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Abstract

:

The minimum error entropy principle (MEE) is an alternative of the classical least squares for its robustness to non-Gaussian noise. This paper studies the gradient descent algorithm for MEE with a semi-supervised approach and distributed method, and shows that using the additional information of unlabeled data can enhance the learning ability of the distributed MEE algorithm. Our result proves that the mean squared error of the distributed gradient descent MEE algorithm can be minimax optimal for regression if the number of local machines increases polynomially as the total datasize.
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1. Introduction


The minimum error entropy (MEE) principle is an important criterion proposed in information theoretical learning (ITL) [1] and was firstly addressed for adaptive system training by Erdogmus and Principe [2]. It has been applied to blind source separation, maximally informative subspace projections, clustering, feature selection, blind deconvolution, minimum cross-entropy for model selection, and some other topics [3,4,5,6,7,8]. Taking entropy as a measure of the error, the MEE principle can extract the information contained in data fully and produce robustness to outliers in the implementation of algorithms.



Let X∈Rn be an explanatory variable with values taken in a compact metric space (X,d),Y be a real response variable with Y∈Y⊂R, and g:X→Y be a prediction function. For a given set of labeled examples D={(xi,yi)}i=1N⊂X×Y (N denotes the sample size) and a windowing function G:R→R+, the MEE principle is to find a minimizer of the empirical quadratic entropy:


H^(g)=-logh2N2∑(xi,yi)∈D(xj,yj)∈DG[(yi-g(xi))-(yj-g(xj))]2h2,








where h>0 is the scaling parameter. Its goal is to solve the problem y=gρ(x)+ε, where ε is the noise and gρ(x) is the target function. Taking a function f(xi,xj):=g(xi)-g(xj), MEE belongs to pairwise learning problems, which involves with the intersections of example pairs. Since logarithmic function is monotonic, we only consider the empirical information error of MEE:


R(f)=-h2N2∑(xi,yi)∈D(xj,yj)∈DG[yi-yj-f(xi,xj)]2h2,



(1)




in the optimization process. Borrowing the idea from Reference [9], we introduced the Mercer kernel K(·,·):X2×X2→R,(X2:=X×X) and employed the reproducing kernel Hilbert space (RKHS) HK as our hypothesis space. With K,HK is defined as the linear span of the functions set {K(x,u):=K(x,u),(·,·),∀(x,u)∈X2}, which is equipped with the inner product ⟨·,·⟩K and the reproducing property ⟨K(x,u),K(x′,u′)⟩K=K((x,u),(x′,u′)),∀(x,u),(x′,u′)∈X2. For the G nonconvex, we usually solve Equation (1) using the kernel-based gradient descent method as follows. It starts with f1,D=0 and is updated by:


ft+1,D=ft,D-η×∇R(ft,D),



(2)




in the t-th step, where η>0 is a step size, ∇ is the gradient operator and:


∇R(ft,D)=-1N2∑(xi,yi)∈D(xj,yj)∈DG′[yi-yj-ft,D(xi,xj)]2h2[ft,D(xi,xj)-yi+yj]K(xi,xj),








as we know that the example pairs will grow quadratically with the increasing example size N, which will bring the computational burden in the MEE implementation. Thus, it is necessary to reduce the algorithmic complexity by the distributed method based on a divide-and-conquer strategy [10]. Semi-supervised learning (SSL) [11] has attracted extensive attention as an emerging field in machine learning research and data mining. Actually, in many practical problems, few data are given, but a large number of unlabeled data are available, since labeling data requires a lot of time, effort or money. In this paper, we study a distributed MEE algorithm in the framework of SSL and show that the learning ability of the MEE algorithm can be enhanced by the distributed method and the combination of labeled data with unlabeled data.



There are mainly three contributions in this paper. The first one is that we derive the explicit learning rate of the gradient descent method for distributed MEE in the context of SSL, which is comparable to the minimax optimal rate of the least squares in regression. This implies that the MEE algorithm can be an alternative of the least squares in SSL in the sense that both of them have the same prediction power. The second one is that we provide the theoretical upper bound for the number of local machines guaranteeing the optimal rate in the distributed computation. The last one is that we extend the range of the target function allowed in the distributed MEE algorithm.



In Table 1, we summarize some notations used in this paper.




2. Algorithms and Main Results


We considered MEE for the regression problem. To allow noise in sampling processes, we assumed that a Borel measure ρ(·,·) is defined on the product space X×Y. Let ρ(y|x) be the conditional distribution of y∈Y for any given x∈X, and ρX(·) the marginal distribution on X. For the semi-supervised MEE algorithm, our goal was to estimate the regression function gρ(x)=∫Yydρ(y|x),x∈X, from labeled examples D={(xi,yi)}i=1N and unlabeled examples D*={xj}j=1S drawn from the distribution ρ and ρX, respectively.



Based on the divide-and-conquer strategy, both D and D* are partitioned equally into m subsets, D=∑l=1m⋃Dl and D*=∑l=1m⋃Dl*. Here, we denote the size of subsets |Dl|=n and |Dl*|=s, 1≤l≤m, i.e., N=mn,S=ms. We construct a new dataset D˜=∑l=1m⋃D˜l by:


D˜l=Dl∪Dl*={(xk,yk)}k=1n+s,








where:


xk=xk,if (xk,yk)∈Dl,xk,if xk∈Dl*,andyk=n+snyk,if (xk,yk)∈Dl,0,if xk∈Dl*.











Based on the gradient descent algorithm (Equation (2)), we can get a set of local estimators {ft,D˜l} for each subset D˜l,1≤l≤m. Then, the global estimator averaging over these local estimators is given by:


f¯t,D˜=1m∑l=1mft,D˜l.



(3)







In the pairwise setting, our target function fρ(x,x′)=gρ(x)-gρ(x′),x,x′∈X, which is the difference of the regression function gρ. Denote by LρX22 the space of square integrable functions on the product space X2:


LρX22:=f:X2→R:∥f∥L2=∫∫X2|f(x,x′)|2dρX(x)dρX(x′)12<∞.











The goodness of f¯t,D˜ is usually measured by the mean squared error ∥f¯t,D˜-fρ∥L22.



Throughout the paper, we assumed that sup(x,x′)∈X2K((x,x′),(x,x′))≤1 and for some constant M>0,|y|≤M almost surely. Without generality, windowing function G is assumed to be differentiable and satisfies G′(0)=-1,G′(u)<0 for u>0,CG:=supu∈(0,∞)|G′(u)|<∞ and there exists some p such that cp>0 and:


|G′(u)-G′(0)|≤cp|u|p,∀u>0.



(4)







It is easy to check that the Gaussian kernel G(u)=exp{-u} satisfies the assumptions above with p=1.



Before we present our main results, define an integral operator LK:LρX22⟶LρX22 associated with the kernel K by:


LK(f):=∫X∫Xf(x,x′)K(x,x′)dρX(x)dρX(x′),∀f∈LρX22.











Our error analysis for the distributed MEE algorithm (Equation (3)) is stated in terms of the following regularity condition:


fρ=LKr(ϕ)forsomer>0,ϕ∈LρX22,



(5)




where LKr denotes the r-th power of LK on LρX22 and is well defined, since the operator LK is positive and compact with the Mercer kernel K. We use the effective dimension [12,13] N(λ) to measure the complexity of HK with respect to ρX, which is defined to be the trace of the operator (λI+LK)-1LK as:


N(λ)=Tr((λI+LK)-1LK),λ>0.











To obtain optimal learning rates, we need to quantify N(λ) of HK. A suitable assumption is: that


N(λ)≤C0λ-β,forsomeC0>0and0<β≤1.



(6)







Remark 1.

When β=1, Equation (6) always holds with C0=Tr(LK). For 0<β<1, when HK is a Sobolev space Wα(X) on X⊂Rd with all derivative of order up to α>d2, then Equation (6) is satisfied with β=d2α [14]. Moreover, if the eigenvalues {γi}i=1∞ of the operator LK decays as γi=O(i-b) for some b>1, then N(λ)=O(λ-1b). The eigenvalues assumption is typical in the analysis of the performances of kernel methods estimators and recently used in References [13,15,16] to establish the optimal learning rate in the least square problems.





The following theorem shows that the distributed gradient descent algorithm (Equation (3)) can achieve the optimal rate by providing the iteration time T and the maximal number of local machines, whose proof can be found in Section 3.



Theorem 1. (Main Result)

Assume Equations (5) and (6) hold forr+β≥12.Let the iteration timeT=⌈N/4⌉12r+βandS+N≥Nβ+12r+β:


m<min{(N+S)12N-β+14r+2β,(N+S)13N-2-2r-β6r+3β}log6N,



(7)




then for any 0<δ<1, with confidence at least 1-δ:


∥f¯T+1,D˜-fρ∥L2≤C′maxN-r2r+β,h-2p(N+S)2p+1Np+322r+β-(2p+1)log424δ,



(8)




where C′ is a constant independent of N,S,δ,h and ⌈N/4⌉ denotes the largest number not exceeding N/4.





Corollary 1.

Under the same conditions of Theorem 1, if the scaling parameter:


h>(N+S)2p+12pNr+p+322p(2r+β)N-2p+12p,








then for any 0<δ<1, with confidence at least 1-δ:


∥f¯T+1,D˜-fρ∥L2≤C′N-r2r+βlog424δ.



(9)









Remark 2.

The rate ON-r2r+β in Equation (9) is optimal in the minimax sense for kernel regression problems [13]. When m=1, the result of Equation (9) shows that the kernel gradient descent MEE algorithm (Equation (2)) on a single big data set can achieve the minimax optimal rate for regression. Thus, MEE is a nice alternative of the classical least squares. Meanwhile, the upper bound (Equation (7)) for the number of local machines implies that the performance of the distributed MEE algorithm (Equation (3)) can be as good as the standard MEE algorithm (2) (acting on the whole data set D˜), provided that the subset D˜l’s size n+s is not too small.





Remark 3.

If no unlabeled data is engaged in the algorithm (Equation (3)), then S=0 and the upper bound (Equation (7)) for the number of local machines m that ensures the optimal rate is about ONr-122r+β. So, when the regularity parameter r in Equation (5) is close to 12, the upper bound ONr-122r+β reduces to a constant and then the distributed algorithm (Equation (3)) will not be feasible in real applications. A similar phenomenon is observed in various distributed algorithms [15,16,17,18]. When the size of unlabeled data S>0, we see from Equation (7) that the upper bound of m keeps growing with the increase of S when the size of labeled data N is fixed. For example, let β>12 and S=N12r+β, then the upper bound in Equation (7) is ONr2r+β and will not be a constant when r→12. Hence, with sufficient unlabeled data D*, the distributed algorithm (Equation (3)) will allow more local machines in the distributed method.





Remark 4.

A series of distributed works [15,16,17,18,19] were carried out when the target function fρ lies in the space HK, i.e., the regularization parameter r>12. As a byproduct, our work in Theorem 1 does not impose the restriction r>12 on the distributed algorithm (Equation (3)).






3. Proof of Main Result


In this section we prove our main results in Theorem 1. To this end, we introduce the data-free gradient descent method in HK for the least squares, defined as f1=0 and:


ft+1=ft-ηt∫X∫X(ft(x,x′)-fρ(x,x′))K(x,x′)dρX(x)dρX(x′),t≥1.











Recalling the definition of LK, it can be written as:


ft+1=ft-ηtLK(ft-fρ)=(I-ηtLK)ft+ηtLK(fρ),t≥1.



(10)







Following the standard decomposition technique in leaning theory, we split the error f¯t+1,D˜-fρ into the sample error f¯t+1,D˜-ft+1 and the approximation error ft+1-fρ.



3.1. Approximation Error


Firstly, we estimate the approximation error ∥ft+1-fρ∥L2. It has been proven in Reference [20] and shown in the lemmas as follows.



Lemma 1.

Define {ft} by Equation (10) with 0<η≤1. If Equation (5) holds with r>0, there are:


∥ft-fρ∥L2≤cϕ,rt-r,








and when r≥12:


∥ft-fρ∥K≤cϕ,rt-(r-12),








where cϕ,r=max∥ϕ∥L2(2r/e)r,∥ϕ∥L2[(2r-1)/e]r-12.





Moreover, we derive the uniform bound of the sequence {ft} by Equation (10) when 0<r<12, which is useful in our analysis. Here and in the sequel, denote πi+1t(L) as the polynomial operator associated with an operator L defined by πi+1t(L):=∏j=i+1t(I-ηL) and πt+1t:=I. We use the conventional notation ∑j=T+1T:=1.



Lemma 2.

Define {ft} by Equation (10) with 0<η≤1. If Equation (5) holds with 0<r<12, there are:


∥ft∥K≤dϕ,η,rt12-r,



(11)




where dϕ,η,r is defined in the proof.





Proof. 

Using Equation (10) iteratively from t to 1, then we have that:


ft+1=∑i=1tηπi+1t(LK)LK(fρ),forallt≥1.











With Equation (5):


∥ft+1∥K=∑i=1tηπi+1t(LK)LK(fρ)K=∑i=1tηπi+1t(LK)LKLKr(ϕ)K=∑i=1tηπi+1t(LK)LKr+12∥LK12ϕ∥K=∑i=1tηπi+1t(LK)LKr+12∥ϕ∥L2.



(12)







Let {σk}k=1∞ be the eigenvalues of the operator LK and 0≤σk≤1,k≥1, since LK is positive and ∥LK∥HK→HK≤1, then the norm:


∑i=1tηπi+1t(LK)LKr+12=supk≥1∑i=1tηπi+1t(σk)σkr+12≤ηsupa>0∑i=1t-1πi+1t(a)ar+12+ηLKr+12≤ηsupa>0∑i=1t-1exp-ηa(t-i)ar+12+η≤∑i=1t-1supa>0ηexp-ηa(t-i)ar+12+η.











For each i≤t-1, by a simple calculation, we have:


supa>0exp-ηa(t-i)ar+12=exp-ηa(t-i)ar+12|a=(r+12)η(t-i)-1=η12-r(r+12)r+12exp-(r+12)t-i-(r+12)≤t-i-(r+12).











Thus, we have:


∑i=1tηπi+1t(LK)LKr+12≤η∑i=1t-1t-i-(r+12)+η=η∑i=1t-1i-(r+12)+η.











By the elementary inequality ∑i=1tt-θ≤t1-θ1-θ with 0<θ<1, it follows that:


∑i=1tηπi+1t(LK)LKr+12≤η11/2-r+1t12-r=η3/2-r1/2-rt12-r.











Together with Equation (12), then the proof is completed by taking dϕ,η,r:=η3/2-r1/2-r∥ϕ∥L2. □






3.2. Sample Error


Define the empirical operator LK,D:HK→HK by:


LK,D:=1N2∑(xi,yi)∈D(xj,yj)∈D⟨·,K(xi,xj)⟩KK(xi,xj),








and for any f∈HK:


LK,D(f)=1N2∑(xi,yi)∈D(xj,yj)∈D⟨f,K(xi,xj)⟩KK(xi,xj)=1N2∑(xi,yi)∈D(xj,yj)∈Df(xi,xj)K(xi,xj).











Then, the MEE gradient descent algorithm (Equation (2)) on D˜ can be written as:


ft+1,D˜=[I-ηLK,D˜](ft,D˜)+ηfρ,D˜+ηEt,D˜,



(13)




where:


Et,D˜=1(N+S)2∑(xi,yi)∈D˜(xj,yj)∈D˜G′[yi-yj-ft,D˜(xi,xj)]2h2-G′(0)ft,D˜(xi,xj)-yi+yjK(xi,xj),



(14)




and:


fρ,D˜=1(N+S)2∑(xi,yi)∈D˜(xj,yj)∈D˜(yi-yj)K(xi,xj).











In the sequel, denote:


BD˜,λ=(LK,D˜+λI)-1(LK+λ),CD˜,λ=(LK+λI)-12(LK-LK,D˜),DD˜,λ=1m∑l=1m(LK+λI)-12(LK-LK,D˜l),FD˜,λ=1m∑l=1m(LK+λI)-12[fρ,D˜l-LK(fρ)]K,GD˜,λ=(LK+λI)-12(LKfρ-fρ,D˜)K.











With these preliminaries in place, we now turn to the estimates of the sample error f¯t+1,D˜-ft+1 presented in the following Lemma, whose proof can be found in the Appendix. Here and in the sequel, we use the conventional notation ∑i=1tt-i-1:=∑i=1t-1t-i-1+1.



Lemma 3.

Let λ>0 and 0<η<min{CG-1,1}, for any f*∈HK, there holds:


∥f¯T+1,D˜-fT+1∥L2≤term1+term2+cp,M|N+S|2p+1N-(2p+1)Tp+3/2h-2p,



(15)




where the constant cp,M=24p+2cpCG2p+1M2p+1:


term1=sup1≤l≤m∑i=1T(T-i)-1+ηλCD˜l,λ×{∑s=1i-1(i-s-1)-1+λη∥fs-f*∥KBD˜l,λCD˜l,λλ-12+(1+ληi)BD˜l,λ(CD˜l,λ∥f*∥K+GD˜l,λ)λ-12+cp,M|N+S|2p+1N-(2p+1)ip+1/2h-2p},








and:


term2=∑i=1T(T-i)-1+ηλDD˜,λ∥fi-f*∥K+(1+ληT)(DD˜,λ∥f*∥K+FD˜,λ).













With the help of Lemma above, to bound the sample error ∥f¯T+1,D˜-fT+1∥L2, we first need to estimate the quantities the quantities BD˜,λ,CD˜,λ,DD˜,λFD˜λ and GD˜,λ. Denote AD,λ:=1⌈|D|/4⌉λ+N(λ)⌈|D|/4⌉ (|D| is the cardinality of D). In previous work [19,21,22,23], we have foundnd that each of the following inequality holds with confidence at least 1-δ:


BD˜,λ≤22AD˜,λlog2δλ2+2,CD˜,λ≤2AD˜,λlog2δ,DD˜,λ≤2AD˜,λlog2δFD˜,λ≤16MAD,λlog4δ,andGD˜,λ≤16MAD,λlog4δ.



(16)







By Lemma 3, we also see that the function f* is crucial to determine ∥f¯T+1,D˜-fT+1∥. To get a tight bound for the learning error, we should choose an appropriate f*∈HK˜ according to the regularity of the target function. When r≥12,fρ∈HK and we take f*=fρ. When 0<r<12,fρ is out of the space HK and we let f*=0.



Now, we give the first main result when the target function fρ is out of HK with 0<r<12.



Theorem 2.

Assume Equation (5) for 0<r<12. Let 0<η<min{1,CG-1},T∈N and λ=T-1. Then, for any 0<δ<1, with probability at least 1-δ, there holds:


∥f¯T+1,D˜-fρ∥L2≤C*{T-r+log2(T)JD,D˜,λlog424mδ+log(T)AD˜,λλr-12+AD,λlog16δ+|N+S|2p+1N-(2p+1)h-2pTp+3/2+Tp+12log(T)sup1≤l≤kAD˜l,λlog2δ},



(17)




where C* is a constant given in the proof, JD,D˜,λ=sup1≤l≤mAD˜l,λλ2+1(AD˜l,λ2λr-1+AD˜l,λADl,λλ-12).





Proof. 

Decompose ∥f¯T+1,D˜-fρ∥L2 into:


∥f¯T+1,D˜-fρ∥L2≤∥f¯T+1,D˜-fT+1∥L2+∥fT+1-fρ∥L2.











The estimate of ∥fT+1-fρ∥L2 is presented in Lemma 1. We only need to handle ∥f¯T+1,D˜-fT+1∥L2 by Lemma 3.



For any 0<s≤T-1 and λ=T-1, by Equation (11), we have ∥fs∥K≤dϕ,η,rs12-r≤dϕ,η,rλr-12. Take f*=0 in Lemma 3, then:


term1≤(1+dϕ,η,r+cp,M)sup1≤l≤m∑i=1T(T-i)-1+ηλCD˜l,λ×{∑s=1i-1(i-s-1)-1+ληBD˜l,λCD˜l,λλr-1+(1+ληi)BD˜l,λ(CD˜l,λλr-12+GD˜l,λ)λ-12+|N+S|2p+1N-(2p+1)ip+1/2h-2p},








and:


term2≤(1+dϕ,η,r)∑i=1T(T-i)-1+ηλDD˜,λλr-12+(1+ληT)(DD˜,λλr-12+FD˜,λ).











Noticing the elementary inequality ∑s=1ii-1≤2log(i), then:


∑s=1i-1(i-s-1)-1+λη≤∑s=1i-1(i-s-1)-1+T-1≤4log(i),










∑i=1T(T-i)-1+ηλ∑s=1i-1(i-s-1)-1+λη≤4∑i=1T(T-i)-1+T-1log(i)≤16∑i=1Tlog(i)T-i≤16log(T)∑i=1T1T-i=16log(T)∑i=1T-1i-1≤32log2(T),










∑i=1T(T-i)-1+ηλ(1+ληi)≤∑i=1T(T-i)-1+ηT-1(1+T-1ηi)≤2∑i=1T(T-i)-1+1≤8log(T),








and:


∑i=1T(T-i)-1+ηλ≤4log(T),










∑i=1T(T-i)-1+ηλip+1/2≤∑i=1T(T-i)-1+ηλTp+1/2≤4Tp+1/2log(T).











Plugging the above inequalities into term 1 and term 2, then:


term1≤sup1≤l≤mC1(log2(T)BD˜l,λCD˜l,λ2λr-1+log(T)BD˜l,λCD˜l,λ2λr-1+log(T)BD˜l,λCD˜l,λGD˜l,λλ-12+|N+S|2p+1N-(2p+1)Tp+1/2log(T)CD˜l,λh-2p),



(18)




and:


term2≤C2(log(T)DD˜,λλr-12+FD˜,λ),



(19)




where C1=32(1+dϕ,η,r+cp,M) and C2=6(1+dϕ,η,r).



By Equation (16), for any fixed l, there exist three subsets with measure at least 1-δ such that:


BD˜l,λ≤22AD˜l,λlog2δλ2+2,CD˜l,λ≤2AD˜l,λlog2δ,








and:


GD˜l,λ≤16MADl,λlog4δ.











Thus, for any fixed l, with confidence at least 1-3δ, there holds:


BD˜l,λCD˜l,λ2λr-1≤32AD˜l,λλ2+1AD˜l,λ2λr-1log42δ,








and:


BD˜l,λCD˜l,λGD˜l,λλ-12≤256MAD˜l,λλ2+1AD˜l,λADl,λλ-12log32δlog4δ.











Therefore, with confidence at least 1-3mδ, there holds:


sup1≤l≤mBD˜l,λCD˜l,λ2λr-1≤32AD˜l,λλ2+1AD˜l,λ2λr-1log42δ,








and:


sup1≤l≤mBD˜l,λCD˜l,λGD˜l,λλ-12≤256MAD˜l,λλ2+1AD˜l,λADl,λλ-12log32δlog4δ.











Thus, by Equation (18), it follows that with confidence at least 1-δ/2 by scaling 3mδ to δ/2, there holds:


term1≤C3sup1≤l≤m(log2(T)AD˜l,λλ2+1(AD˜l,λ2λr-1+AD˜l,λADl,λλ-12)log424mδ+|N+S|2p+1N-(2p+1)Tp+1/2log(T)AD˜l,λh-2p),








where C3=C1(256M+64).



Similarly, with confidence at least 1-2δ such that:


DD˜,λ≤2AD˜,λlog2δ,andFD˜,λ≤16MAD,λlog4δ.











By Equation (19), it follows that with confidence at least 1-δ/2 by scaling 2δ to δ/2:


term2≤C4log(T)AD˜,λλr-12+AD,λlog16δ,








where C4=C2(16M+2). Together with Lemma 1, we obtain the desired bound (Equation (17)) with C*=cϕ,r+C3+C4+cp,M. □





Next, we give the result when the target function fρ is in HK with r≥12.



Theorem 3.

Assume Equation (1) for r≥12. Let 0<η<min{1,CG-1},T∈N and λ=T-1. Then, for any 0<δ<1, with probability at least 1-δ, there holds:


∥f¯T+1,D˜-fρ∥L2≤C*{T-r+log2(T)KD,D˜,λlog424mδ+log(T)AD˜,λ+AD,λlog16δ+|N+S|2p+1N-(2p+1)h-2pTp+3/2+Tp+12log(T)sup1≤l≤kAD˜l,λlog2δ},



(20)




where KD,D˜,λ=sup1≤l≤mAD˜l,λλ2+1(AD˜l,λ2+AD˜l,λADl,λ)λ-12 and C* is a constant given in the proof.





The proof is similar to that of Theorem 2. Here we omit it.



With these preliminaries in place, we can prove our main result in Theorem 1.



Proof of Theorem 1.

We first prove Equation (8) by Theorem 2 when 0<r<12. Let T=⌈|D|/4⌉12r+β and λ=T-1. Notice that |D|=N,|D˜|=N+S and m|Dl|=|D|,m|D˜l|=|D˜| for 1≤l≤m, with r+β>12 and Equation (7), we obtain that:


AD,λ=⌈|D|/4⌉-1+14r+2β+C0⌈|D|/4⌉-12+β4r+2β≤(C0+1)⌈|D|/4⌉-r2r+β≤5(C0+1)|D|-r2r+β=5(C0+1)N-r2r+β,










AD˜,λ=⌈|D˜|/4⌉-1[|D|/4]14r+2β+C0⌈|D˜|/4⌉-12⌈|D|/4⌉β4r+2β≤5(C0+1)(|D˜|-1|D|14r+2β+|D˜|-12|D|β4r+2β)=5(C0+1)(|N+S|-1N14r+2β+|N+S|-12Nβ4r+2β),










ADl,λ=⌈|Dl|/4⌉-1⌈|D|/4⌉14r+2β+C0⌈|Dl|/4⌉-12⌈|D|/4⌉β4r+2β≤5(C0+1)(m|D|-1+14r+2β+m12|D|-12+β4r+2β)=5(C0+1)(mN-1+14r+2β+m12N-12+β4r+2β),








and:


AD˜l,λ≤5(C0+1)(|D˜l|-1|D|14r+2β+|D˜l|-12|D|β4r+2β)=5(C0+1)(m|D˜|-1|D|14r+2β+m12|D˜|-12|D|β4r+2β)≤25(C0+1)m12|D˜|-12|D|β4r+2β.











Thus:


AD˜l,λλ≤5(C0+1)(m|D˜|-1|D|14r+2β+m12|D˜|-12|D|β4r+2β)⌈|D|/4⌉12(2r+β)≤25(C0+1)m12|D˜|-12|D|β+14r+2β=25(C0+1)m12|N+S|-12Nβ+14r+2β≤25(C0+1).











It follows for l=1,⋯,m:


AD˜l,λλ2+1≤20(C0+1)2+1,










AD˜l,λ2λr-1≤10(C0+1)2(m2|D˜|-2|D|12r+β+m|D˜|-1|D|s2r+β)|D|1-r2r+β=10(C0+1)2(m2|D˜|-2|D|22r+β+m|D˜|-1|D|1+β2r+β)|D|-r2r+β≤20(C0+1)2|D|-r2r+s/log6|D|=20(C0+1)2N-r2r+s/log6N,










AD˜l,λADl,λλ-12≤10(C0+1)2m12|D˜|-12|D|β4r+2β(m|D|-1+14r+2β+m12|D|-12+β4r+2β)|D|14r+2β≤10(C0+1)2(m32|D˜|-12|D|-β+4r-24r+2β+m|D˜|-12|D|β+1-2r4r+2β)≤20(C0+1)2|D|-r2r+β/log6|D|=20(C0+1)2N-r2r+β/log6N.











Thus, by the above estimates:


JD,D˜,λ≤40(20(C0+1)2+1)(C0+1)2N-r2r+β/log6N








Thus:


log2(T)JD,D˜,λlog424mδ≤24log2(T)JD,D˜,λ(log4m)log424δ≤24(2r+β)-2(log2N)JD,D˜,λ(log4m)log424δ≤24(2r+β)-2(log6N)JD,D˜,λlog424δ≤210(2r+β)-2(20(C0+1)2+1)(C0+1)2|D|-r2r+βlog424δ=210(2r+β)-2(20(C0+1)2+1)(C0+1)2N-r2r+βlog424δ,








and:


log(T)AD˜,λλr-12≤(2r+β)-15(C0+1)log|D|(|D˜|-1|D|12r+β+|D˜|-12|D|β+14r+2β)|D|-r2r+β≤25(2r+β)-1(C0+1)|D|-r2r+β=25(2r+β)-1(C0+1)N-r2r+β.











Putting the above estimates into Theorem 2, we have the desired conclusion (Equation (8)) with:


C′=C*210(2r+β)-2(20(C0+1)2+1)(C0+1)2+25(2r+β)-1(C0+1)+5(C0+2).











When r≥12, we apply Theorem 3 and take the same proof procedure a above. Then, the conclusion (Equation (8)) can be obtained. The proof is completed. □







4. Simulation and Conclusions


In this section, we provide the simulation to verify our theoretical statements. We assume that the inputs {xi} are independently drawn according to the uniform distribution on [0,1]. Consider the regression model yi=gρ(xi)+εi,i=1,⋯,N, where εi is the independent Gaussian noise N(0,0.12) and:


gρ(x)=x,if 0<x≤0.5,1-x,if 0.5<x≤1.











Define the pairwise kernel K:X2×X2→R by K((x,u),(x′,u′)):=K1(x,x′)+K1(u,u′)-K1(x,u′)-K1(x′,u) where:


K1(x,x′)=1+min{x,x′}.











We apply the kernel K to the distributed algorithm (Equation (3)). In Figure 1, we plot the mean squared error of Equation (3) for N=600 and S=0,300,600 when the number of local machines m varies. Note that S=0, and it is a standard distributed MEE algorithm without unlabeled data. When m becomes large, the red curve increases dramatically. However, when we add 300 or 600 unlabeled data, the error curves begin to increase very slowly. This coincides with our theory that using unlabeled data can enlarge the range of m in the distributed method.



This paper studied the convergence rate of the distribute gradient descent MEE algorithm in a semi-supervised setting. Our results demonstrated that using additional unlabeled data can improve the learning performance of the distributed MEE algorithm, especially in enlarging the range of m to guarantee the learning rate. As we know, there are many gaps between theory and empirical studies. We regard this paper as mainly a theoretical paper and expect that the theoretical analysis give some guidance to real applications.
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Appendix A. Proof of Lemma 3


We state two useful lemmas as follows, whose proof can be found in Reference [22].



Lemma A1.

For λ>0, 0<η<1 and j=1,⋯,t-1, we have:


max{∥η(LK+λ)πj+1t(LK)∥,∥η(LK,D˜+λ)πj+1t(LK,D˜)∥}≤1t-j+ηλ,max{∥∑j=1tη(LK+λ)πj+1t(LK)∥,∥∑j=1tη(LK,D˜+λ)πj+1t(LK,D˜)∥}≤1+ηλt.













Lemma A2.

For any λ>0 and f*∈HK, there holds:


∥ft+1,D˜-ft+1∥L2≤BD˜,λCD˜,λ∑i=1tt-i-1+ηλ∥fi-f*∥K+BD˜,λ1+ηλtCD˜,λ∥f*∥K+GD˜,λ+cp,M(N+S)2p+1N-(2p+1)tp+1/2h-2p,



(A1)




and:


∥ft+1,D˜-ft+1∥K≤BD˜,λCD˜,λ∑i=1tt-i-1+ηλ∥fi-f*∥K/λ+BD˜,λ1+ηλtCD˜,λ∥f*∥K+GD˜,λ/λ+cp,M(N+S)2p+1N-(2p+1)tp+1/2h-2p,



(A2)




where the constant cp,M=24p+2cpCG2p+1M2p+1.





Proof of Lemma A2.

By Equations (10) and (13), we get a two error decomposition for ft+1,D-ft+1.



The first one is:


ft+1,D˜-ft+1=η∑i=1tπi+1t(LK,D˜)[LK-LK,D˜](fi)+η∑i=1tπi+1t(LK,D˜)[fρ,D˜-LK(fρ)]+η∑i=1tπi+1t(LK,D˜)Ei,D˜,



(A3)




and the second one is:


ft+1,D˜-ft+1=η∑i=1tπi+1t(LK)[LK-LK,D˜](fi,D˜)+η∑i=1tπi+1t(LK)[fρ,D˜-LK(fρ)]+η∑i=1tπi+1t(LK)Ei,D˜.



(A4)







It has been proven in Reference [22] that {ft,D˜} as ∥ft,D˜∥K≤2CG|D˜||D|Mt12=2CG|N+S|NMt12. It follows from Equation (4) that:


∥Et,D˜∥K≤1|N+S|2∑(xi,yi)∈D˜,(xj,yj)∈D˜∥G′(ft,D*(xi,xj)-yi+yj)2h2-G′(0)(ft,D˜(xi,xj)-yi+yj)K(xi,xj)∥K≤cp2|N+S|NCGM+22p+1h2p∥ft,D˜∥K2p+1≤24p+2cpCG2p+1M2p+1|N+S|2p+1N2p+1tp+1/2h-2p.



(A5)







Then, we can follow the proof procedure in Proposition 1 of Reference [24] to prove Equations (A2) and (A1). □





With the help of the lemmas above, we can prove Lemma 3.



Proof of Lemma 3.

Applying Equation (24) with D˜=D˜l for l=1,⋯,m, we have that:


∥f¯T+1,D˜l-fT+1∥L2=∥1m∑l=1mf¯T+1,D˜l-fT+1∥L2≤∥η∑i=1Tπi+1T(LK)1m∑l=1m[LK-LK,D˜l](fi,D˜l)∥L2+∥η∑i=1Tπi+1T(LK)1m∑l=1m[f^ρ,D˜l-LK(fρ)]∥L2+∥η∑i=1Tπi+1T(LK)1m∑l=1mEi,D˜l∥L2:=I1+I2+I3.











Firstly, we will bound I1, which is most difficult to handle. It can be decomposed as:


I1≤η∑i=1Tπi+1T(LK)1m∑l=1m(LK+λ)12[LK-LK,D˜l](fi,D˜l-fi)K+η∑i=1Tπi+1T(LK)1m∑l=1m(LK+λ)12[LK-LK,D˜l](fi-f*)K+η∑i=1Tπi+1T(LK)1m∑l=1m(LK+λ)12[LK-LK,D˜l](f*)K:=I11+I12+I13.











Then, it is easy to get that by Lemma A1 and f1,D˜l=f1=0:


I11=∑i=1Tη(LK+λ)πi+1T(LK)1m∑l=1m(LK+λ)-12[LK-LK,D˜l](fi,D˜l-fi)K≤∑i=1Tη(LK+λ)πi+1T(LK)1m∑l=1m(LK+λ)-12[LK-LK,D˜l](fi,D˜l-fi)K≤∑i=1T(ηλ+(T-i)-1)sup1≤l≤m(LK+λ)-12[LK-LK,D˜l](fi,D˜l-fi)K≤sup1≤l≤m∑i=1T(ηλ+(T-i)-1)∥fi,D˜l-fi∥KCD˜l,λ.











Applying Proposition A2 with D˜=D˜l and t+1=i, we have that:


∥fi,D˜l-fi∥K≤∑s=1i-1(i-s-1)-1+λη∥fs-f*∥KBD˜l,λCD˜l,λλ-12+(1+ληi)BD˜l,λ(CD˜l,λ∥f*∥K+GD˜l,λ)λ-12+cp,M|N+S|2p+1N2p+1ip+1/2h-2p.











Thus:


I11≤sup1≤l≤m∑i=1T(ηλ+(T-i)-1)CD˜l,λ×{∑s=1i-1(i-s-1)-1+λη∥fs-f*∥KBD˜l,λCD˜l,λλ-12+(1+ληi)BD˜l,λ(CD˜l,λ∥f*∥K+GD˜l,λ)λ-12+cp,M|N+S|2p+1N2p+1ip+1/2h-2p}.



(A6)







By Lemma A1 again, we have:


I12≤∑i=1Tη(LK+λ)πi+1T(LK)1m∑l=1m(LK+λ)-12[LK-LK,D˜l](fi-f*)K≤∑i=1Tη(LK+λ)πi+1T(LK)1m∑l=1m(LK+λ)-12[LK-LK,D˜l]∥∥fi-f*K≤∑i=1T(ηλ+(T-i)-1)DD˜,λ∥fi-f*∥K,



(A7)




and:


I13≤∑i=1Tη(LK+λ)πi+1T(LK)1m∑l=1m(LK+λ)-12[LK-LK,D˜l]f*K≤(1+ληT)DD˜,λ∥f*∥K.



(A8)







This completes the estimate of I1 with Equations (A6), (A7), and (A8).



Now we turn to bound I2. Then, by the definition of FD˜,λ, the bound (Equation (A5)) of Et,D˜ and Lemma A1, we obtain that:


I2≤(1+ηλT)FD˜,λ,








and:


I3≤cp,M|D˜|2p+1|D|2p+1Tp+3/2h-2p=cp,M|N+S|2p+1N2p+1Tp+3/2h-2p.











Together with the bound of Equations (A6), (A7), and (A8), we can get the desired conclusion (Equation (15)). □
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Figure 1. The mean square errors for the size of unlabeled data S∈{0,300,600} as the number of local machines m varies. 
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Table 1. List of notations used throughout the paper.
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	Notation
	Meaning of the Notation





	X
	the explanatory variable



	Y
	the response variable



	X
	X∈X, a compact subset of an Euclidian space Rn



	Y
	Y∈Y, a subset of R



	ρ(·,·)
	a Boreal measure on X×Y



	ρX
	the marginal probability measure of ρ on X



	ρ(y|x)
	the conditional probability measure of y∈Y given X=x



	gρ(x)
	the mean regression function gρ(x)=∫Yydρ(y|x)



	fρ(x,u)
	the target function of MEE induced by fρ(x,u)=gρ(x)-gρ(u)



	K
	a reproducing kernel on X×X



	D
	the labeled data set D={(x1,y1),…,(xN,yN)}



	N
	the size of labeled data set D



	⌈N/4⌉
	the largest integer not exceeding N/4



	|D|
	the cardinality of D,|D|=N



	D*
	the unlabeled data set D*={x1,…,xS}



	S
	the size of unlabeled data set D*



	|D*|
	the cardinality of D*,|D*|=S



	D˜
	training data set used in the distributed MEE algorithm, consisting of D and D*



	|D˜|
	the cardinality of D˜,|D˜|=N+S



	m
	the number of local machines



	D˜l
	the lth subset of D˜,1≤l≤m



	G
	the loss function of MEE algorithm



	LK
	the integral operator associated with K



	LK,D˜
	the empirical operator of LK on D˜



	ft+1,D
	the function output by the kernel gradient descent MEE algorithm



	
	with data D and kernel K after t iterations



	ft+1,Dl
	the function output by the kernel gradient MEE algorithm



	
	with data Dl and kernel K after t iterations



	f¯t+1,D˜
	the global output averaging over local outputs ft+1,D˜l,l=1,…,m
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