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Abstract: As it is well known both atmospheric and mantle convection are very complex phenomena.
The dynamical description of these processes is a very difficult task involving complicated 2-D or
3-D mathematical models. However, a first approximation to these phenomena can be by means of
simplified thermodynamic models where the restriction imposed by the laws of thermodynamics
play an important role. An example of this approach is the model proposed by Gordon and Zarmi
in 1989 to emulate the convective cells of the atmospheric air by using finite-time thermodynamics
(FTT). In the present article we use the FTT Gordon-Zarmi model to coarsely describe the convection
in the Earth’s mantle. Our results permit the existence of two layers of convective cells along the
mantle. Besides the model reasonably reproduce the temperatures of the main discontinuities in the
mantle, such as the 410 km-discontinuity, the Repetti transition zone and the so-called D-Layer.

Keywords: convective zone; earth’s mantle; finite time thermodynamics

1. Introduction

The Earth’s mantle occupies more of the eighty percent of the total Earth volume. It lies between
the core and the Earth’s crust (just before the Litosphere) [1,2]. The knowledge of the Earth’s mantle
arises from the study of some volcanic activity waste, but mostly from experimental data provided by
seismic waves. It is divided into two basic zones which are the inferior mantle (Mesosphere) and the
superior mantle (Astenosphere). The Mesosphere extends from a depth of approximately 660 km up to
the core-mantle limit and the Astenosphere continuous from the Mesosphere up to the Litosphere [3].

There are additional subdivisions: first, at the core-mantle boundary there is a very important
region representing a transition known as Wiechert-Gutenberg discontinuity which is a change of
composition known as “D-layer”; second, the zone of transition between the inferior mantle and
the superior mantle is the discontinuity of Repetti; third, the 410 km-discontinuity; finally, in the
limit of the mantle-crust, another zone of transition is the discontinuity of Mohorovicic (Moho).
These discontinuities have been found due to several studies about the velocity changes of the seismic
waves [1,2,4].

Within the Earth’s mantle there is a gradual increase in temperature with depth generating
gradients that permit an efficient transmission of heat. However, it is well known that rocks are not
good conductors of heat, therefore it can be concluded that the best way in which the mantle can
transfer heat is through convection. The convection flow is the most important process that takes place
inside the Earth, since it is the force that moves rigid lithospheric plates across the planet generating
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the formation of mountains, mountain ranges, volcanic and seismic activity of the Earth [1–4]. The first
approaches to mantle convection were through 2-D models. However, nowadays the mantle convection
is also modeled by means of 3-D models [5].

One of the most argued theories is the one of two layers of convection due to the seismic
discontinuity of Repetti which is approximately at 660 km of depth, [5]. The existence of matter
transport through this discontinuity was verified with the development of the seismic tomography, [5].
However, it is known that the transition zone marks a change in the convection of the mantle, which
makes possible to think that at some early stage of Earth evolution there was a convection in two
layers due to convection forces of the Earth [3,4,6].

One interesting application of finite-time thermodynamics (FTT) was made by Gordon and Zarmi
(GZ) [7] taking the Sun-Earth-wind system as a FTT-cyclic heat engine where the heat input is solar
radiation, the working fluid is the Earth’s atmosphere and the energy in the winds is the work per unit
time produced. Later the GZ model for convective cells of the air in the atmosphere was extended by
several authors [8–13] by taking into account some additional restrictions of the atmospheric behavior,
such as the greenhouse effect, internal dissipation in the working fluid and some changes in the
temperature of the cold thermal bath of the GZ model. In 2006 Reis and Bejan [14] also studied the
natural convection loops in the atmospheric air by using the constructal theory [15]. Later, a connection
of this theory with entropy generation was proposed [16]. Our approach is based on the fact that there
are gradients of temperature within the Earth’s mantle; that is, it is necessary at least two representative
mantle’s temperatures for making the creation of work possible; that is, to take the viscoelastic material
of the mantle as a working fluid that converts heat into mechanical work. This permits to introduce in
a natural way the concept of Earth mantle “heat engine”. In this context, process variables as work rate,
heat fluxes and efficiency for instance, find a simple theoretical framework, where thermodynamical
restrictions play a major role. This is in contrast with disciplines as non-equilibrium thermodynamics
and hydrodynamics based on local differential equations where the transition from local to global
variables is not a trivial task, [17,18]. For the case of the GZ model for the convective cells of air within
the Earth’s atmosphere these authors [7] found reasonable values for the annual average power in the
Earth winds and for the average maximum and minimum temperatures of the atmosphere, without
resorting to detailed dynamic models of the Earth’s atmosphere, and without considering any other
effect; such as the Earth rotation, Earth translation around the Sun and ocean currents. These results by
Gordon and Zarmi and those later found by several authors [8–13] by means of small variations of the
GZ model indicate that the global thermodynamic approach to this kind of energy converters are good
first approximations based only in the global restrictions imposed by the laws of thermodynamics and
with the inclusion of the time through the methods of finite time thermodynamics [19–25]. We think
that an analogous approach can be used for a first approximation to the convection zone of the Earth.
In 2012, in Reference [26] the GZ model was also applied to the convective zone of the Sun. In the
present article we apply the GZ model to the convective zone of the Earth, giving an additional step to
the model of equilibrium thermodynamics presented by Stacey [27] for the mantle convection.

In this work, we apply the Gordon-Zarmi convective model to the convection in the Earth’s
mantle, in a similar way that these authors used it firstly for convective atmospheric cells. The paper
is organized as follows: For reasons of self-containment we include in Section 2 a brief review of
finite-time thermodynamics and we also present a review of the GZ model applied to the convective
atmospheric cells by means of two performance regimes (maximum power regime and maximum
ecological regime). In Section 3 we apply the GZ model to the convective zone of the Earth’s mantle
which is located between the core and the Earth’s crust and finally we present our conclusions.

2. Finite-Time Thermodynamics and the Gordon-Zarmi Convective Model

Since the pioneering Curzon-Ahlborn (CA) paper [28] published in 1975, FTT has been applied to
several physical systems, as thermal engine models [20–24,29]. In the same way that early classical
thermodynamics in the 19th century, starting from the study of thermal engines, soon reached
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practically all macroscopic systems, FTT embraced many problems where entropy production of
global processes plays an unavoidable role. In a typical FTT heat engine model the whole entropy
production is ascribed only to the coupling between the working substance and its surroundings and
it is permitted that the working fluid undergoes only reversible transformations. This approach is
called the endoreversibility hypothesis (EH) [30]. By means of this hyphotesis it has been possible
to place realistic bounds on irreversible processes that proceed in finite time. Usually, in FTT
methodology one calculates an extremum or optimum of a thermodynamically meaningful variable or
functional [7]. In 2004, Fischer and Hoffmann [31] showed that a simple endoreversible model
(the so-called Novikov engine) can reproduce the complex engine behavior of a quantitative dynamical
simulation of an Otto engine including, but no limited to, effects from losses due to heat conduction,
exhaust losses and frictional losses. On the other hand, Curto-Risso et al. [32] have published an
FTT-model also for an irreversible Otto cycle for reproducing performance results of a very elaborated
dynamical model of a real spark ignition heat engine including a turbulent flame propagation process,
valves overlapping, heat transfer across the cylindrical walls, and a detailed analysis of the involved
chemical reactions [33]. In References [31,32], the spirit of FTT is illustrated emphasizing the virtues
and limitations of this methodology. However, in these articles the usefulness of FTT models is shown
beyond any doubt. In fact, we can assert that the FTT spirit is concomitant with the spirit of a Carnotian
thermodynamics in the sense of the search for certain kind of limits for thermodynamic variables and
functionals. For example, in 1975, Curzon and Ahlborn [28] published an article where they proposed
a kind of Carnot cycle that produces entropy only due to an irreversible Newtonian heat transfer
between two thermal reservoirs at absolute temperatures T1 and T2 (T1 > T2) and the two isothermal
branches of the working fluid at temperatures T1w and T2w (T1w > T2w) respectively (see Figure 1).

T1

T2

T2w

T1w

P

Q2

Q1

Figure 1. Curzon and Ahlborn heat engine model.

CA used as heat transfer law the following linear equations,

Q1 = α(T1 − T1w), (1)

Q2 = β(T2w − T2), (2)

where α and β are the thermal conductances of the materials that separate the reservoirs from the
working substance, and Q1 and Q2 are the heat flows per unit time. In this way, CA proposed an
irreversible global model with ∆Stot > 0 but internally reversible (EH). By integrating Equations (1)
and (2), CA obtained the cycle’s period ∆t and therefore they had a cycle with non-zero power,
in contrast to the reversible Carnot cycle with both zero entropy and power productions. For the
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mentioned cycle model, CA maximized the power output, and they found that the efficiency under
maximum-power conditions is expressed by,

ηCA = 1−

√
T2

T1
. (3)

This same expression was previously obtained by Chambadal [34] and Novikov [35]. Since the
CA-paper, many works have been published in the FTT field and also different regimes of
performance have been widely studied within the literature in order to characterize the energetic
functions of endoreversible engines [7,20–25,28–32,36–39]. One regime of performance proposed by
Angulo Brown [36] consists of finding the best trade-off between high power output and low entropy
production, this regime is known as the ecological criterion.

In Figure 2, it can be observed the qualitative behavior of both the power P and the entropy
production Σ in terms of the efficiency η, for the Curzon-Ahlborn cycle [20]. From this figure it can be
seen that the ecological function,

E = P− T2Σ, (4)

is a concave curve with a maximum point. This function has the following properties: at maximum E,
the power output satisfies PEmax ≈ 3

4 Pmax; the entropy production is ΣEmax ≈ 1
4 ΣPmax and the efficiency

is ηEmax ≈ 1
2 (ηC + ηCA) [40,41]. Due to the previous properties, the function given by Equation (4)

was named the ecological function. The so-called ecological optimization has been applied in many
areas. For instance, thermal engines [37], chemical engines [42–44], biochemical reactions [38,39], linear
energy converters [38,39], superconducting transition [45], thermoeconomical optimization [46,47] and
atmospheric convective cells [11–13].

0 1

P

P ,

C

Figure 2. Behavior of power and entropy production vs internal efficiency.

The endoreversible model of Gordon and Zarmi [7] consists of a Curzon-Ahlborn cycle
in the endoreversible limit and with instantaneous adiabats formed by four branches: (a) Two
isothermal branches, one in which the atmosphere absorbs solar radiation at low altitudes and one
in which the atmosphere rejects heat at high altitudes to the universe; and (b) two intermediate
instantaneous adiabats with rising and falling air currents (see Figure 3). According to these authors
this oversimplified Carnot-like heat engine corresponds very approximately to the global scale motions
of winds in convective cells.
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Figure 3. Scheme of a simplified solar-driven heat engine (taken from Reference [7]).

Atmospheric Convection

The endoreversible model of Gordon-Zarmi (GZ) is based on annual average quantities in such a
way that it represents only 2-dimensional virtual convective cells. On the other hand, quantities such
as the work done by the working fluid, the internal energy of the fluid and the annual average flux of
solar radiation are expressed in units of the earth’s surface.

T1 is the temperature that the working fluid has in an isotherm at a low altitude, in this first half
of the cycle, the working fluid absorbs solar radiation arising up adiabatically to the isotherm T2 at
high altitudes, and in this case the working fluid rejects heat in the form of black body radiation to the
cold reservoir at temperature Text. In the GZ model, the objective is to maximize the work done per
cycle, subject to the endoreversibility condition; that is,

∆Sint =
∫ t0

0

{
qS(t)− σ

[
T4(t)− T4

ext(t)
]

T(t)

}
dt = 0, (5)

where ∆Sint is the entropy change per unit area along the cycle, t0 is the cycle duration time,
Text = 3 K (Surrounding Universe), σ is the Stefan-Boltzmann constant, and finally for qs(t) and
T (t), the following definitions are used [7],

T (t) = {T1 for 0 ≤ t ≤ t0

2
and T2 for

t0

2
≤ t ≤ t0,

qS(t) = { Isc (1− ρ)

2
for 0 ≤ t ≤ t0

2 and 0 for
t0

2
≤ t ≤ t0,

(6)

being Isc = 1373 W/m2 (yearly average solar constant) and ρ = 0.35 is the effective average
albedo of the Earth’s atmosphere, being this, the only macroscopic quantity characterizing the Earth’s
atmosphere [7]. In Equation (6) the temporal dependence of the temperatures T(t) and the heat input
qs(t) is given in terms of the lower part and the upper part of the cycle period t0 respectively. The work
per cycle W is taken from the first law of thermodynamics,

∆U = −W +
∫ t0

0

{
qS(t)− σ

[
T4(t)− T4

ext(t)
]}

dt. (7)

On the other hand, the following averages are defined,
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T =
T1 + T2

2
,

Tn =
Tn

1 + Tn
2

2
, (8)

qs =
Isc (1− ρ)

4
,

where n = 3 or 4, and the factor 1
4 of the average of qs appears when considering 1

2 due to taking into
account the day and night, and another 1

2 is a geometric factor that has to do with the Earth’s cross
section. With the previous considerations, GZ proposed a Lagrangian for maximizing the work per
unit time that is calculated from Equations (7) and (8), and including the endoreversibility constraint
given by Equation (5), thus the Lagrangian results [7],

L = T4 (t) + λ

[
qs (t)
T (t)

− σT3 (t)
]

, (9)

where λ is the Lagrange multiplier. Through the Euler-Lagrange formalism, Gordon-Zarmi
found the following values for the Earth’s atmosphere, T1 = 277 K, T2 = 192 K, and
Pmax = Wmax / t0 = 17.1 W/m2. The values for Pmax and T1, are not so far from actual values, which
are Pmax = 7 W/m2 [48] and T1 = 290 K at ground level. However, the value for T2 = 192 K
corresponds to temperatures that are found in the air at altitudes of around 75–90 km. As it is well
known, the convective motions of air occurs mainly within the troposphere.

In Reference [11] another endoreversible case was analyzed, but using as a cold reservoir the well
known tropopause shell with Text = 200 K, for this case the proposed Lagrangian was [11],

L = qs + σT4
ext − σT4 − γ

[
qs

T1
− σ

T3
1 + T3

2
2

− σT4
ext

(
1
T1

+
1
T2

)]
, (10)

with γ the Lagrange multiplier, and by numerically solving ∂L/∂T1 = 0 and ∂L/∂T2 = 0,
T1 = 293.387 K and T2 = 239.267 K were obtained, which are good values for the convective cells
restricted to the troposphere, since in that zone mainly occurs the activity of the terrestrial winds.
To calculate the wind power they used [11],

P = qs + σT4
ext − σT4, (11)

obtaining P = 10.758 W/m2, which is also a good value for the wind power [48]. In the same
Reference [11], the maximum ecological criterion also was applied to the GZ model, which consists in
maximizing the Equation (4).

By means of the second law of thermodynamics the authors calculated the total entropy change
per cycle,

∆SU =
∫ t0

0

{
−qS(t) + σ

[
T4(t)− T4

ext(t)
]

T (t)

}
dt. (12)

By using Equation (8),

∆SU =
∫ t0

2

0

{
−qS(t)

T1
+ σ

[
T3

1 −
T4

ext
T1

]}
dt−

∫ t0

t0
2

{
σ
[
T4

2 − T4
ext
]

Text

}
dt. (13)

The total entropy production is given by [12],

Σ =
∆SU

t0
≈ qs

T1
+

σ

2

(
T3

1 +
T4

2
Text

)
. (14)
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By the sustitution of Equations (11) and (14) into Equation (4), the ecological function is,

E = qs + σT4
ext − σT4 +

Text

T1

(
qs +

σT4
ext

2

)
− σText

2

(
T3

1 +
T4

2
Text

)
− σT4

ext
2

, (15)

for the case where Text = 3 K, the authors took into account the approximation qs � σT4
ext (223 W/m2

� 4.59 × 10−6 W/m2), and they proposed the following Lagrangian [11],

LE = qs − σT4 +
Textqs

T1
− σText

2

(
T3

1 +
T4

2
Text

)
− γ

[
qs

T1
− σT3

]
, (16)

with which they found the following values, T1 = 294.08 K, T2 = 109.54 K and P = 6.89 W/m2, which
are reasonable values for T1 and P but not for T2. Repeating the calculations, now with Text = 200 K,
they propose a new Lagrangian [11],

LE = qs + σT4
ext − σT4 +

Text

T1

(
qs +

σT4
ext

2

)
− σText

2

(
T3

1 +
T4

2
Text

)
−σT4

ext
2
− γ

[
qs

T1
− σT3 + σT4

ext

(
1
T1

+
1
T2

)]
,

(17)

Obtaining as results T1 = 303 K, T2 = 219 K and P = 7 W/m2, which finally are very good
values compared with the current ones [48]. Obviously, the actual rising and falling air currents in
atmospheric convective cells are not instantaneous. However, the numerical results obtained with the
GZ-model are not so far from actual values. Thus, we can consider that the hypothesis of instantaneous
adiabats is reasonable; that is, the adiabatic times are much smaller than the isothermic times. This last
fact was corroborated by Agrawal et al. [49] for the case of typical finite time heat engine models.

3. GZ Model Applied to the Convective Zone of the Earth

The temperature distribution throughout the Earth’s mantle has been studied by several
authors [1,2,5]. The main mechanism of heat transport along the mantle is by means of convective
motions [1,2,5,50]. As it is well known solid-state convection in Earth’s mantle may be approximated
as a fluid dynamical process involving many complicated physical effects, such as brittle failure in the
surface boundary layers (plates), interior rheology which may depend strongly upon temperature,
pressure and shear stress, both endothermic and exothermic mineralogical phase changes, both internal
heating from radiactivity and bottom heating from the core, and possible chemical stratification [5,50].
According to Bunge et al. [5], the mantle convects with an effective Rayleigh number on the order of
108 to 109. Typical mantle convection speed is around 20 mm/year. A single shallow convection cycle
takes on the order of 50 Myr, though deeper convection can be closer to 200 Myr [5,50]. The question if
the mantle’s convection is layered or it behaves as a whole cycle is an open debate yet [5,50]. In the
present section we propose a simplified 2-D model for the mantle’s convection following an analogous
approach to that used by Gordon and Zarmi to emulate the convective motion of the air in the Earth
atmosphere without resorting to detailed dynamic models of the atmosphere, and without considering
any other effect; such as the Earth rotation, Earth translation around the Sun and ocean currents. In our
proposed model for mantle convection we overlook the complicated physical effects above mentioned.
Our model takes as known data the temperature of the core-mantle interface (T1) and the temperature
of the interface of the lithosphere with the upper mantle (T2), being these temperatures the only data
characterizing the mantle properties. In this way, the quantities to be determined are the so-called
working temperatures (T1w and T2w), corresponding to the isotherms of an internal Carnot-type cycle
carried out by the working substance, which in this case is the viscoelastic material of the mantle; that
is, here we are using the typical FTT terminology for a Curzon-Ahlborn cycle (see Figure 1). The flow
of heat that drives the cycle is that coming from the core of the Earth, which we model using a heat



Entropy 2018, 20, 985 8 of 16

transfer law of the Dulong-Petit type [45,51], which is used as an approximation to describe combined
conductive-convective and radiative cooling by a power-law relationship of the form,

dQ
dt

= α(Ta − T)n, (18)

where dQ/dt is the rate of heat loss per unit area from a body at temperature T, α is a thermal
conductance (or a coefficient of convection), Ta is the temperature of the fluid surrounding the body
and n is an exponent with value between 1.1 and 1.6 [20]. Some authors have established that n = 5/4
based on studies made by Lorentz and Langmuir [20]. As O’Sullivan asserts [51], Stefan in his original
1879 paper, took the results of Dulong and Petit (DP) along with experiments by Tyndall and pointed
out that the DP model was in agreement with his T4 law [51].

In Section 3.1 we apply the GZ model to the convective zone of the Earth assuming a maximum
power performance regime. In Section 3.2 we study the GZ convective model under maximum
ecological function regime.

3.1. Maximum Power Regime

According to some authors [1,52] the geothermal gradient estimated for the Earth interior and
the temperature values assigned to the different interior boundaries can vary in approximately
500 ◦C [1,2,52]. The value of temperatures from the inner core until the superior mantle varies
approximately from 4500 ◦C until 1200–1500 ◦C (below Litosphere) [1,2]. In Figure 4, we show the heat
fluxes balance within the convective zone of Earth’s mantle. In this section, we apply the GZ model
to the convective zone of the Earth, in this case for our thermodynamic analysis we use the law of
Dulong-Petit to describe the heat transfer [45]. T1=4500°CT2=1500°CQ1Q2Core-Mantle boundary T1w

T2w

Figure 4. Schematic diagram of the energy fluxes present in the first internal convective cell.
T1 = 4500 ◦C is taken as the temperature of the first isothermal layer (T2 = 1500 ◦C is taken as the
cold reservoir temperature, and T1w and T2w are the internal temperatures for this endoreversible
model of convective cells.

By applying the endoreversibility condition to the fluxes shown in Figure 4. we have,

∆Sint =
∫ t0

0

α (T1 − T1w)
5
4 − α (T2w − T2)

5
4

T (t)
dt = 0, (19)
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here, in Equation (18) we use the same coefficient of convection (α) for both the lower and upper
parts of the Carnot-like cycle emulating a convective cell, under the assumption that in average the
working substance (mantle materials) undergoing that convection movement has practically the same
properties. By using the following definitions,

T (t) = {T1w for 0 ≤ t ≤ t0
2 and T2w for t0

2 ≤ t ≤ t0, (20)

which give us the temporal dependence of the working temperatures along the two isotherms (lower
and upper) of the cycle. By Using Equations (19) and (20) we obtain,

(T1 − T1w)
5
4

T1w
− (T2w − T2)

5
4

T2w
= 0. (21)

On the other hand, from the first law of thermodynamics, ∆U = Q−W = 0, we obtain,

W = Q =
∫ t0

0

[
α (T1 − T1w)

5
4 − α (T2w − T2)

5
4
]

dt

=
[
α (T1 − T1w)

5
4 − α (T2w − T2)

5
4
]

t0,
(22)

that is, the power output (P = W/t0) results,

P = α (T1 − T1w)
5
4 − α (T2w − T2)

5
4 . (23)

With Equations (21) and (23) we propose the following Lagrangian,

L = α (T1 − T1w)
5
4 − α (T2w − T2)

5
4 − λ

[
(T1 − T1w)

5
4

T1w
− (T2w − T2)

5
4

T2w

]
, (24)

where λ is a Lagrange multiplier. By means of ∂L/∂T1w = 0 and ∂L/∂T2w = 0, we get,

− λ

[
−5

4
(T1 − T1w)

1
4

T1w
+

(T1 − T1w)
5
4

T2
1w

]
=

5α

4
(T1 − T1w)

1
4 , (25)

and

− λ

[
−5

4
(T2w − T2)

1
4

T2w
+

(T2w − T2)
5
4

T2
2w

]
=

5α

4
(T2w − T2)

1
4 . (26)

From Equations (25) and (26) we have,

− 5
4

1
T1w
− (T1 − T1w)

T2
1w

+
5
4

1
T2w
− (T2w − T2)

T2
2w

= 0. (27)

By numerically solving Equations (21) and (27) we obtain T1w = 3517.36 ◦C and
T2w = 2166.97 ◦C (all our calculations for mantle convection are made by using Kelvin temperatures,
and then converted in Celsius ones). These first values for T1w and T2w are close to those reported
values in the literature [1,2] for the well known transition zones of the Earth’s mantle named D layer
and the Repetti transition zone respectively (see Figure 5).
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Figure 5. Diagram of the first and second convective layers of the Earth’s mantle for the case
of maximum Power. The temperature intervals T1 − T1w, T2w − T′1w and T′2w − T2 approximately
correspond to the D-layer, the Repetti transition zone and the 410 km - discontinuity, respectively.

By numerically solving again the system of Equations (21) and (27), but now by using
T1 = 2166.97 ◦C (that is, the value of T2w in the previous case) as the hot reservoir
temperature of the second isothermal layer we find the following values, T′1w = 1969.85 ◦C and
T′2w = 1672.98 ◦C. These temperatures correspond approximately to the well known Repetti transition
zone, that in the case of Figure 5 lies between 1969.85 ◦C and 2166.97 ◦C. Interestingly, besides the
simplicity of the GZ-model, it leads to a reasonable stratification of the temperatures corresponding
to the different layers of the Earth’s interior. In fact, a first application of the GZ-model between the
temperature of the boundary of the inner core and the lower mantle and the temperature of the inferior
crust results in a convective layer that corresponds very well with the lower mantle, in such a form
that a second application of the GZ-model is possible producing a second convective layer between
the Repetti layer and the lower part of the crust, perhaps including the Moho discontinuity. That is,
the simple GZ-model of convection is compatible with the models that support a layered convection
throughout the mantle (two layers in this case).

3.2. Ecological Function Regime

Now, our objective is the maximization of the so-called ecological function defined by
Equation (4), instead of power output. First, we calculate ∆SU , the total entropy change per cycle
(system plus surroundings), that is ∆SU = ∆Ssys + ∆Ssurr, then from Figure 4 we get,

∆SU =

[
(T1 − T1w)

5
4

(
1

T1w
− 1

T1

)
+ (T2w − T2)

5
4

(
1
T2
− 1

T2w

)]
αt0

2
. (28)

Therefore, the entropy production is,

Σ =
∆SU

t0
=

[
(T1 − T1w)

5
4

(
1

T1w
− 1

T1

)
+ (T2w − T2)

5
4

(
1
T2
− 1

T2w

)]
α

2
. (29)
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By substituting Equations (28) and (29) into Equation (4) the ecological function results,

E =

[
(T1 − T1w)

5
4

(
2− T2

T1w
+

T2

T1

)
− (T2w − T2)

5
4

(
3− T2

T2w

)]
α

2
. (30)

With Equations (21) and (30) we propose the following Lagrangian,

LE =

(T1 − T1w)

5
4
(

2− T2

T1w
+

T2

T1

)
− (T2w − T2)

5
4
(

3− T2

T2w

) α

2

−λE

 (T1 − T1w)

5
4

T1w
− (T2w − T2)

5
4

T2w

 ,

(31)

being λE a Lagrange multiplier. By means of the extremal conditions ( ∂LE/∂T(t) = 0), we obtain the
following equations,

λE

−5
4
(T1 − T1w)

1
4

T1w
− (T1 − T1w)

5
4

T2
1w


=

−5
4
(T1 − T1w)

1
4
(

2− T2

T1w
+

T2

T1

)
+

T2

T2
1w

(T1 − T1w)

5
4

 α

2
,

(32)

and

λE

−5
4
(T2w − T2)

1
4

T2w
+

(T2w − T2)

5
4

T2
2w


=

−5
4
(T2w − T2)

1
4
(

3− T2

T2w

)
− T2

T2
2w

(T2w − T2)

5
4

 α

2
.

(33)

From the previous equations we obtain,−5
4
(T1 − T1w)

1
4

T1w
− (T1 − T1w)

5
4

T2
1w


−5

4
(T2w − T2)

1
4
(

3− T2

T2w

)
− T2

T2
2w

(T2w − T2)

5
4



−

−5
4
(T2w − T2)

1
4

T2w
+

(T2w − T2)

5
4

T2
2w


−5

4
(T1 − T1w)

1
4
(

2− T2

T1w
+

T2

T1

)
+

T2

T2
1w

(T1 − T1w)
5
4


= 0

(34)

Now solving Equations (21) and (34) we obtain T1w = 3705.38 ◦C and T2w = 1981.63 ◦C.
By numerically solving the system of Equations (21) and (34), but now using T1 = 1981.63 ◦C;
that is, the previous T2w is taken now as the hot bath for the second layer. This way we obtain,
T1w = 1882.12 ◦C and T2w = 1586.81 ◦C as values for the second convection layer (see Figure 6).
Thus, for both optimization criteria (maximum power and maximum ecological function) the set of
temperature values obtained shown in Figures 5 and 6 are not so far from the accepted values for the
temperatures of the boundaries between the different strata of the inner region between outer core and
the crust.
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Figure 6. Diagram of the first and second convective layers of the Earth’s mantle for the case of
maximum ecological function. The temperature intervals T1 − T1w, T2w − T′1w and T′2w − T2 are also
not very far from those corresponding to the discontinuities mentioned in Figure 5.

In Tables 1 and 2, we show the working temperatures (T1w, T2w, T′1w and T′2w) for the two
convective layers that fit in the available space between the outer core and the lower limit of the
crust; that is, the place that the mantle occupies. Table 1 corresponds to the results stemming from the
maximization of power output of the convective model and Table 2 are the corresponding results for
the maximum ecological regime. The numerical results shown in both Tables were obtained by means
of the GZ-model used in Section 3 for an exponent n = 5/4. In these Tables the exponents n = 1, 1.2, 1.25
and 1.5 were used. All these exponents were reported as reasonable values for the Dulong-Petit law [51].
As we can see in both Tables all the calculated values for the working temperatures are no so far from
the estimated values for the corresponding strata of the interior of the Earth located between the outer
core and the lower part of the crust, especially if we consider that the values reported for the interior
temperatures have an inaccuracy of around 500 ◦C [1,52]. For example, in the core-mantle boundary;
that is, the D-layer, which has approximately a thickness between 200 and 250 km, the estimated value
for the temperature gradient is around 3 ◦C/km and therefore, the temperature change along the
D-layer is between 600 and 750 ◦C with the aforementioned inaccuracy of 500 ◦C. Thus, the temperature
changes calculated with T1 = 4500 ◦C and T1w taken from both Tables are within the reported range
for the D-layer [1,52]. As we said before the elapsing time of actual convective cells in the mantle is in
the order of 50–200 Myr; that is, they are very slow processes. We think that for this kind of processes
both the maximum power and the maximum ecological regimes are not very different.

Table 1. Numerical results for the two convective layers between the outer core and the lower limit of
the crust of the Earth at maximum power conditions.

n
T1w (◦C) T2w (◦C) T ′1w (◦C) T ′2w (◦C)

(1st It) (1st It) (2nd It) (2nd It)

1 3249.04 2049.04 1901.1 1626.58
1.2 3524.01 2145.41 1957.67 1663.95

1.25 3517.36 2166.97 1969.85 1672.98
1.5 3483.91 2261.83 2021.24 1715.69
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Table 2. Numerical results for the two convective layers between the outer core and the lower limit of
the crust of the Earth at maximum ecological function conditions.

n
T1w (◦C) T2w (◦C) T ′1w (◦C) T ′2w (◦C)

(1st It) (1st It) (2nd It) (2nd It)

1 3256.23 2427.05 2025.06 1871.51
1.2 3709.21 1965.91 1871.34 1582.23

1.25 3705.38 1981.63 1882.12 1586.81
1.5 3685.58 2051.01 1933.14 1602.4

4. Conclusions

As it is well known both atmospheric and mantle convections are very complex
phenomena [53]. The dynamical description of these processes is a very difficult task involving
complicated mathematical models. Some of the approaches to this problem are based on numerical
2D and 3D computational formulations [3,5,6]. However, a first approximation to these phenomena
can be throughout simplified thermodynamic models where the restrictions imposed by the laws
of thermodynamics play the main role [1,5]. For instance, Gordon and Zarmi in 1989 proposed a
simplified model representing the convective cells of the atmospheric air without resorting to detailed
dynamic models of the Earth’s atmosphere, and without considering any other effect, such as the
Earth rotation, Earth translation around the Sun and ocean currents. In spite of the simplicity of that
model, the obtained values for the annual average power of the winds and the mean temperature of
the Earth surface were reasonable. Later, other authors by means of small changes on the GZ-model
also obtained very good results for the mentioned quantities and also for the temperature of the high
part of the troposphere [8,9,11,12]. In the present article we propose a thermodynamic simplified
model for the convective zone of the Earth’s mantle by means of the GZ-model. Interestingly, also for
the convective cells in the mantle the GZ-model leads to reasonable values for the temperatures of
the boundaries between the different strata existing through the mantle. For example, in Figure 5 we
observe that between the core-mantle boundary at T1 = 4500 ◦C and the mantle-litosphere boundary
at T2 = 1500 ◦C a first layer of convective cells is generated by the model with working temperatures
T1w = 3517.36 ◦C and T2w = 2166.97 ◦C. Curiously, the temperature interval between T1 and T1w
corresponds very well with the D-layer. On the other hand, between T2w and T2, the GZ-model
permits the existence of a second layer of convective cells. This second convective cell is obtained
by taking T2w = 2166.97 ◦C as the hot reservoir of a “heat engine” with a cold reservoir given
by T2 = 1500 ◦C. In this way, we obtained two new working temperatures T′1w = 1969.85 ◦C and
T′2w = 1672.98 ◦C (see Figure 5). Moreover, the temperatures interval between T2w and T′1w corresponds
also very well with the Repetti discontinuity. Besides, the higher interval of temperatures in
Figure 5 between T′2w = 1672.98 ◦C and T2 = 1500 ◦C is close to the so-called 410 km-discontinuity [1,5].
As we said in Section 4, the temperature values shown in Figure 5 were obtained with the GZ-model
under a maximum power regime. In that section we also made a maximization of the GZ-model
under maximum ecological function. In the third row of Table 2 we show the temperature values
for the ecological regime for the case of n = 5/4. As we can see, these temperatures also correspond
approximately with the strata boundaries previously mentioned for the case of maximum power
(see Table 1 third row). In Table 1, we also show the temperature values for other exponents of
Equation (18) under maximum power regime and analogously in Table 2, we show the corresponding
values for the ecological regime. In summary, we can observe in both Tables that for all the
current values of the exponent n in Equation (18), the temperatures obtained are within the ranges
corresponding to the mentioned strata boundaries. Remarkably, all the temperatures calculated with
the GZ-model under the two optimization criteria used seemingly are independent of the coefficient
α in Equation (18); that is, independent from the coefficient of convection. As we mentioned for the
case of the atmospheric air convective cells the hypothesis of considering the adiabatic branches as
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instantaneous works well because the adiabatic times are much smaller than the isothermal times.
In spite of the very large duration of the mantle convective cells (of the order of several tens of
Myr), judging by our numerical results this hypothesis is also reasonable for mantle convection.
It is convenient to emphazise that in the GZ-model for the air convective cells the input data are
the solar constant, the temperature of the cold reservoir and the albedo parameter, being this the
unique parameter depending on the global atmospheric features. On the other hand the unknowns
of the model are the surface temperature of the Earth (T1) taking as equal to the air temperature
at low altitudes (T1w = T1) and the second unknown is T2w; that is, the temperature of the air at
high altitudes. In the case of GZ model applied to the mantle convection, we have taken as input
data of the model the temperatures T1 and T2, being these temperatures the unique data that has to
do with the general chemical and physical features of the mantle. The unknowns of the model are
the working temperatures T1w and T2w which result in a good approximation coincident with the
temperatures corresponding with the accepted values of the different transitions zones (the D-layer,
the Repetti discontinuity and the 410 km-discontinuity). Finally, we wish to remark that nevertheless
the simplicity of the GZ-model it is capable to offer a general view of this phenomenon compatible
with the thermodynamics laws.
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