For the present two-dimensional steady flow model, the associated physical boundary conditions
are written in curvilinear coordinates as follows:

us = uw, T = Tw at r = 0, (6)

us → 0 ,
∂us

∂r
→ 0 , T → Tb as r → ∞. (7)

Here, us and ur are the velocity components in s and r directions, respectively, Bo denotes the
magnetic field strength, p and T show the pressure and temperature of the fluid, respectively, Tw

represents the temperature of the curved sheet, whereas Tb indicates the temperature of the fluid in
the stress free region.

Now, by introducing the following similarity transformations:

χ =
(

uoρ
µ

)0.5
r, g′(χ) = us(r,s)

uw
, g(χ) = −

(
ρ

uoµ

)0.5( r
R
)
ur(r, s),

θ = T−Tb
Tw−Tb

, P(χ) = 1
ρu2

o s2 p,
(8)

Equations (1)–(4) reduce to
∂P
∂χ

=
g′2

h
, (9)

2κ

h
P = g′′′ +

g′′

h
−
(

1
h2 + M

)
g′ +

κ

h
gg′′ +

κ

h2 gg′ − κ

h
g′2, (10)

1
Pr

(1 + τθ)

(
θ′′ +

θ′

h

)
+

τ

Pr
θ′

2
+

κ

h
(

gθ′ − 2g′θ
)
+ Ec

(
g′′ − g′

h

)2

+ EcMg′2 = 0 . (11)

Here, κ denotes the curvature parameter, Ec and Pr represent the Eckert and Prandtl numbers,
respectively, whereas M represents the magnetic parameter, where:

κ = R
(

uoρ

µ

)0.5
, Ec =

u2
w

cp(Tw − Tb)
, Pr =

cpµ

k
, M =

B2
o σ

uoρ
. (12)
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In this paper, we use the prime notation (e.g., g’ or θ’) in Equations (8)–(11) as subscript to denote
the derivative with respect to χ. Furthermore, the function h shown in Equations (9)–(11) is a linear
function of the similarity variable χ, which is given by:

h(χ) = χ + κ . (13)

Also, after combining Equations (9) and (10), we get:

g′′′′ +
2
h

g′′′ − g1 g′′ + g2g′ +
κ

h

(
gg′′′ +

g
h

g′′ − 1
h

g′2 − g′g′′ − g
h2 g′

)
= 0, (14)

where:
g1 =

1
h2 + M, (15)

g2 =
1
h3 −

M
h

. (16)

Upon making use of the transformations (8), the boundary conditions (6) and (7) become:

g(0) = 0, g′(0) = 1, θ(0) = 1, (17)

g′(χ→ ∞)→ 0 , g′′ (χ→ ∞)→ 0 , θ(χ→ ∞)→ 0. (18)

Furthermore, the important physical quantities of practical interest arising from this investigation
are the local skin friction coefficient Cfs and the local Nusselt number Nus, which are expressed by:

Re0.5
s C fs = g′′ (0)− 1

κ
g′(0), (19)

Re−0.5
s Nus = −θ′(0)− τθ′

2
(0). (20)

Here, Res represents the local Reynolds number, where Res = uos2/ν.
For more helpful simplifications, we can put:

χ = χ∞ η,
h(χ) = h(χ∞ η) = H(η),
g1(χ) = g1(χ∞ η) = G1(η),
g2(χ) = g1(χ∞ η) = G2(η),
g(χ) = g(χ∞ η) = G(η),
θ(χ) = θ(χ∞η) = Θ(η).

(21)

Keeping in mind the above considerations, the derivatives of g(χ) and θ(χ) can be expressed as
function of the derivatives of G(η) and Θ(η), respectively, as follows: g(n)(χ) = G(n)(η)

χn
∞

,

θ(n)(χ) =
Θ(n)(η)

χn
∞

,
(22)

where n denotes the integer-order derivative with respect to the spatial variables χ or η.
Accordingly, Equations (11) and (14) with the boundary conditions (17) and (18) can be written in

the following general form:
LG(G) + NG(G, Θ) = 0, (23)

LΘ(Θ) + NΘ(G, Θ) = 0, (24)

G(η) = 0, G′(η) = χ∞, Θ(η) = 1, at η = 0, (25)
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G′(η)→ 0 , G′′ (η)→ 0 , Θ(η)→ 0 , as η → 1, (26)

in which:
LG(G) = G′′′′ +

2χ∞

H
G′′′ − χ2

∞G1G′′ + χ3
∞G2G′, (27)

LΘ(Θ) =
χ2

∞
Pr

Θ′′ +
χ3

∞
PrH

Θ′, (28)

NG(G, Θ) =
χ∞κ

H

(
GG′′′ +

χ∞G
H

G′′ − χ∞

H
G′2 − G′G′′ − χ2

∞G
H2 G′

)
, (29)

NΘ(G, Θ) =

{
χ2

∞τ
Pr Θ′2 + χ3

∞τΘ
PrH Θ′ + χ2

∞τ
Pr ΘΘ′′ + χ3

∞κG
H Θ′−

2χ3
∞κΘ
H G′ + EcG′′ 2 − 2χ∞Ec

H G′G′′ + χ2
∞EcG1G′2

}
. (30)

Here, χ∞ represents the optimum value of the boundary layer thickness, which ensures our
numerical findings are approached asymptotically to their exact values.

After substituting Equation (21) into Equations (19) and (20), the physical quantities (Res)0.5 Cf s

and (Res)−0.5Nus become:

Re0.5
s C fs =

1
χ2

∞
G′′ (0)− 1

χ∞κ
G′(0), (31)

Re−0.5
s Nus = −

1
χ∞

Θ′(0)− τ

χ2
∞

Θ′2(0). (32)

3. Analysis of Entropy Production

As is well known, the local volumetric rate of entropy generation ξg of a fluidic system in the
presence of viscous dissipation and Ohmic heating is given by:

ξg = ξt + ξ f + ξm, (33)

where ξt represents the entropy generation due to heat transfer across a finite temperature difference,
ξ f shows the local entropy generation due to viscous dissipation and ξm characterizes the local entropy
generation due to the presence of Lorentz force, where:

ξt =
kω(T)

T2

(
∂T
∂r

)2
, (34)

ξ f =
µ

T

(
∂us

∂r
− us

r∗

)2
, (35)

ξm =
σB2

o
T

u2
s . (36)

By considering the following characteristic entropy generation:

ξc =
kuo

ν
, (37)

the entropy generation in dimensionless form can be written as follows:

Ns =
ξg

ξc
=

(1 + τθ)

(θ + λ)2 θ′
2

︸ ︷︷ ︸
Thermal contribution

+
EcPr

(θ + λ)

(
g′′ − g′

h(ξ)

)2

︸ ︷︷ ︸
Frictional contribution

+
MEcPr
(θ + λ)

g′2︸ ︷︷ ︸
Magnetic contribution

, (38)

where λ = Tb/(Tw − Tb) denotes the temperature difference parameter.
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By virtue of Equation (21), the entropy generation Ns reduces to:

Ns =
(1 + τΘ)

χ2
∞(Θ + λ)2 Θ′2 +

EcPr
χ4

∞(Θ + λ)

(
G′′ − χ∞

G′

H

)2

+
MEcPr

χ2
∞(Θ + λ)

G′2. (39)

4. Solution Methodology

The boundary layer flow model induced over the curved stretching surface r = R can be regarded
as a complicated two-point boundary value problem. As mentioned previously in Equations (23) and
(24), the present physical problem is governed by a set of ordinary differential equations ODEs,
which are highly nonlinear. From the mathematical point of view, the flow and heat transfer
characteristics of the studied fluid are extremely difficult to be found analytically as closed form
solutions. Therefore, for solving this kind of physical problems, it is more recommended here to adopt
a powerful numerical method in terms of accuracy and efficiency to predict approximate numerical
solutions for Equations (23) and (24) along with the boundary conditions (25) and (26). Hence, in order
to achieve this objective and ensure enough accuracy, the resulting ODEs are handled numerically by
discretizing the present boundary layer equations using generalized differential quadrature method
(GDQM) with the following non-uniform grid points:

ηi =
1
2
− 1

2
cos
(

πi− π

N − 1

)
. (40)

Here, 1 ≤ i ≤ N and η1 ≤ η1 ≤ ηN, where η1 = 0 and ηN = 1.
Accordingly, the discretized form of the derivatives of the functions G(η) and Θ(η) with respect to

the variable η at a collocation point ηi are defined as follows:
G(n)(ηi) =

N
∑

j=1
d(n)ij G

(
ηj
)
=

N
∑

j=1
d(n)ij Gj ,

Θ(n)(ηi)=
N
∑

j=1
d(n)ij Θ

(
ηj
)
=

N
∑

j=1
d(n)ij Θj,

(41)

Here, d(n)ij are the weighting coefficients for the nth-order derivative and N is the total number of
collocation points, where i and j are integers varying from 1 to N.

In order to provide enough information about the proposed numerical method, the interested
readers can refer to [33,34] and the reference therein. According to the pioneer work of Shu [33],
the weighting coefficients d(1)ij for the first-order derivative discretization can be expressed as follows:


d(1)ij =

N
∏

k=1, k 6=i
(ηi−ηk)

(ηi−ηj)
N
∏

k=1, k 6=j
(ηj−ηk)

, for i 6= j ,

d(1)ij = −
N
∑

j=1,j 6=i
d(1)ij , for i = j ,

(42)

where 1 ≤ i, j ≤ N.
Similarly, the weighting coefficients d(n)ij for the higher-order derivatives can be found numerically

using the following recurrence relations:
d(n)ij = n

(
d(n−1)

ii d(1)ij −
d(n−1)

ij
ηi−ηj

)
, for i 6= j ,

d(n)ij = −
N
∑

j=1,j 6=i
d(n)ij , for i = j ,

(43)
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where 1 ≤ I, j ≤ N and n ≥ 2.
Therefore, after discretization of Equations (23)–(26), the functions H(η), G1(η), G2(η), G(η)

and Θ(η) are approximated in each collocation point ηi by Hi, G1i, G2i, Gi and Θi, respectively.
Consequently, the discretized form of our problem is given as follows:

(S)



G1 = 0,
N
∑

j=1
d(1)1j Gj − χ∞ = 0,

LGi (Gi) + NGi (Gi, Θi) = 0 , for 3 ≤ i ≤ N− 2,
N
∑

j=1
d(1)Nj Gj = 0,

N
∑

j=1
d(2)Nj Gj = 0,

Θ1 − 1 = 0.
LΘi (Θi) + NΘi (Gi, Θi) = 0 , for 2 ≤ i ≤ N− 1
ΘN = 0,

(44)

in which:

LGi (Gi) =


N
∑

j=1
d(4)ij Gj +

2χ∞
Hi

(
N
∑

j=1
d(3)ij Gj

)
−

χ2
∞G1i

(
N
∑

j=1
d(2)ij Gj

)
+ χ3

∞G2i

(
N
∑

j=1
d(1)ij Gj

)
 , (45)

LΘi (Θi) =
χ2

∞
Pr

(
N

∑
j=1

d(2)ij Θj

)
+

χ3
∞

PrHi

(
N

∑
j=1

d(1)ij Θj

)
, (46)

NGi (Gi, Θi) =
χ∞κ
Hi


Gi

(
N
∑

j=1
d(3)ij Gj

)
+ χ∞Gi

Hi

(
N
∑

j=1
d(2)ij Gj

)
− χ∞

Hi

(
N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(1)ij Gj

)
−(

N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(2)ij Gj

)
− χ2

∞Gi
H2

i

(
N
∑

j=1
d(1)ij Gj

)
 (47)

NΘi (Gi, Θi) =



χ2
∞τ
Pr

(
N
∑

j=1
d(1)ij Θj

)(
N
∑

j=1
d(1)ij Θj

)
+ χ3

∞τΘi
PrHi

(
N
∑

j=1
d(1)ij Θj

)
+

χ2
∞τ
Pr Θi

(
N
∑

j=1
d(2)ij Θj

)
+ χ3

∞κGi
Hi

(
N
∑

j=1
d(1)ij Θj

)
− 2χ3

∞κΘi
Hi

(
N
∑

j=1
d(1)ij Gj

)
+

Ec

(
N
∑

j=1
d(2)ij Gj

)(
N
∑

j=1
d(2)ij Gj

)
− 2χ∞Ec

Hi

(
N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(2)ij Gj

)
+

χ2
∞EcG1i

(
N
∑

j=1
d(1)ij Gj

)(
N
∑

j=1
d(1)ij Gj

)



(48)

Here:

Hi =
(

κ +
χ∞

2

)
− χ∞

2
cos
(

πi− π

N − 1

)
. (49)

G1i =
1
H2

i
+ M, (50)

G2i =
1
H3

i
− M

Hi
. (51)
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As shown in Equation (44), the algebraic nonlinear system (S) is constituted by 2N equations.
This nonlinear system can be solved accurately by means of Newton-Raphson iterative scheme (NRIS).
Hence, thanks to this technique, the dimensionless quantities (Res)0.5 Cfs and (Res)−0.5Nus shown in
Equations (31) and (32) can be computed numerically using the following expressions:

Re0.5
s C fs =

1
χ2

∞

(
N

∑
j=1

d(2)1j Gj

)
− 1

χ∞κ

(
N

∑
j=1

d(1)1j Gj

)
, (52)

Re−0.5
s Nus = −

1
χ∞

(
N

∑
j=1

d(1)1j Θj

)
− τ

χ2
∞

(
N

∑
j=1

d(1)1j Θj

)(
N

∑
j=1

d(1)1j Θj

)
. (53)

From the methodological point of view, we take χ∞ = 10 and N = 70 as the best selected values
during all subsequent analyses, in order to find out significant numerical results with an absolute
accuracy of the order of 10−8. Moreover, the average CPU time taken to compute the skin friction
coefficient Res

0.5Cfs and the rate of heat transfer Res
−0.5Nus by GDQM is generally no more than 10 s.

5. Results and Discussion

The transformed set of differential equations that govern the flow are highly nonlinear and thereby
solved numerical by applying generalized differential quadrature method (GDQM) to quantify the
influences of different physical flow parameter. The impacts of dimensionless flow parameters such as
magnetic parameter M, curvature parameter κ, Eckert number Ec, Prandtl number Pr, variable thermal
conductivity parameter τ and temperature difference parameter λ on velocity g’(χ), temperature θ(χ)
and entropy generation Ns are depicted in different graphs. In order to verify the accuracy of our
numerical scheme, the local skin friction coefficient and Nusselt number are also computed using
Runge-Kutta Fehlberg method (RKFM) as shown in Table 1. The comparison shows an excellent
agreement and hence validates our numerical simulation. Table 1 also illustrates the influences of
physical flow parameters on local skin friction coefficients and Nusselt number. It is inferred from
Table 1 that skin friction coefficient increases with rising values of magnetic parameter and decreases
with curvature parameter. The Eckert number, Prandtl number and variable thermal conductivity have
no influence on skin friction coefficient. We also observed that the local Nusselt number decreases
with rising values of magnetic parameter, Eckert number and variable thermal conductivity parameter.
Further, it is noted that, local Nusselt number enhances with increasing values of curvature parameter
and Prandtl number.

Figure 2a,b represent the effects of magnetic and curvature parameter on velocity profile g’(χ)
respectively. It is observed that motion of fluid decelerates with increasing strength of applied magnetic
field. This is because a resistive force knows as Lorentz force enhances with increasing strength of
applied magnetic field. It is also observed that velocity decreases with rising values of curvature
parameter κ. Further, it is found that for fixed value of χ the thickness of boundary layer is thick
for flow over a curved boundary as compared to flat surface (κ → ∞ ). The effects of magnetic
parameter(M), curvature parameter (κ), Eckert number (Ec), Prandtl number (Pr) and variable thermal
conductivity parameter (τ) on temperature profile θ(χ) are shown in Figure 3a–e respectively. It is
inferred from Figure 3a,b that temperature rises with increasing values of magnetic and curvature
parameter respectively. This is because, the phenomenon of Ohmic heating increases with rising
values of M and thus leads to rise the fluid temperature. We also observed that for fixed value of
similarity variable χ the thickness of thermal boundary layer is thin for the fluid flow past over a flat
stretching surface (κ → ∞ ) as compared to flow over a curved stretching surface. The Eckert number
Ec is measure of the frictional forces between the fluid layers, therefore, with increasing Eckert number
the frictional heating enhances and leads to rise the fluid temperature as presented in Figure 3c. The
decreasing behavior of temperature with increasing values of Prandtl number is due to the fact that
thermal diffusivity decreases with increasing Prandtl number and consequently leads to drop the fluid
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temperature as shown in Figure 3d. The thermal conductivity of fluid increase with rising values of
variable thermal conductivity parameter (τ), therefore, the temperature of fluid rises with increasing τ

as shown in Figure 3e. Figure 4a shows that entropy generation enhances with enhancing the strength
of applied magnetic field. This is due to the dissipative nature of the Lorentz force. In addition, it is
noticed that the rate of entropy generation is maximum at the curved boundary. Figure 4b illustrates
that entropy generation reduce with increasing values of curvature parameter κ. Further, no significant
effects are observed at the surface of curved boundary. In addition, the rate of entropy generation is
less in the flow over a flat boundary (κ → ∞ ) as compared to the curved one. Figure 4c,d demonstrate
the variations of entropy generation NS with Eckert number Ec and Prandtl number Pr, respectively.
We found that entropy enhances with rising values of Ec and Pr. Significant effects are observed at the
curved boundary and this is due to the presence of high thermal gradients at the surface of curved
boundary. Figure 4e displays that, as the variable thermal conductivity parameter τ rises, the entropy
generation NS enhance slightly at the surface of curved boundary and its vicinity. Furthermore, it is
found that entropy generation NS decreases after certain vertical distance from the surface of stretching
curved surface. Figure 4f demonstrates that, as temperature difference parameter λ increases, entropy
generation NS reduces, therefore, to minimize the entropy generation inside the boundary layer, it is
suggested to reduce the operating temperature ∆T (increase λ).

Table 1. Present numerical results for the skin friction coefficient Res
0.5Cfs and the rate of heat transfer

Res
−0.5Nus at the curved surface by GDQM and RKFM, for various values of the physical parameters

M, κ, Ec, Pr and τ.

M κ Ec Pr τ
*GDQM *RKFM

−Re0.5
s Cfs Re−0.5

s Nus −Re0.5
s Cfs Re−0.5

s Nus

0.0

10 0.3 2.0 0.2

1.0734886 1.0956346 1.0734886 1.0956346
0.5 1.3279849 1.0182902 1.3279849 1.0182902
1.0 1.5302913 0.9433763 1.5302913 0.9433763
2.0 1.8601286 0.7956016 1.8601286 0.7956016
3.0 2.1338460 0.6495366 2.1338460 0.6495366

0.2

5

0.3 2.0 0.2

1.2856525 1.0580225 1.2856526 1.0580225
10 1.1846573 1.0641428 1.1846573 1.0641428
20 1.1386292 1.0659353 1.1386292 1.0659353
30 1.1239341 1.0663482 1.1239341 1.0663482

1000 1.0963201 1.0668915 1.0963201 1.0668915

0.2 10

0.1

2.0 0.2

1.1846573 1.1176921 1.1846573 1.1176921
0.4 1.1846573 1.0339380 1.1846573 1.0339380
0.7 1.1846573 0.9295582 1.1846573 0.9295582
1.0 1.1846573 0.8044534 1.1846573 0.8044534
1.5 1.1846573 0.5496236 1.1846573 0.5496236

0.2 10 0.3

1.0

0.2

1.1846573 0.8221439 1.1846573 0.8221439
2.0 1.1846573 1.0641428 1.1846573 1.0641428
3.0 1.1846573 1.1801381 1.1846573 1.1801381
5.0 1.1846573 1.2499780 1.1846573 1.2499781
6.0 1.1846573 1.2391867 1.1846573 1.2391866

0.2 10 0.3 2.0

0.0 1.1846573 1.7356948 1.1846573 1.7356948
0.3 1.1846573 0.8201182 1.1846573 0.8201182
0.7 1.1846573 0.1759590 1.1846573 0.1759590
1.0 1.1846573 −0.1120986 1.1846573 −0.1120984
1.5 1.1846573 −0.4142181 1.1846573 −0.4142179

*GDQM: Generalized differential quadrature method; *RKFM: Runge-Kutta-Fehlberg method
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Figure 2. Impacts on velocity profile g’(χ) with variations in (a) magnetic parameter M and (b) curvature
parameter κ.
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Figure 3. Impacts on temperature profile θ(χ)with variations in (a) magnetic parameter M (b) curvature
parameter κ (c) Eckert number Ec (d) Prandtl number Pr and (e) variable thermal conductivity
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6. Closing Remarks

In the present investigation, we utilized the generalized differential quadrature method (GDQM)
to get the numerical solutions of the reduced set of governing nonlinear differential equations.
The impacts of different physical flow parameters are investigated by plotting various graphs.
Following are the key outcomes of the present study.

• The local skin friction coefficient enhances with magnetic parameter and reduces with increasing
curvature parameter.

• With an increase in magnetic parameter, Eckert number and variable thermal conductivity
parameter, the local Nusselt number reduces but it enhances with rising values of curvature
parameter and Prandtl number.

• The fluid motion decelerates with increasing M and curvature parameter κ.
• With rising values of magnetic parameter, Eckert number and variable thermal conductivity

parameter, the temperature of fluid rises whereas decrement in temperature is observed with
increasing values of Prandtl number and curvature parameter.

• Less entropy is generated in the flow past over a flat stretching boundary as compared to the flow
over a curved surface.

• By increasing the curvature and temperature difference parameter, the entropy generation
Ns reduces.

• With enhancing the values of magnetic parameter, Eckert number, Prandtl number and variable
thermal conductivity parameter, Ns increases.
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