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Abstract: We consider a paradigmatic model of a quantum Brownian particle coupled to a thermostat
consisting of harmonic oscillators. In the framework of a generalized Langevin equation, the memory
(damping) kernel is assumed to be in the form of exponentially-decaying oscillations. We discuss
a quantum counterpart of the equipartition energy theorem for a free Brownian particle in a thermal
equilibrium state. We conclude that the average kinetic energy of the Brownian particle is equal to
thermally-averaged kinetic energy per one degree of freedom of oscillators of the environment,
additionally averaged over all possible oscillators’ frequencies distributed according to some
probability density in which details of the particle-environment interaction are present via the
parameters of the damping kernel.
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1. Introduction

One of the enduring milestones of classical statistical physics is the theorem of the equipartition
of energy [1], which states that energy is shared equally amongst all energetically-accessible degrees
of freedom of a system and relates average energy to the temperature T of the system. In particular,
for each degree of freedom, the average kinetic energy is equal to Ek = kBT/2, where kB is the
Boltzmann constant. This relation is exploited in various aspects of many areas of physics, chemistry
and biology. However, in many cases, it is applied in an unjustified way forgetting about assumptions
used in proving this theorem. One can notice confusion and mess, in particular in the case of quantum
systems. In the standard course of classical statistical physics, the equality Ek = kBT/2 is derived
under the following conditions:

1. The system is at thermal equilibrium of temperature T.
2. The state of the system is described by the Gibbs canonical probability distribution.
3. The Gibbs probability distribution describes an equilibrium state of the system in the limit of

weak coupling with the thermostat.
4. The Gibbs probability distribution does not depend on the system-thermostat coupling constant.

It should be stressed that in classical statistical physics, the equality Ek = kBT/2 is universal:
it does not depend either on the number of particles of the system or on the single-particle potential
U(~ri) in which the i-th particle dwells, as well as it does not depend on the form of mutual interaction
U(~ri,~rj) between i-th and j-th particles of the system.

In quantum physics, the problem is more complicated. In the weak coupling limit, the density
operator (or the density matrix) ρ for the canonical ensemble describes a thermal equilibrium state and
has the form:

ρ =
1
Z

e−H/kBT , Z = Tr
(

e−H/kBT
)

, (1)
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where H is a Hamiltonian of the system. In the book by Feynman [2], one can find Expression (2.88)
for average kinetic energy Ek(ω0) of a quantum harmonic oscillator of the eigenfrequency ω0. It has
the form:

Ek(ω0) =
1

2m
〈p2〉 = h̄ω0

4
coth

h̄ω0

2kBT
, (2)

where p is momentum and m is the mass of the oscillator. The Hamiltonian of the oscillator has the
well-known form:

H =
p2

2m
+

mω2
0x2

2
. (3)

We can perform the limit ω0 → 0, which corresponds to the Hamiltonian of a free particle. In this
limit, Equation (2) assumes the form:

Ek =
1
2

kBT. (4)

It is the same expression as for the classical free particle. However, Equations (2) and (4) are
different. This means that for quantum systems, in contrast to a classical case, the average kinetic
energy depends on the potential U(x), even in the weak coupling limit. If the weak coupling limit
does not hold, the problem is even much more complicated. It is the aim of this paper to discuss
the question of equipartition energy for an arbitrary system-thermostat coupling. We study only one
specific and as simple as possible model of a quantum open system to present basic concepts and
ideas. Therefore, we consider a free quantum particle coupled to its environment, which is modeled as
a collection of harmonic oscillators of temperature T. This old clichéd system-environment model [3]
has been re-considered many, many times by each next generation of physicists [4]. However, it is still
difficult to find a transparent presentation of this fundamental issue of the quantum statistical physics
focused on the kinetic energy. To achieve the aim, we try to use the simplest techniques and methods
to make the paper consistent and self-contained, and we neglect many unnecessary and redundant
aspects of the theory.

The remaining part of the paper is organized as follows. In Section 2, we describe the
model and derive the integro-differential Generalized Langevin Equation (GLE); in Section 3,
the fluctuation-dissipation relation is presented; the form of the dissipation integral kernel of GLE
is described in Section 4; in Section 5, we convert the integro-differential Langevin equation into
a set of differential equations; the equipartition theorem is discussed in Section 6; some selected
physical regimes are analyzed in Section 7; we conclude the work with a brief résumé in Section 8;
in Appendices A–C, we present some auxiliary calculations.

2. Hamiltonian Model and Generalized Langevin Equation

A paradigmatic model of a one-dimensional quantum Brownian motion consists of a particle of
mass M subjected to the potential U(x) and interacting with a large number of independent oscillators,
which form a thermostat (environment) E of temperature T being in an equilibrium canonical (Gibbs)
state. The quantum-mechanical Hamiltonian of such a total system can be written in the form [3–5]:

H =
p2

2M
+ U(x) + ∑

i

[
p2

i
2mi

+
miω

2
i

2
(qi − ηix)

2

]
, (5)

where the coordinate and momentum operators {x, p} refer to the Brownian particle and {qi, pi}
are the coordinate and momentum operators of the i-th heat bath oscillator of mass mi and the
eigenfrequency ωi. The parameter ηi characterizes the interaction strength of the particle with the
i-th oscillator. There is the counter-term, the last term proportional to x2, which is included to cancel
a harmonic contribution to the particle potential. All coordinate and momentum operators obey
canonical equal-time commutation relations.
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The next step is to write the Heisenberg equations of motion for all coordinate and momentum
operators. For the Brownian particle, the Heisenberg equations are:

ẋ ≡ dx
dt

=
i
h̄
[H, x] =

p
M

, (6)

ṗ ≡ dp
dt

=
i
h̄
[H, p] =

i
h̄
[U(x), p] + ∑

i
ci (qi − ηix) , (7)

where:
ci = ηimiω

2
i . (8)

For the environment operators, one gets:

q̇i =
pi
mi

, (9)

ṗi = −miω
2
i qi + cix. (10)

What we need in Equation (7) is the solution qi = qi(t), which can be obtained from
Equations (9) and (10) with the result (see [6]):

qi(t) = qi(0) cos(ωit) +
pi(0)
miωi

sin(ωit) +
ci

miωi

∫ t

0
sin[ωi(t− s)]x(s)ds. (11)

The following step is to integrate by parts the last term in Equation (11) and insert it into
Equation (7) for p = p(t). Using Equation (6), after some algebra, one can obtain an effective equation
of motion for the particle coordinate x(t). It is called a generalized Langevin equation and has the form:

Mẍ(t) +
∫ t

0
γ(t− s)ẋ(s) ds = −U′(x(t))− γ(t)x(0) + F(t), (12)

where U′(x) denotes differentiation with respect to x, γ(t) is a dissipation function (damping or
memory kernel) and F(t) denotes the random force,

γ(t− s) = ∑
i

c2
i

miω
2
i

cos(ωi(t− s)), (13)

F(t) = ∑
i

ci

[
qi(0) cos(ωit) +

pi(0)
miωi

sin(ωit)
]

. (14)

The dynamics of the quantum Brownian particle is therefore described by a stochastic
integro-differential equation for the coordinate operator x(t). Probably Magalinskij [3] was the first,
in 1959, to derive the integro-differential Equation (12) and formulated the problem in the above way.
Next, from 1966, a series of papers were published on this topic, but a complete list of papers is too
long to present here. We cite a part of them [7–12]. Generally, it is difficult to analyze this kind of
integro-differential equation for operators. However, in the case of a free Brownian particle (when
U(x) = 0) or for a harmonic oscillator (when U(x) ∝ x2), Equation (12) can be solved exactly, at least
in a formal way. In the classical case, equations like Equation (12) describe non-Markovian stochastic
processes [5]. In the quantum case, there is no good definition of Markovian or non-Markovian
processes, and therefore, a classification with respect to these notions is not constructive.
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3. Fluctuation-Dissipation Theorem

In the standard approach, it is assumed that the initial state ρ(0) of the total system is uncorrelated,
i.e., ρ(0) = ρS ⊗ ρT , where ρS is an arbitrary state of the Brownian particle and ρT is an equilibrium
canonical state of the thermostat (environment) E of temperature T, namely,

ρT = exp(−HE/kBT)/Tr[exp(−HE/kBT)], (15)

where:

HE = ∑
i

[
p2

i
2mi

+
1
2

miω
2
i q2

i

]
(16)

is the Hamiltonian of the thermostat. The operator-valued random force F(t) is a family of
non-commuting operators whose commutators are c-numbers. Its mean value is zero,

〈F(t)〉 ≡ Tr [F(t)ρT ] = 0, (17)

and the symmetrized correlation function:

C(t1, t2) =
〈
[F(t1); F(t2)]+

〉
≡ 1

2
〈F(t1)F(t2) + F(t2)F(t1)〉 (18)

takes the form:

C(t1, t2) = C(t1 − t2) = ∑
i

h̄c2
i

2miωi
coth

(
h̄ωi

2kBT

)
cos[ωi(t1 − t2)]. (19)

The symmetrization is needed for C(t1, t2) to be a real function with a correct limit in the classical
case. We observe that it depends on the time difference C(t1, t2) = C(t1 − t2) = C(τ) for τ = t1 − t2.
Statistical characteristics of the random force F(t) are similar to characteristics for a classical stationary
Gaussian stochastic process, which models thermal equilibrium noise. Therefore, F(t) is called the
Gaussian operator, which represents quantum thermal noise.

It is convenient to introduce the spectral function:

J(ω) = ∑
i

c2
i

miω
2
i

δ(ω−ωi). (20)

Then, the damping kernel Equation (13) can be expressed as:

γ(τ) =
∫ ∞

0
dω J(ω) cos ωτ (21)

and the correlation function Equation (19) reads:

C(τ) =
∫ ∞

0
dω

h̄ω

2
coth

(
h̄ω

2kBT

)
J(ω) cos ωτ. (22)

If we introduce the Fourier transforms of the dissipation and correlation functions,

γ(τ) =
∫ ∞

0
dω γ̂(ω) cos ωτ, C(τ) =

∫ ∞

0
dω Ĉ(ω) cos ωτ, (23)

then we see that the following equality:

Ĉ(ω) =
h̄ω

2
coth

(
h̄ω

2kBT

)
γ̂(ω) (24)
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holds. We obtain the relation between the dissipation γ̂(ω) and correlation Ĉ(ω) spectra. This is what
is named the fluctuation-dissipation theorem [12–14]. In this relation, quantum effects are incorporated
via the prefactor in r.h.s. of Equation (24).

4. Dissipation Function

The influence of the thermostat E on the Brownian particle is manifested through the correlation
function Equation (19) of the thermostat. If it is a finite quantum system, then its energy spectrum
is discrete, and all its correlation functions are almost periodic in time. On the other hand, if the
thermostat is an infinitely-extended system, then its correlation functions decay. Let us observe
that if E is finite, then the spectral function J(ω) is a completely singular distribution (the sum in
Equation (20) is over discrete values of i), and if E is infinite, then J(ω) is, at least on some intervals,
a continuous function of ω (in the thermodynamic limit for E, the summation in Equation (20) is
replaced by an integral over a frequency). Below and up to the end of the paper, we assume that the
environment E is an infinite system.

In order to start an analysis of GLE Equation (12), one has to specify at least one of three quantities:
the dissipation kernel γ(t), or the correlation function C(t) of the random force F(t), or the spectral
function J(ω). We assume γ(t) to have the form:

γ(t) =
γ0

τc
e−|t|/τc cos(Ωt) (25)

with three non-negative parameters γ0, τc and Ω. The parameter γ0 is the system-environment
coupling strength, and τc defines decay or relaxation time and characterizes memory effects. Finally,
Ω is the frequency in the relaxation process of the momentum (velocity). It is important to mention
that τc is, via the fluctuation-dissipation theorem, the correlation time of quantum thermal fluctuations
and appears in the correlation function C(t1, t2) defined by Equation (18).

Why this form of the dissipation function? There are several reasons for this choice:

- In the classical limit, it is a direct relation between the dissipation kernel γ(t) and the correlation
function C(t) : C(t) = kBTγ(t). Therefore, for Equation (25), the correlation function is sufficiently
universal and has been considered for many systems.

- When Ω = 0, it reduces to the exponential form and is known as a Drude model. Moreover, it has
been considered in relation to colored noise problems.

- When Ω = 0 and τc → 0, then γ(t) tends to the Dirac delta function, and the integral term
reduces to γ0 ẋ(t) (no memory effects), which is the well-known Stokes force with γ0 interpreted
as a friction (damping) coefficient. Here, the parameter γ0 plays the role of coupling the strength
of the Brownian particle to the thermostat.

- This form allows converting the integro-differential Equation (12) into a set of differential
equations, which can be handled by known methods. It is important from a technical point
of view to have a method of any sort to analyze Equation (12).

5. Generalized Langevin Equation as a Set of Differential Equations

The integral part of Equation (12) is the convolution of γ(t) and ẋ(t). It suggests applying integral
transforms like the Laplace or Fourier ones to solve it. Here, we exploit another method, which is based
on the observation that if γ(t) fulfills a linear ordinary differential equation with constant coefficients,
then Equation (12) can be converted to a set of ordinary differential equations. Note that the function
γ(t) in Form (25) fulfills a differential equation of second order, which is similar to the Newton equation
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for a damped harmonic oscillator. We introduce auxiliary variables (in fact, operators) u(t) and v(t) by
the relations:

u(t) = µ
∫ t

0
e−ε(t−s) cos[Ω(t− s)] p(s)ds, (26)

v(t) = µ
∫ t

0
e−ε(t−s) sin[Ω(t− s)] p(s)ds, (27)

µ = µ0 ε, µ0 =
γ0

M
, ε =

1
τc

. (28)

Then, Equation (12) is converted to the following set of differential equations:

ẋ(t) =
1
M

p(t),

ṗ(t) = −u(t)−U′(x(t))− γ(t)x(0) + F(t),

u̇(t) = µp(t)− εu(t)−Ωv(t),

v̇(t) = Ωu(t)− εv(t).

(29)

To proceed further, we have to specify the form of the potential U(x). The simplest case is when
U(x) = 0, i.e., for the free particle. The second exactly solvable case is the harmonic oscillator with
U(x) = (1/2)Mω2

0x2. For other forms of U(x), the problem Equation (29) cannot be solved, and only
mathematically uncontrolled approximations have been applied. The main elements of analysis of
averaged kinetic energy are similar for both a free particle and a harmonic oscillator. However, a more
pedagogical example is a free particle because the calculations are less tedious. It is the only reason for
our choice U(x) = 0. In such a case, in order to calculate the averaged kinetic energy, it is sufficient to
consider the reduced set of equations:

ṗ(t) = −u(t)− γ(t)x(0) + F(t),

u̇(t) = µp(t)− εu(t)−Ωv(t),

v̇(t) = Ωu(t)− εv(t).

(30)

It can be rewritten in the matrix form:

d
dt

X(t) = AX(t) + B(t), (31)

where:

X(t) = [p(t), u(t), v(t)]T, (32)

B(t) = (−γ(t)x(0) + F(t))
[

1 0 0
]T

(33)

and T denotes the transpose of a matrix, which switches the row into the column. The matrix A has
the form:

A =

 0 −1 0
µ −ε −Ω
0 Ω −ε

 . (34)

The solution of the the non-homogeneous linear differential Equation (31) reads [6]:

X(t) = R(t)X(0) +
∫ t

0
R(t− s)B(s)ds, R(t) = eAt, (35)
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where:

X(0) = [p(0), 0, 0]T. (36)

The spectrum of the matrix A and its invariant subspaces determine the time dependence of
Equation (35). Now, the only problem is to determine the exponential of the matrix At, i.e., the matrix
R(t), which can be computed in many ways. The authors of the paper [15] say about 19 ways. As they
write: “In practice, consideration of computational stability and efficiency indicates that some of the
methods are preferable to others, but that none are completely satisfactory”. The traditional way is
to transform A into its Jordan canonical form. Here, we will use a less traditional method, namely
the Putzer algorithm [16], in which the exponential of the matrix At can be computed knowing nothing
more than the eigenvalues of the matrix A. Moreover, the algorithm does not require that the matrix A
is diagonalizable. We think that this method is simple, elegant and suitable for presentation to students
and younger researchers. It is described in Appendix A.

6. Average Kinetic Energy in Equilibrium

The operator of the kinetic energy Hk(t) = p2(t)/2M is expressed by the momentum p(t), which
is the first component of the vector X(t) determined by Equation (35). We calculate its average in
the long time limit t → ∞ when a stationary state is approached. This stationary state is a thermal
equilibrium state. The first component of X(t) is:

p(t) = R11(t)p(0) +
∫ t

0
R11(t− s)γ(s)x(0)ds +

∫ t

0
R11(t− s)F(s)ds, (37)

where R11(t) is the first element of the matrix R(t). As is shown in Appendix A, elements of this
matrix are exponentially decreasing functions of time. This means that the average value of the
momentum 〈p(t)〉 → 0 as t→ ∞. To evaluate the average kinetic energy, we consider the symmetrized
momentum-momentum correlation function

〈
[p(t); p(u)]+

〉
. In the long time limit, the first two terms

of Equation (37) do not contribute to it, and only the last term contributes, yielding:

〈
[p(t); p(s)]+

〉
=
∫ t

0
dt1

∫ s

0
dt2 R11(t− t1)R11(s− t2)

〈
[F(t1); F(t2)]+

〉
. (38)

Now, we use the results of Section 3 and insert the expression for the correlation function
Equation (23) of quantum thermal noise F(t) into Equation (38). The result is:

〈
[p(t); p(s)]+

〉
=
∫ ∞

0
dω Ĉ(ω)

∫ t

0
dt1

∫ s

0
dt2 R11(t− t1)R11(s− t2) cos [ω (t1 − t2)] . (39)

In particular, for t = s, it is the second statistical moment of the momentum,

〈p2(t)〉 =
∫ ∞

0
dω Ĉ(ω)

∫ t

0
dt1

∫ t

0
dt2 R11(t− t1)R11(t− t2) cos [ω (t1 − t2)] . (40)

We introduce new integration variables τ = t− t1 and u = t− t2 to convert Equation (40) into
the form:

〈p2(t)〉 =
∫ ∞

0
dω Ĉ(ω)

∫ t

0
dτ
∫ t

0
du R11(τ)R11(u) cos [ω (τ − u)] . (41)

Finally, in the long time limit t→ ∞, average kinetic energy is obtained as:

Ek = lim
t→∞

1
2M
〈p2(t)〉 = 1

2M

∫ ∞

0
dω Ĉ(ω)I(ω), (42)
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where:
I(ω) =

∫ ∞

0
dτ
∫ ∞

0
du R11(τ)R11(u) cos [ω (τ − u)] . (43)

At this point, we use the fluctuation-dissipation relation Equation (24) to express the noise
correlation spectrum Ĉ(ω) by the noise dissipation spectrum γ̂(ω), which, via Form (25) for the
dissipation function γ(t) and its inverse Fourier transform, is given by:

γ̂(ω) =
2
π

∫ +∞

0
γ(t) cos(ωt)dt =

γ0ε2

π

[
1

(ω + Ω)2 + ε2
+

1

(ω−Ω)2 + ε2

]
. (44)

The function I(ω) in Equation (43) is calculated from the relation Equation (A11) in Appendix A.
Its explicit form is given by Equation (A16) in Appendix B. The numerator of I(ω) cancels with the
denominator in Equation (44), and finally, we obtain:

Ek =
∫ ∞

0
dω

h̄ω

4
coth

(
h̄ω

2kBT

)
P(ω), (45)

where:

P(ω) =
2
π

µ0ε2 (ω2 + ε2 + Ω2)
ω6 + 2ω4 (ε2 −Ω2 − µ0ε) + ω2

(
µ2

0ε2 + 2µ0εΩ2 − 2µ0ε3 + Ω4 + 2Ω2ε2 + ε4
)
+ µ2

0ε4
. (46)

We used the definition Equation (28) for µ = µ0ε. We rewrite it in this form because both µ0 and ε

have the unit of frequency (1/s). Moreover, µ0 = γ0/M defines the rescaled coupling strength of the
Brownian particle to the thermostat. The reciprocal 1/µ0 = M/γ0 has the unit of time, and in the case
of a classical free Brownian particle, it is the relaxation time of the particle velocity v = ẋ (obtained
from the Newton equation Mv̇ = −γ0v) or, equivalently, it is the correlation time occurring in the
velocity-velocity correlation function.

The function P(ω) has no poles on a real axis because the denominator in Equation (46) can be
rewritten in the form x[(x + c1)

2 + c2] + c3 > 0 for x = ω2, c1 = ε2 −Ω2 − µ0ε, positive c2 = 4ε2Ω2

and positive c3 = µ2
0ε4. As a consequence, the integral in Equation (45) exists for any fixed values

of parameters. Various forms of the expression Equation (45) have previously been derived [17–19].
However, the influence of the dissipation function Equation (25) on system properties, in particular in
the context of average kinetic energy, has not been discussed.

The expression Equation (45) with the integrand Equation (46) is a quantum version of the
equipartition theorem. It differs from its classical counterpart, like in Equation (4). The dependence of
Ek on temperature is involved in the integrand of Equation (45) and cannot be presented in an explicit,
simple way. We note that there are four characteristic times τ1 = 1/µ0 = M/γ0, τ2 = τc = 1/ε, τ3 =

1/Ω and τ4 = h̄/kBT (called the thermal time) and four corresponding frequencies µ0, ε, Ω and kBT/h̄
(called the Matsubara frequency), which all influence the temperature dependence of Ek.

Now, we want to take a look at the relation Equation (45) from another point of view. To this aim,
we use the expression Equation (2) for the average kinetic energy of a single harmonic oscillator and
rewrite Equation (45) in the form:

Ek = 〈Ek〉 =
∫ ∞

0
dω Ek(ω) P(ω). (47)

The function P(ω) is positive, P(ω) > 0, and normalizable (see Equation (A23) in Appendix C),∫ ∞

0
dω P(ω) = 1. (48)

Therefore, there exists a random variable ξ for which P is its probability distribution. From the
mathematical point of view, Equation (47) is an average value of the function Ek(ξ) of the random
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variable ξ (physicists frequently equate it with the integration variable). It allows presenting an
interesting interpretation of the quantum equipartition theorem: the average kinetic energy Ek of the
Brownian particle is strongly related to the thermally-averaged kinetic energy Ek(ω) per one degree of
freedom of oscillators of the environment. Because frequencies ω of oscillators are random variables,
Ek(ω) has to be additionally averaged over all possible frequencies ω distributed according to the
probability density P(ω) in which details of the particle-environment interaction are present via the
parameters of the dissipation function γ(t).

7. Discussion

7.1. Average Kinetic Energy in Terms of Series

From the relation Equation (45), it is difficult to draw conclusions on the dependence of the
average kinetic energy on the system parameters. Therefore, we present another form of Ek. To this
aim, we exploit the series expansion [20]:

x coth
( x

2

)
= 2 + 4

∞

∑
n=1

x2

x2 + 4π2n2 (49)

which allows calculating the integral in Equation (45). More details are presented in Appendix C.
From Equation (A25) in this appendix, we get the expression:

Ek =
kBT

2

[
1 + 2

∞

∑
n=1

h̄µ0 h̄ε (h̄ε + 2πnkBT)
h̄µ0 h̄ε (h̄ε + 2πnkBT) + 2πnkBT (h̄ε + 2πnkBT)2 + 2πnkBT(h̄Ω)2

]
. (50)

Here, the average kinetic energy is represented by an infinite series, and some information
on Ek can be inferred from this form. Since for n ≥ 1, all terms under the sum are non-negative,
hence 2Ek/kBT is a lower bound for the energy Ek. Therefore, the kinetic energy in a quantum
regime is always greater than the classical one. The term under the sum is a rational function of four
characteristic energies kBT, h̄µ0, h̄ε, h̄Ω. The numerator and denominator are the products of energy
to a power of three, like, e.g., (h̄µ0) (h̄ε) (kBT). It is easy to observe that each term under the sum
is a non-increasing function with respect to Ω because it occurs only in the denominator. Moreover,
it can be shown that partial derivatives of each term with respect to µ0 and ε are non-negative, and it
follows that all terms are non-decreasing with respect to µ0 and ε, respectively. As a consequence, Ek is
a non-increasing function of Ω and a non-decreasing function of µ0 and ε.

At a fixed temperature, the kinetic energy Ek is finite for all finite values of parameters and
behaves in the following way (see Figure 1):

(i) Ek increases monotonically to infinity when the coupling strength µ0 increases to infinity.
(ii) When the decay rate ε = 1/τc grows from zero to infinity, Ek grows from its classical value to

infinity. In other words, for a very long decay time τc, kinetic energy approaches its classical
value Equation (4). When τc → 0, the kinetic energy diverges.

(iii) For Ω = 0 (the Drude model), Ek starts from some maximal value for a given set of parameters,
and next, it decreases when Ω increases.
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Figure 1. Average kinetic energy of the free Brownian particle as a function of rescaled temperature.
(a) The influence of the rescaled particle-thermostat coupling strength µ̃0 = µ0/ε. The rescaled energy is
Ẽ = Ek/h̄ε, and the rescaled temperature is T̃ = kBT/h̄ε. The rescaled Ω̃ = Ω/ε = 1. (b) The influence
of the rescaled inverse decay time ε̃ = ε/µ0. The rescaled energy is Ẽ = Ek/h̄µ0, and the rescaled
temperature is T̃ = kBT/h̄µ0. The rescaled Ω̃ = Ω/µ0 = 1. (c) The influence of the rescaled frequency
Ω̃ = Ω/µ0. The rescaled energy is Ẽ = Ek/h̄µ0, and the rescaled temperature is T̃ = kBT/h̄µ0.
The rescaled ε̃ = ε/µ0 = 1.

7.2. High Temperature Regime

We focus now on the regime of high temperatures. In this regime, when T → ∞, we use
the approximation:

coth
(

h̄ω

2kBT

)
≈ 2kBT

h̄ω
. (51)

Then, Equation (45) reduces to the form:

Ek =
1
2

kBT (52)

because the integral that occurs in Equation (45), according to Equation (48), is one. It is valid
for any values of the parameters µ0, ε = 1/τc and Ω, which characterize and are involved in the
dissipation kernel γ(t) defined in Equation (25). In particular, Equation (52) holds for weak, as well as
strong system-environment interactions. The same Form (52) is obtained from Equation (50). Indeed,
each term under the sum behaves as T/T3 ∼ 1/T2 when T → ∞, and each term under the sum tends
to zero. Only the first term survives, and Equation (50) is well approximated by Equation (52).

Let us now comment on the above approximations from the mathematical point of view.
The approximation Equation (51) is valid when h̄ω/2kBT << 1. However, let us observe that
for any large value of 2kBT, there is a larger value of h̄ω because the integration over ω in Equation (45)
is to infinity and the inequality h̄ω/2kBT << 1 is not satisfied for all ω. Nevertheless, Equation (52)
is a correct approximation of Equation (45), and it can be shown by rigorous mathematical means.
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Moreover, it is supported by the method based on Equation (50). Because the series in Equation (50) is
uniformly convergent, we can take the limit T → ∞. Consequently, it implies Equation (52).

7.3. Low Temperature Regime

Let us note that the expression Equation (50) is not suitable for the calculation of the zero
temperature limit because the indeterminate form ‘zero times infinity’ occurs. Equation (45) is more
convenient. When temperature is low, T → 0, the cotangent function can be approximated as follows:

coth(x) = 1 + 2
e−2x

1− e−2x ≈ 1 + 2e−2x, x =
h̄ω

2kBT
. (53)

We insert this expression into Equation (45) and obtain:

Ek = E0 + E1(T), (54)

where:
E0 =

1
4

∫ ∞

0
dω h̄ω P(ω) (55)

is the average kinetic energy for temperature T = 0, i.e., when the thermostat is in a vacuum state and:

E1(T) =
1
2

∫ ∞

0
dω h̄ω P(ω) exp

[
− h̄ω

kBT

]
(56)

is the first correction for small temperature T > 0.
The kinetic energy E0 at T = 0 is finite for all finite values of parameters. Its parameters

dependence is visualized in Figure 1, and it follows that:

(i) E0 increases monotonically from zero to infinity when the coupling strength µ0 increases from
zero to infinity.

(ii) When the decay rate ε = 1/τc grows from zero to infinity, E0 grows from zero to infinity.
(iii) For Ω = 0 (the Drude model), E0 starts from some maximal value for a given set of parameters,

and next, it decreases when Ω increases.

7.4. Regime of Long Memory Time

The damping kernel γ(t) in the Langevin Equation (12) describes memory effects determined by
the relaxation (decay) time τc. For time scales shorter than τc, memory effects can play an important
role. For times longer than τc, memory effects can be neglected, and the Ohmic model can be applied.
Now, we consider the case of a long decay time τc. More precisely, we assume that τc is much longer
than the thermal Matsubara time h̄/kBT, namely,

τc =
1
ε
>>

h̄
2πkBT

. (57)

In other words, h̄ε << 2πkBT, and then, h̄ε + 2πnkBT ≈ 2πnkBT in Equation (50). In this regime,
Equation (50) takes the form:

Ek =
kBT

2

[
1 + 2

∞

∑
n=1

h̄2µ0 ε

h̄2(µ0ε + Ω2) + (2πnkBT)2

]
. (58)

We can use Formula (49) to rewrite the above equation in a more compact form as:

Ek =
kBT

2

[
Ω2

εµ0 + Ω2 +
h̄εµ0

2kBT
√

εµ0 + Ω2
coth

(
h̄
√

εµ0 + Ω2

2kBT

)]
. (59)
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For the Drude model, when Ω = 0, it reduces to the following equation:

Ek =
1
4

h̄
√

εµ0 coth
(

h̄
√

εµ0

2kBT

)
. (60)

This is a surprising result because it looks like Equation (2) for the averaged kinetic energy of
the oscillator with its redefined eigenfrequency ω0 =

√
εµ0. Remember that the relation Equation (57)

should be satisfied, and this means that:

τc >> 1.21× 10−12 1
T

s K. (61)

e.g., for a temperature of 1 Kelvin, τc >> 10−12 s, while for 10−4 Kelvin, τc >> 10−8 s. Therefore, for
higher temperatures, it is easier to fulfil this condition.

8. Conclusions

In summary, in the framework of the Generalized Langevin Equation (GLE), we studied the
kinetic energy of a quantum Brownian particle in an equilibrium state. We assumed a relatively
general form of the integral kernel of GLE and analyzed kinetic energy in selected regimes like high or
low temperature limits. In the high temperature limit, the standard result of the classical statistical
mechanics of the equipartition energy Ek = kBT/2 is valid independently of the strength of the
system-environment interaction, decay of the dissipation kernel and its frequency parameter. In the
zero temperature regime, when fluctuations of the environment vacuum influence the system, average
kinetic energy of the free Brownian particle is non-zero, and its value depends on parameters of the
dissipation function. In particular, it is an increasing function of the coupling strength quantified by
the parameter γ0 or the rescaled parameter µ0. It is also interesting that when the decay time τc in
the dissipation kernel tends to zero, average kinetic energy grows to infinity [19]. This means that
the assumption of zero decay time is not physically correct, and memory effects have to be taken
into account.

We propose a new interpretation of the relation Equation (45): the average kinetic equation
of the Brownian particle equals the thermally-averaged kinetic energy per one degree of freedom
of thermostat oscillators, additionally averaged over randomly-distributed oscillator frequencies.
Our conjecture is that this interpretation is not only for this particular system, but it may be universal,
at least for some classes of systems.

We considered an exactly solved model of a quantum open system. In a general case,
only approximate results can be derived, e.g., in the so-called quantum Smoluchowski regime,
an effective evolution equation of the Fokker–Planck type has been derived [21,22] and applied to
many problems such as quantum diffusion [23,24] or quantum Brownian motors [25]. Some extensions
to include reservoirs consisting of non-linear oscillators have been proposed [26]. Finally, it is worth
mentioning a novel and alternative approach to attack the problem of a quantum Brownian particle,
which is based on an adjoint master equation for a generic operator of the system [27].
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Appendix A. Putzer Algorithm

In the relation Equation (35), the exponential of the matrix At is needed. We calculate it applying
the Putzer method [16]. The exponential can be presented in the form:

eAt = R(t) = r1(t)I + r2(t)P1 + r3(t)P2, (A1)

where I is the identity matrix; the matrices P1 and P2 are determined by the relations:

P1 = A− λ1 I, P2 = (A− λ2 I) P1 (A2)

and λj (j = 1, 2, 3) are the eigenvalues (in any order and not necessarily distinct) of the matrix A.
The functions rj(t) takes the form:

r1(t) = eλ1t, (A3)

r2(t) = eλ2t
∫ t

0
e−λ2u r1(u) du =

eλ1t − eλ2t

λ1 − λ2
, (A4)

r3(t) = eλ3t
∫ t

0
e−λ3u r2(u) du =

1
λ1 − λ2

[
eλ1t − eλ3t

λ1 − λ3
− eλ2t − eλ3t

λ2 − λ3

]
. (A5)

The eigenvalues λj are the roots of the characteristic polynomial |A − λI| = 0, which
explicitly reads:

λ3 + 2ελ2 + (µ + ε2 + Ω2)λ + εµ = 0. (A6)

All eigenvalues have negative real parts, i.e., Re λj < 0. The necessary and sufficient conditions
for this to hold are the Routh–Hurwitz conditions, which for the cubic equation:

λ3 + a2λ2 + a1λ + a0 = 0 (A7)

take the form:
a2 = 2ε > 0, a0 = εµ > 0, a2a1 − a0 = 2ε(ε2 + Ω2) + εµ > 0. (A8)

As a consequence, all functions rj(t) are decreasing functions of time.
The explicit forms of the matrices in Equation (A1) read:

P1 = −

 λ1 1 0
−µ λ1 + ε Ω

0 −Ω λ1 + ε

 , (A9)

P2 =

 λ1λ2 − µ λ1 + λ2 + ε Ω
−µ (λ1 + λ2 + ε) (λ1 + ε) (λ2 + ε)− µ−Ω2 Ω (λ1 + λ2 + 2ε)

µΩ −Ω (λ1 + λ2 + 2ε) (λ1 + ε) (λ2 + ε)−Ω2

 . (A10)

What we need in Equation (43) is the first element R11(t) of the matrix R(t). We exploit the above
Formulas (A1)–(A10) and get:

R11(t) = (λ2λ3 − µ) b1eλ1t − (λ1λ3 − µ) b2eλ2t + (λ1λ2 − µ) b3eλ3t, (A11)
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where:

b1 =
1

λ1
2 − λ1λ2 − (λ1 − λ2)λ3

, (A12)

b2 = − 1
λ1λ2 − λ2

2 − (λ1 − λ2)λ3
, (A13)

b3 =
1

λ1λ2 − (λ1 + λ2)λ3 + λ3
2 . (A14)

Appendix B. Calculation of I(ω)

In this appendix, we calculate the function I(ω) defined by Equation (43). The integrand R11(t)
is the exponential function Equation (A11), and the double integral in Equation (43) can easily be
calculated. The result reads:

I(ω) =
(λ2λ3 − µ)2b2

1

λ1
2 + ω2

+
(λ1λ3 − µ)2b2

2

λ2
2 + ω2

+
(λ1λ2 − µ)2b2

3

λ3
2 + ω2

−
2
(
λ1λ2 + ω2)(λ1λ3 − µ)(λ2λ3 − µ)b1b2

λ1
2λ2

2 + ω4 +
(

λ1
2 + λ2

2
)

ω2

+
2 (λ1λ2 − µ)

(
λ1λ3 + ω2)(λ2λ3 − µ)b1b3

λ1
2λ3

2 + ω4 +
(

λ1
2 + λ3

2
)

ω2

−
2 (λ1λ2 − µ)(λ1λ3 − µ)

(
λ2λ3 + ω2)b2b3

λ2
2λ3

2 + ω4 +
(

λ2
2 + λ3

2
)

ω2

(A15)

Inserting the coefficients bj (j = 1, 2, 3) from Equations (A12)–(A14) and using Vieta’s formulas
for the roots of the polynomial Equation (A6), we obtain the final expression:

I(ω) =
[(ω + Ω)2 + ε2][(ω−Ω)2 + ε2]

ω6 + 2ω4 (ε2 −Ω2 − µ) + ω2 (µ2 + 2µΩ2 − 2µε2 + Ω4 + 2Ω2ε2 + ε4) + µ2ε2 (A16)

This function occurs in Equation (42) for the average kinetic energy.

Appendix C. Series Expansion for Kinetic Energy

We will present Equation (45) in the form of a series. To this aim, we introduce the dimensionless
integral variable θ and parameters,

θ = τTω, τT =
h̄

kBT
(A17)

µ̂0 = τTµ0, ε̂ = τTε, Ω̂ = τTΩ (A18)

Next, we exploit the series expansion [20]:

θ coth
(

θ

2

)
= 2 + 4

∞

∑
n=1

θ2

θ2 + 4π2n2 (A19)
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Using the above expansion, we obtain the integrand of Equation (45) in the form of
uniformly-convergent series. Therefore, we can utilize the Weierstrass theorem and integrate term by
term as follows:

2Ek
kT

= I0 +
∞

∑
n=1

In (A20)

I0 =
2
π

∫ ∞

0

µ̂0 ε̂2(θ2+Ω̂2+ε̂2)
θ6−2θ4(Ω̂2+µ̂0 ε̂−ε̂2)+θ2(Ω̂4+2Ω̂2µ̂0 ε̂+2Ω̂2 ε̂2+µ̂2

0 ε̂2−2µ̂0 ε̂3+ε̂4)+µ̂2
0 ε̂4 dθ (A21)

In =
1
π

∫ ∞

0

µ̂0 ε̂2(θ2+Ω̂2+ε̂2)
θ6−2θ4(Ω̂2+µ̂0 ε̂−ε̂2)+θ2(Ω̂4+2Ω̂2µ̂0 ε̂+2Ω̂2 ε̂2+µ̂2

0 ε̂2−2µ̂0 ε̂3+ε̂4)+µ̂2
0 ε̂4

4θ2

4π2k2+θ2 dθ (A22)

For all cases, the integrands are rational functions. The polynomial degrees of denominators are
higher by four than the degree of polynomials in the numerators, and therefore, all integrals exist.
We can use an elegant method of the residue theorem to calculate the integrals [6]. Manual calculations
are long and tedious, but nowadays, this problem can be overcome by using any computer algebra
system. We used SymPy (the Python library) for symbolic mathematics.

The integrand of the zero-th term I0 is the same as Equation (46). The denominator of the
integrand has six roots on the complex plane with three poles in the upper half-plane and three poles
in the lower half-plane. We can choose a contour closed in the upper half-plane, and from the residue
method, we obtain:

I0 = 1 ⇒
∫ ∞

0
dω P(ω) = 1. (A23)

For remaining terms, we obtain the expression for In in the following form:

In =
2µ̂0 ε̂ (ε̂ + 2πn)

µ̂0 ε̂ (ε̂ + 2πn) + 2πn (ε̂ + 2πn)2 + 2πΩ̂2n
. (A24)

Finally,

2Ek
kBT

= 1 +
∞

∑
n=1

2µ̂0 ε̂ (ε̂ + 2πn)
µ̂0 ε̂ (ε̂ + 2πn) + 2πn (ε̂ + 2πn)2 + 2πΩ̂2n

. (A25)

Using this method, we obtain a form that is more convenient for discussing the general properties
of kinetic energy with respect to system parameters. We presented this in Section 7.
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