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Abstract: Wireless powered communication technology has a great potential to power low-power
wireless sensor networks and Internet of Things (IoT) for real-time applications in future 5G networks,
where age of information (AoI) plays a very important performance metric. This paper studies the
system average AoI of a wireless powered network, where a wireless-powered user harvests energy
from a wireless power source (WPS) and then transmits data packets to its access point (AP) by
using the harvested energy. The user generates data packets with some probability and adopts the
first-come-first-served (FCFS) service policy. For such a system, by using the queuing theory and the
probability models, we derive a closed-form expression of the system average AoI. We also formulate
an optimization problem to minimize the AoI by optimizing the data packet generating probability,
and find its solution by simple calculation and search. Simulation results demonstrate the correctness
of our obtained analytical results. It also shows that, when the total distance of the two hops is fixed,
the system average AoI increases linearly with the increment of the distance of the first hop, and a
smaller data packet generating probability should be selected to match a bigger first-hop distance for
achieving a smaller system average AoI. Moreover, a smaller data packet size also contributes to a
smaller system average AoI.

Keywords: age of information; energy harvest; wireless power; block Rayleigh fading channel

1. Introduction

Recently, the widespread use of mobile devices and applications has made the real-time
information updating applications such as news, weather forecasting and traffic alert more and
more popular [1–3]. Timely information updating is also becoming more and more critical for real-time
monitoring and control systems, including wireless sensor networks (WSNs) and internet of Things
(IoT) for temperature and humidity detection in warehouses [4], safety and state monitoring in
industrial production lines, embedded equipments in medical care [5], and road condition detection in
automatic droving for future 5G systems [6,7]. The common key point of above-mentioned real-time
applications is how to guarantee the freshness of the collected data.

Traditionally, delay and throughput are two important and widely adopted indices to evaluate
the system performance of communication networks [8,9]. However, they are insufficient to describe
the freshness of the data [10]. Therefore, a new metric, referred to as age of information (AoI),
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has emerged recently, which is defined to characterize the elapsed time since the last received data
was generated [11]. The AoI actually describes the freshness of status updates based on time-varying
wireless channel transmissions because it can reflect real world constraints condition that the delivery
of a status message requires a nonzero and typically random time in the system [12].

In the past several years, AoI has been analyzed and studied in various queuing systems.
For instance, the AoI was analyzed for single-source single-server queues in [11], and for M/M/1
first-come-first-served (FCFS) systems with multiple sources in [13]. In [14], AoI was explored for a
multi-class M/G/1 queueing system. In [15], a packet deadline was regarded as a control mechanism
to study its impact on the average AoI for M/M/1 queueing systems, and in [16], it was found that
the packet waiting in queue was replaced if a new packet arrives service discipline is optimal.

Meanwhile, in order to realize the fresh-data transmission and explore the system performance
limit, AoI was minimized for single-hop networks, see e.g., [11,14,17,18], and multi-hop networks,
see e.g., [19,20], with different system setups. In [19], it was shown that for general system settings
(including arbitrary network topology, packet generation times, packet arrival times, and queue buffer
sizes), age-optimality can be achieved. In [20], an energy harvesting (EH) assisted two-hop system
was studied, where an EH-enabled source collected measurements from a physical phenomenon and
then sent updates to a destination with the help of an EH-enabled relay.

As for EH, it is able to power the device by harvesting energy from external environment [21] and
has a great potential to be applied to energy-constrained networks including IoT and WSNs in future
5G [22–28]. EH technologies can be classified into two categories: the natural energy source-based EH
and the radio frequency (RF) signal-based EH [29–34]. Compared with natural source, RF signal is
easier to control and has less environmental limitations to deploy. Therefore, it is becoming more and
more popular. Since RF EH-enabled IoT and sensor networks are expected to be widely employed for
industrial control, unmanned driving systems and real-time applications, analyzing AoI performance
and designing AoI minimized systems for RF-EH wireless networks have attracted increasing interest,
see e.g., [35,36]. In [35], the average AoI of the two-way networks, where the slave node is powered by
RF EH supply and the uplink average AoI was analyzed. In [36], the authors studied how to design
optimal online status update policies to minimize the long-term average AoI, subject to the energy
causality constraint at the sensor.

In this paper, we study the average AoI in a wireless powered network, where a wireless-powered
user harvests energy from a wireless power source (WPS) and transmits data packets to its access point
(AP). The user generates a data packet with some probability p in each time block, and the generated
data are stored in an infinite buffer queue. FCFS service policy is employed, using the queuing theory
and the probability model. We derive a closed-form expression of the average AoI for such a system.
Numerical results are provided to discuss the system AoI performance. It is observed that there is an
optimal p such that the AoI reaches minimal. Therefore, we formulate an optimal problem to minimize
the AoI to find the optimal p. Since the problem is non-convex, we use the one-dimensional search to
find the optimal p. Moreover, with other parameters being fixed, we find that the minimal average
AoI linearly increase with the increment of packet size. In addition, we also analyze the effects of other
factors on the average AoI. It is found that, when the total distance of the two hops is fixed, the system
average AoI increases linearly with the increment of the distance of the first hop, and a smaller data
packet generating probability should be selected to match a bigger first-hop distance for achieving a
smaller system average AoI. Moreover, a smaller data packet size also contributes to a smaller system
average AoI.

The rest of the paper is organized as follows. In Section 2, we present the system model,
including the channel model, the data transmission model and the energy transfer model. In Section 3,
we derive an explicit expression of the average AoI. Section 4 discusses the system AoI performance
via simulations. Section 5 summarizes the paper with some conclusions.
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2. System Model

We consider a wireless powered network, as depicted in Figure 1, where a user (e.g., a sensor
node) desires to transmit its data to its AP (e.g., a sink node). Since the user is lack of energy, it has
to harvest energy from a WPS that deployed in the system and used to charge the wireless devices
via wireless power transfer. Our considered network model can be regarded as a basic component
of complex networks. For example, when multiple nodes are deployed, by using time division
multiple access(TDMA) or frequency division multiple access (FDMA), the complex network can be
decomposed into multiple point-to-point networks [37–39], each of which is like our considered model.

Wireless 

Power Source
Data Sink

Data buffer

ET IT
APAP

(User)Sensor

Data buffer

ET IT
AP

(User)SensorWireless 

Power Source
Data Sink

Data buffer

ET IT
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Figure 1. An illustration of the wireless powered communication system.

It is assumed that the system works in a discrete time manner. That is, the time is divided into
blocks with equal interval Tb. The time period from the epoch n to the epoch n + 1 is referred to as the
time block n. Block Rayleigh fading channel model from WPS to the user and from the user to its AP is
assumed, so that the channel coefficient can be considered as a constant in each time block, and it may
vary from one time block to the next for information transmission. Let h1[n] and h2[n] be the channel
coefficients of the links from the WPS to the user and from the user to the AP, respectively, associated
with time block n. The corresponding power gains |h1|2 and |h2|2 follow the exponential distribution,
which can be expressed by

f|h1|2(x) = λ1e−λ1x, (1)

and
f|h2|2(x) = λ2e−λ2x, (2)

where λ1 and λ2 are the exponential distribution parameters.
In each block, the user generates a data packet with size of δ bits randomly with a certain

probability p, and the generated data packets are first stored in a data buffer, and then transmitted
with the FCFS policy. Denote the distance between the WPS and the user and between the user and the
AP to be d1 and d2, respectively. Let the transmit power of the WPS be Pw. If in time block n, the user
performs energy harvesting, the energy received at the user from the WPS in time block n is given by

E[n] = µ|h1[n]|2PwTb, (3)

where η is the energy transfer efficiency and µ = η
dα

1
. α is the pass loss factor.

Since the energy transfer efficiency η is less than one and the received power is also relatively
small due to pass loss, the user may take several blocks to harvest and accumulate energy to complete
a block of transmission. The energy accumulated at the user within j blocks is

ej = ∑j
i=1 E[i] = µPwTb ∑j

i=1 |h1[i]|2. (4)
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According to Equation (1), |h1|2 follows exponential distribution with parameter λ1, so ej follows
Erlang(j, λ1

µPwTb
) distribution, i.e.,

fej =
vjxj−1e−vx

(j− 1)!
, (5)

where v = λ1
µPwTb

.
It is assumed that the energy transmission and data transmission are over orthogonal frequency

bands. Let the transmit power of the user be Pu. Assume that the received signals are suffered from
additive white Gaussian noise. If in time block n, the user performs data transmission, the data size
can be delivered in block n is (see Endnote [40]—which refers to Reference [35,41])

c[n] = TbBlog
(

1 +
|h2[n]|2Pu

BN0

)
,

where B is the system bandwidth and N0 = n0dα
2 with n0 denoting the noise spectral density.

For such a system, our goal is to analyze its average AoI performance in fading channels.

3. AOI Analysis

In IoT and sensor networks, the transmit power of the devices is usually very low, so that the
received energy from the transmitted signals of WPS at the user is relatively very small. Therefore,
we analyze the system AoI performance in the low SNR regime, where c[n] can be approximated by

c[n] ≈ |h2[n]|2PuTb
N0

. (6)

3.1. Preliminary Analysis

Denote the number of time blocks required to complete the transmission of one data packet
with size of δ to be NI . Define the probability of successfully completing a packet transmission
with j time blocks to be pni

j . When the user accumulates sufficient energy, we obtain the following
theoretical results.

Proposition 1. The probability of successfully completing a packet transmission with j time blocks is

pni
j =

θ j−1

(j− 1)!
e−θ , (7)

where j = 1, 2, 3, · · · , n and θ = λ2 N0δ
PuTb

.

Proof. According to the definition of pni
j and [42], it can be expressed that

pni
j = Pr {NI = j}

= Pr
{
∑j−1

i=1 c[i] < δ, ∑j
i=1 c[i] ≥ δ

}
=
∫ δ

0
fC(x)dx

∫ ∞

δ−x
fc(x)dx,

where fC(x) and fc(x) are probability density function (pdf) of ∑
j−1
i=1 c[i] and c[i], respectively.
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Since |h2|2 follows exponential distribution, from Equation (6), c[n] obeys exponential distribution.
Thus, the cumulative distribution function (CDF) of c[n] is

Fc(x) = Pr(c < x) = Pr
(
|h2|2 <

N0

PuTb
x
)

=
∫ N0x

PuTb

0
λ2e−λ2ydy = 1− e−(

λ2 N0
PuTb

)x
.

Furthermore, it can be inferred that ∑
j
i=1 c[i] follows the Gamma distribution. Thus, the pdf of

∑
j
i=1 c[i] is given by

fC(x) =
( λ2 N0

PuTb
)(j−1)

Γ(j− 1)
x(j−2)e−(

λ2 N0
PuTb

)x
,

where Γ(j− 1) =
∫ ∞

0 e−ttj−2dt is the Gamma function. Thus,

pni
j =

∫ δ

0
fC(x)dx

∫ ∞

δ−x
fc(x)dx

=
∫ δ

0

( λ2 N0
PuTb

)(j−1)

Γ(j− 1)
x(j−2)e−(

λ2 N0
PuTb

)xdx
∫ ∞

δ−x
fc(x)dx

=
( λ2 N0δ

PuTb
)

j−1

(j− 1)!
e−

λ2 N0δ
PuTb ,

with θ = λ2 N0δ
PuTb

. Therefore, we arrive at Proposition 1.

Proposition 2. The probability generating function (PGF) and the expectation of NI are

GNI (z) = zeθ(z−1), (8)

and
E(NI) = 1 + θ, (9)

respectively.

Proof. In terms of the definition of PGF, we have

GNI (z) = E(zni ) =
∞

∑
j=0

zjPr{NI = j}

=
∞

∑
j=0

zj θ j−1

(j− 1)!
e−θ

= zeθ(z−1).

By the property of PGF, we have

E(NI) = lim
z→1−

G
′
NI
(z) = 1 + θ.

In our model, the harvested energy is allowed to be used for information transmission in the same
block. As long as the accumulated energy at the user is greater than or equal to PuTb, it performed
a block of transmission. Suppose the number of blocks that need to harvest energy for the user to
complete a block of transmission is NE. Since the energy transfer efficiency η is less than one and the
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received power is also relatively small due to pass loss, the user may take several blocks to harvest
energy to complete a block of transmission, i.e., NE ≥ 1. As a result, the transmitter start information
delivering at time block j, if

{ej−1 < PuTb, ej ≥ PuTb}, for j = 1, 2, 3, · · · .

Therefore, the actual time required to complete a block of transmission is NE = j. Without loss
of generality, we suppose Pw = βPu, with β > 0. In terms of Equations (4) and (5), the probability
Pr{NE = j} of NE = j can be given by

Pr{NE = j} = Pr{ej−1 < PuTb, ej ≥ PuTb}

=
∫ PuTb

0
fej(x)dx

∫ ∞

PuTb−x
fe1(y)dy

=
( λ1

βµ )
j−1

(j− 1)!
e−(

λ1
βµ ), for j = 1, 2, 3, · · · .

(10)

Let the service time of the kth data packet is T(S)
k , which represents the time for harvesting energy

and the time for transmitting data.

Lemma 1. The probability that j time blocks are needed to actually transfer a data packet is

ps
j = Pr{T(S)

k = j}

=
( (1+θ)λ1

βµ )j−1

(j− 1)!
e−

(1+θ)λ1
βµ .

(11)

Proof. When the user accumulates sufficient energy, in terms of Equation (9), the average time to
transmit a data packet is 1 + θ. Since the user needs NE time blocks to harvest energy to perform a
block of transmission, that is, T(S)

k contains 1 + θ independent and identically distributed variables
NE(i), according to Equation (10), one can derive Equation (11).

Proposition 3. The probability generating function (PGF) of T(S)
k is

G
T(S)

k
(z) = ze(z−1) (1+θ)λ1

βµ , (12)

and the expectation of T(S)
k is

E(T(S)
k ) = 1 +

(1 + θ)λ1

βµ
. (13)

Proof. In terms of the definition of PGF, we have

G
T(S)

k
(z) = E(zT) =

∞

∑
j=0

zjPr{TS
k = j}

=
∞

∑
j=0

zj
( (1+θ)λ1

βµ )j−1

(j− 1)!
e−

(1+θ)λ1
βµ

= ze(z−1) (1+θ)λ1
βµ .
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By the property of PGF, we have

E(T(S)
k ) = lim

z→1−
G
′

T(S)
k

(z) = 1 +
(1 + θ)λ1

βµ
.

3.2. Description of System Average AoI

The AoI is defined as the time elapsed since the last received packet was generated [11],
which is used to measure the freshness of information at the destination. We assume that the most
recently received data packet at AP in block n was generated at the time U[n]. Therefore, the AoI in
block n, can be expressed by

∆[n] = n−U[n]. (14)

Figure 2 illustrates a sample evolution of AoI versus time blocks with initial age ∆0, i.e., ∆[0] = ∆0.
Since time is discrete, the AoI is constant within each block and varies from a block to next block.
Let nk denote the generation time of the kth data packet, and n′k denote the time when the kth data
packet is completely transmitted. The number of blocks from the generation of a data packet to the
completion of the transmission is T(T)

k , i.e.,

T(T)
k = n′k − nk,

which is called the system time. The interval time between the generation of data packet k− 1 and
data packet k is set as Ik. That is,

Ik = nk − nk−1.

Let T(W)
k denote the waiting time of data packet k. The time of a data packet in system is also

equal to the sum of waiting time T(W)
k and service time T(S)

k , i.e.,

T(T)
k = T(W)

k + T(S)
k . (∗)

It is observed that the AoI increases linearly in time and is reset to a smaller value when a data
packet is received. That is, at n′k, the AoI is reset to ∆[n] = n′k − nk. Over a period of N blocks where K
data packets are delivered, the average AoI is defined as

∆̄ =
1
N

N

∑
n=1

∆[n]. (15)

As illustrated in Figure 2, the average AoI of system can be calculated as the average area of the
blue graphic Qk, i.e.,

∆̄ = lim
N→∞

1
N

(
Q0 +

K−1

∑
k=1

Qk + RK

)
, (16)

where RK = 1
2 T(T)

K

(
T(T)

K + 1
)

.

In the following, we shall discuss how to derive a closed-form exprtession of the average AoI ∆̄.
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Figure 2. An illustration of a sample evolution of AoI versus time blocks.

3.3. Closed-Form Expression of ∆̄

From Figure 2, one can see that the area of Q0 and RK are limited, with large enough N, Q0
N and

Rk
N are close to zero. Therefore, ∆̄ can be approximatively give by

∆̄ = lim
N→∞

1
N

K−1

∑
k=1

Qk = lim
N→∞

K− 1
N

1
K− 1

K−1

∑
k=1

Qk = pE(Qk). (17)

Moreover, one can see that the area of Qk is the difference of the area of the large red triangle
minus the area of the small black triangle, as illustrated in Figure 3. That is,

E(Qk) = E
(

1
2

(
T(T)

k + Ik +
1
2

)2
− 1

2

(
T(T)

K +
1
2

)2
)

= E
(

1
2

Ik (Ik + 1) + IkT(T)
K

)
=

1
2
E (Ik) +

1
2
E
(

I2
k

)
+E

(
IkT(T)

K

)
.

(18)

Now, we begin to drive the explicit expressions of E (Ik), E
(

I2
k
)

and E
(

IkT(T)
K

)
as follows.

n4n1 n2 n3
n'1 n'2 n'3

QQ1

)(

2

T
T

)(

2

W
T

)(

2

S
T

2I

Figure 3. An illustration of an example of calculating AoI.
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3.3.1. Expressions of E (Ik) and E
(

I2
k
)

Since p is the generation rate of the data packet at the user, i.e., data generating with probability p
in each block. Therefore, the inter arrival time Ik follows geometric distribution. Ik = j means that
in the j-th block data packet is successfully generated, but was not generated in the previous j− 1
consecutive blocks. Thus,

Pr{Ik = j} = (1− p)j−1 p, j = 1, 2, · · · .

As a result,

E(Ik) =
1
p

, (19)

and
E(I2

k ) =
2− p

p2 . (20)

3.3.2. Expressions of E
(

IkT(T)
K

)
Let Yk be the number of data packets generated during the system time of the kth data packet.

It is also a random variable. To describe it, we define {Yk} as an independent and identically distributed
random sequence. The probability of generating j data packets during the service time of a data packet
can be given by

py
j = Pr{Yk = j},

where j = 0, 1, 2, · · · and ∑∞
j=0 py

j = 1. Let Lk be the number of data packets in the queue before
servicing the kth data packet. Thus, we have

Lk+1 =

{
Lk − 1 + Yk, Lk ≥ 1,
Yk, Lk = 0.

(21)

By regarding {Lk} as a state of the system, it can be expressed by a Markov chain. Its state
transition diagram is shown in Figure 4, where the numbers in the figure represents the different status
(i.e., value of Lk), and the probability on the curve represents the transition probability from one state
to the next. The transition probability is obtained as follows:

py
00 = Pr(Lk+1 = 0|Lk = 0) = Pr(Yk = 0) = py

0,

py
01 = Pr(Lk+1 = 1|Lk = 0) = Pr(Yk = 1) = py

1,

py
02 = Pr(Lk+1 = 2|Lk = 0) = Pr(Yk = 2) = py

2,

py
03 = Pr(Lk+1 = 3|Lk = 0) = Pr(Yk = 3) = py

3,

py
10 = Pr(Lk+1 = 0|Lk = 1) = Pr(Lk − 1 + Yk = 0|Lk = 1) = Pr(Yk = 0) = py

0,

py
11 = Pr(Lk+1 = 1|Lk = 1) = Pr(Lk − 1 + Yk = 1|Lk = 1) = Pr(Yk = 1) = py

1,

py
12 = Pr(Lk+1 = 2|Lk = 1) = Pr(Lk − 1 + Yk = 2|Lk = 1) = Pr(Yk = 2) = py

2,

py
13 = Pr(Lk+1 = 3|Lk = 1) = Pr(Lk − 1 + Yk = 3|Lk = 1) = Pr(Yk = 3) = py

3.

...

By doing so, the transition probability associated with every link in Figure 4 is determined.
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0 1

Figure 4. State transition diagram of Markov chain {Lk, k ≥ 0}.

Proposition 4. The probability distribution and the PGF of Y are respectively given by,

py
j = (1− p)e−

(1+θ)λ1
βµ p (

(1+θ)λ1
βµ p)

j

j!
+ pe−

(1+θ)λ1
βµ p (

(1+θ)λ1
βµ p)

j−1

(j− 1)!
, (22)

and

GY(z) = (1− p + pz)e
(1+θ)λ1

βµ p(z−1). (23)

Proof. See Appendix A.

In terms of Foster’s Theorem of [43], when the data arrival rate less than the service rate, the system
is stable. That is, p(1 + (1+θ)λ1

βµ ) < 1. Therefore, we discuss the case when p(1 + (1+θ)λ1
βµ ) < 1,

where (1 + (1+θ)λ1
βµ ) is actually the service time of a data packet. In this case, Markov chain {Lk}

has a stationary distribution π = (π0, π1, ...) with

πj = lim
k→∞

Pr{Lk = j}.

Thus, we can obtain the following Proposition 5.

Proposition 5. When p(1 + (1+θ)λ1
βµ ) < 1, the PGF of Lk is given by

GLk (z) =
(1− p− (1+θ)λ1

βµ p)(1− p + pz)(1− z)

1− p + pz− ze
(1+θ)λ1

βµ p(1−z)
. (24)

Proof. See Appendix B.

Proposition 6. The PGF of the system time of each data packet is given by

GT(z) =
(1− p− (1+θ)λ1

βµ p)z(1− z)

pz− (z− 1 + p)e
(1+θ)λ1

βµ (1−z)
. (25)

Proof. See Appendix C.

Lemma 2. The average system time is

E(T(T)
k ) = 1 +

(1 + θ)λ1

βµ
+

2p (1+θ)λ1
βµ + ( (1+θ)λ1

βµ )2 p

2(1− p− (1+θ)λ1
βµ p)

. (26)



Entropy 2018, 20, 948 11 of 20

Proof. By the property of PGF, we can obtain

E(T(T)
k ) = lim

z→1−
G
′
T(z)

=
( (1+θ)λ1

βµ )
2
p + 2 (1+θ)λ1

βµ p + 2p− 2 (1+θ)λ1
βµ − 2

2( (1+θ)λ1
βµ p + p− 1)

= 1 +
(1 + θ)λ1

βµ
+

2p (1+θ)λ1
βµ + ( (1+θ)λ1

βµ )2 p

2(1− p− (1+θ)λ1
βµ p)

.

Recall Equation (∗), i.e., the system time of data packet k. Note that, when the kth data packet is
generated at the user, if the (k− 1)th data packet has completed the service, T(W)

k = 0. In this case,

the waiting time for the data packet is T(W)
k = max(0, T(T)

k−1 − Ik). As T(W)
k and Ik are not independent

of each other, and T(S)
k is independent of Ik, one has

E(IkT(T)
k ) = E(Ik(T

(W)
k + T(S)

k ))

= E(Ik)E(T
(S)
k ) +E(IkT(W)

k ).
(27)

Proposition 7. For the considered system,

E(IkT(W)
k ) =

(−2 + 4p + 3 (1+θ)λ1
βµ p) (1+θ)λ1

βµ

2p(1− p− (1+θ)λ1
βµ p)

+
(1− p− (1+θ)λ1

βµ p)(e
(1+θ)λ1

βµ p − 1)

p2 . (28)

Proof. See Appendix D.

Theorem 1. When p(1 + (1+θ)λ1
βµ ) < 1, the average AoI is given by

∆̄ =
1
p
+ (1 +

(1 + θ)λ1

βµ
) +

(−2 + 4p + 3 (1+θ)λ1
βµ p) (1+θ)λ1

βµ

2(1− p− (1+θ)λ1
βµ p)

+
(1− p− (1+θ)λ1

βµ p)(e
(1+θ)λ1

βµ p − 1)

p
, (29)

where θ = λ2 N0δ
PuTb

.

Proof. Combining Equations (13), (17)–(20) and (28), one can get the expression for ∆̄.

Furthermore, from Theorem 1, we can get the following two corollaries.

Corollary 1. When p(1 + (1+θ)λ1
βµ )→ 0, (i.e., p→ 0), ∆̄→ ∞.

Proof. Let p = ε, where ε > 0 is a small enough number. Equation (29) can be approximately written as

∆̄ ≈ lim
ε→0

1
ε
+

(
1 +

(1 + θ)λ1

βµ

)
. (30)

Since

lim
ε→0

1
ε
+

(
1 +

(1 + θ)λ1

βµ

)
= ∞,

we arrive at Corollary 1.
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Corollary 2. When p(1 + (1+θ)λ1
βµ )→ 1, (i.e., p→ 1

1+ (1+θ)λ1
βµ

), ∆̄→ ∞.

Proof. Let p = 1
1+ (1+θ)λ1

βµ

and 1 − p(1 + (1+θ)λ1
βµ ) = ε, where ε > 0 is a small enough number.

Equation (29) can be approximately written as

∆̄ ≈ lim
ε→0

2
(

1 +
(1 + θ)λ1

βµ

)
+

(1+θ)λ1
βµ

(
(1+θ)λ1

βµ + 2
)

2
(
(1+θ)λ1

βµ + 1
) · 1

ε
. (31)

Since

lim
ε→0

2
(

1 +
(1 + θ)λ1

βµ

)
+

(1+θ)λ1
βµ

(
(1+θ)λ1

βµ + 2
)

2
(
(1+θ)λ1

βµ + 1
) · 1

ε
= ∞,

we arrive at Corollary 2.

3.4. The Minimal Average AoI of the System

Our objective is to minimize the average AoI. The maximum data rate that can make the data
packets queue stable is pmax = 1

1+ (1+θ)λ1
kµ

. Hence, we can formulate the problem as follows:

Problem 1.

min
p

∆̄

s.t. 0 < p < pmax.
(32)

Since it is difficult to theoretically prove that the problem 1 is a convex or non-convex, we cannot
directly obtain the optimal solution. Thus, we use the one-dimensional search to find the optimal p,
and give simulation results to illustrate that there exists an optimal solution for Problem 1 in the next
section (see Endnote [44]).

Fact 1. The average AoI converges to a constant with the increment of Pu.

Although it is difficult to prove Fact 1 and the converged constant is also hard to derive
mathematically, we may analyze it from the physical perspective. It is known that with the increment of
Pu, the information rate of the second hop is increased, which may decrease the system AoI. However,
due to the Shannon capacity theorem, the information rate of the second hop cannot be increased
infinitely, so the system AoI cannot be decreased infinitely, which must converge to some value with
the increment of Pu.

4. Numerical Results

In this section, numerical simulations are conducted to discuss the system AoI performance.
The simulation parameters are set according to [35]. Specifically, the distances between the WPS and
the user and between the user and the AP, are set to unit distance, i.e., d1 = d2 = 1 meter. The pass
loss factor is α = 2. The transmit power of the user is set as Pu = 0.01 W, and β = 1, i.e., Pw = Pu.
The size of data packet is δ = 8 bits. The energy transmission efficiency is η = 0.6, the system
bandwidth is B = 1 MHz, the block length is set as Tb = 10−3 s, and the noise spectral density
is n0 = 4× 10−7. The parameters of the channel power gain |h1|2 and |h2|2 are set as λ1 = 3 and
λ2 = 3, respectively.

As shown in Figure 5, the analytical results match the simulation ones well, which validates
the correctness of our analytical results. Moreover, when p is close to 0, the average AoI is very
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large because the interval of data generation Ik is very large in this case. When p approaches pmax,
the average AoI also increases to be infinite because, in this case, the waiting time in the queue becomes
very long. This observation is consistent with Corollary 1 and 2. It is also observed that there exists a
unique optimal p such that the system average AoI achieves a minimum.q
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Minimal average AoI

Figure 5. Average age of information versus data generation probability p.

To further discuss the system performance, we fix D = d1 + d2 to be two meters and then
increase d1 gradually, as illustrated in Figure 6. The simulation results are plotted in a 3D figure as
shown in Figure 7. One can observe that with, the increment of d1, the system average AoI increases
linearly, and the smaller p should be selected for the bigger d1 in order to achieve the system minimal
average AoI.

Figure 8 plots the system average AoI versus data generation probability p and data size δ in a 3D
figure. One can see that the minimal average AoI increases linearly with the increment of packet size δ,
and the smaller p should be selected for the larger δ. In order to clearly show this, for each given data
size δ, we mark the corresponding minimum AoI and it is plotted versus δ in Figure 9, which can be
considered as the lower bound of the system average AoI. This observation also implies that, to keep
the data fresh, the smaller packet size is preferred.

AP (Data Sink)Wireless 

Power Source

APAP

User (Sensor) User (Sensor)Wireless 

Power Source

AP

User (Sensor) User (Sensor)

D

d1d1

Figure 6. Illustration of the simulation scenario by moving the user from the WPS to the AP with the
fixed D.
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Figure 7. Average age of information versus data generation probability p and distance.
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Figure 10 shows the system minimal average AoI versus Pu with different configurations of Tb.
It is shown that, for a given block length Tb, the minimum AoI decreases with increment of Pu and then
tends to be flat. That is, the average AoI converges to a constant with the increment of Pu, which is
consistent with the result in Fact 1. Moreover, the larger the the block length Tb is, the smaller the
minimal AoI of the system is.
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Figure 10. Impact of transmit power Pu on average AoI under optimal p.

5. Conclusions

In this paper, we studied the system average AoI of a wireless powered communication network,
where a wireless powered user harvests energy from a WPS and then transmits data packets to its AP
by using the harvested energy. By using the queuing theory and some typical probability models on
the channel fading, we derived a closed-form expression of the system average AoI. Some interesting
results are obtained, and there exists an optimal generating probability of sensor data (user) p such
that the AoI reaches a minimum. Simulation results also show that, when the total distance of the two
hops is fixed, the system AoI increases linearly with the increment of the distance of the first hop, and a
smaller data packet generating probability should be selected to match a bigger first-hop distance for
achieving a smaller system average AoI. Moreover, a smaller data packet size of users will result in
contributing to a smaller system average AoI.
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Abbreviations

The following abbreviations are used in this manuscript:
AoI age of information
CDF cumulative distribution function
EH energy harvesting
RF radio frequency
FCFS first-come-first-served
PDF probability density function
FDMA frequency division multiple access
TDMA time division multiple access
WPS wireless power source

Appendix A

Proof. According to Equation (11), Pr{T(S)
k = m} = ps

m. For the case Yk = 0, we have

py
0 =

∞

∑
m=1

Pr{T(S)
k = m}Pr{Yk = 0|T(S)

k = m}

=
∞

∑
m=j

ps
mPr{Yk = 0|T(S)

k = m}

=
∞

∑
m=j

( (1+θ)λ1
βµ )m−1

(m− 1)!
e−

(1+θ)λ1
βµ (1− p)m

= (1− p)e−
(1+θ)λ1

βµ p,

(A1)

For the case Yk = j ≥ 1, we have

py
j =

∞

∑
m=j

Pr{T(S)
k = m}Pr{Yk = j|T(S)

k = m}

=
∞

∑
m=j

ps
mPr{Yk = j|T(S)

k = m}

=
∞

∑
m=j

( (1+θ)λ1
βµ )m−1

(m− 1)!
e−

(1+θ)λ1
βµ

m!
j!(m− j)!

(1− p)m−j pj

= e−(
(1+θ)λ1

βµ ) pj

j!

∞

∑
m=0

(
(1 + θ)λ1

βµ
)m+j−1 m

m!
(1− p)m

= (1− p)e−
(1+θ)λ1

βµ p (
(1+θ)λ1

βµ p)
j

j!
+ pe−

(1+θ)λ1
βµ p (

(1+θ)λ1
βµ p)

j−1

(j− 1)!
.

(A2)

In terms of the definition of PGF, the PGF of Yk is

GY(z) = E(zYk ) =
∞

∑
j=0

py
j zj

= (1− p)zje−
(1+θ)λ1

βµ p (
(1+θ)λ1

βµ p)
j

j!
+ pzje−

(1+θ)λ1
βµ p (

(1+θ)λ1
βµ p)

(j−1)

(j− 1)!

= (1− p + pz)e
(1+θ)λ1

βµ p(z−1).

(A3)
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Appendix B

Proof. When p(1 + (1+θ)λ1
βµ ) < 1, the queue is stable. According to the queueing theory and properties

of stationary distribution, we have πP = π and

π = π0 py
j +

j+1

∑
i=1

πi p
y
j+1−i, j ≥ 0.

The two sides of the equation are multiplied by zj, we can obtain

GLk (z) = π0

∞

∑
j=0

py
j zj +

∞

∑
j=0

zj
j+1

∑
i=1

πi p
y
j+1−i

= π0GY(z) +
1
z
[GLk (z)− π0]GY(z),

(A4)

where GY(z) is given by Equation (A3). In order to calculate GLk (z), Equation (A4) can be expressed as

GLk (z) =
π0(1− z)GY(z)

GY(z)− z
=

π0(1− z)
1− z/GY(z)

. (A5)

According to the properties of the PGF, we have

lim
z→1

G′Lk
(z) =

π0

1− p− (1+θ)λ1
βµ p

= 1.

Therefore, π0 = 1− p− (1+θ)λ1
βµ p. We can calculate GLk (z) by taking π0 into Equation (A5).

Appendix C

Proof. In the first-come first-served queue, the queue length at the packet departure time being
transmitted is equal to the number of arriving data packets during the system time of the leaving data
packet. Thus,

Pr{Lk = j} =
∞

∑
i=j

Pr(T(T)
k = i)Cj

i pj(1− p)i−j,

where j = 0, 1, 2, · · · , andj ≤ i.
According to the definition of PGF, we have

GLk (s) = E(sL) =
∞

∑
j=0

sjPr{Lk = j}

=
∞

∑
j=0

sj
∞

∑
i=j

Pr{T(T)
k = i}Cj

i pj(1− p)i−j

=
∞

∑
i=0

Pr{T(T)
k = i}

i

∑
j=0

Cj
i (ps)j(1− p)i−j

=
∞

∑
i=0

Pr{T(T)
k = i}(1− p + ps)i

= GT(1− p + ps).

(A6)

Combining formulas GLk (z) in Proposition 5 and GLk (s) = GT(1− p− ps) in Equation (A6),
and replacing (1− p− ps) with z, we can get GT(z).
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Appendix D

Proof. In order to calculate E(IkT(W)
k ), we define an auxiliary function as

F(z) =
∞

∑
i=1

Pr{Ik = i}zi
∞

∑
j=0

Pr{T(T)
k ≥ i + j}

=
∞

∑
j=1

j

∑
i=1

Pr{Ik = i}ziPr{T(T)
k ≥ j}

.
=

∞

∑
j=1

Pr{T(T)
k ≥ j}pz

1− (1− p)jzj

1− (1− p)z

.
=

pz
1− (1− p)z

(E(T(T)
k−1)−

1− GT((1− p)z)
1− (1− p)z

),

(A7)

where the last two { .
=} obtained by Lemma 3 [42]. GT(z) and E(T(T)

k−1) are given by
Equations (25) and (26). Thus, we have

E(IkT(W)
k ) = E(IkE(max(0, T(T)

k−1 − Ik)))

=
∞

∑
i=1

iPr(Ik = i)
∞

∑
j=0

Pr(max(0, T(T)
k−1 − i > j))

=
∞

∑
i=1

iPr(Ik = i)
∞

∑
j=0

Pr(T(T)
k−1 > j + i)

= lim
z→1−

(F(z))′

= lim
z→1−

p(E(T(T)
k−1))

(1− (1− p)z)2 +
p(1− p)z

(1− (1− p)z)2 G′T((1− p)z)− p(1 + (1− p)z)
(1− (1− p)z)3 (1− GT((1− p)z))

=
(−2 + 4p + 3 (1+θ)λ1

βµ p) (1+θ)λ1
βµ

2p(1− p− (1+θ)λ1
βµ p)

+
(1− p− (1+θ)λ1

βµ p)(e
(1+θ)λ1

βµ p − 1)

p2 ,

(A8)

where GT((1− p)z) and G′T((1− p)z) can be calculated by Equation (25).
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