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Abstract: In this paper, the synchronization problem of fractional-order complex-valued neural
networks with discrete and distributed delays is investigated. Based on the adaptive control
and Lyapunov function theory, some sufficient conditions are derived to ensure the states of two
fractional-order complex-valued neural networks with discrete and distributed delays achieve
complete synchronization rapidly. Finally, numerical simulations are given to illustrate the
effectiveness and feasibility of the theoretical results.
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1. Introduction

The complex-valued neural networks (CVNNs) are the networks that deal with complex-valued
information by using complex-valued parameters and variables [1]. They have more different and
complicated properties than the real-valued neural networks (RVNNs). CVNNs possess new capabilities
and higher performance, which makes it possible to solve some problems that cannot be solved by
their real-valued counterparts [2,3]. Actually, most of the applications of neural networks (NNs)
involve complex information [4,5]. Therefore, it is of great significance to study the dynamical
properties of CVNNs [6–14]. In recent years, CVNNs have received considerable attention due to
their widespread applications in signal processing, quantum waves, remote sensing, optoelectronics,
filtering, electromagnetic, speech synthesis, and so on [15,16].

Nowadays, fractional calculus has become a hot topic and many applications have been found
in the fields of physics and engineering [17–20]. Fractional calculus is the generalization of classic
calculus, which deals with derivatives and integrals of arbitrary order. Many real world objects can
be described by the fractional-order models, such as dielectric polarization, electromagnetic waves,
entropy and information [21–24]. The main advantage of fractional-order models in comparison with
their integer-order counterparts is that fractional derivatives provide an excellent instrument in the
description of memory and hereditary properties of various materials and process [25,26]. In addition,
fractional-order models are characterized by infinite memory [27–29]. Thus, fractional-order NNs
(FNNs) are more effective in information processing than integer-order NNs [30]. In recent years,
the dynamics of FNNs has been investigated by many researchers and some interesting results have
been achieved [31–35]. In [31], fractional-order cellular NNs have been presented and hyperchaotic
attractors have been displayed. In [32–34], chaos control and synchronization of FNNs were investigated
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by using the Laplace transformation or Lyapunov method. In [35], the dynamics, including stability and
multistability, of FNNs with the ring or hub structure has been investigated.

As is well known, time delays may affect and even destroy the dynamics of NNs [36–40]. Due to
the signals propagation through the links and the frequently delayed couplings in biological NNs,
time delay unavoidably exists in NNs [41,42]. In particularly, since the presence of an amount of parallel
pathways with a variety of node sizes and lengths, NNs usually have spatial extent. Thus, there will be
a distribution of propagation delays. Therefore, the study of fractional-order complex-valued neural
networks (FCVNNs) with time delays is of both theoretical and practical significance. At present,
the investigations of FCVNNs with discrete time delay have achieved many remarkable results [43–46].
For example, authors in [43–45] discussed the problem of stability of FCVNNs with time delays.
Finite-time stability of fractional-order complex-valued memristor-based NNs with time delays has
been intensively investigated in [46]. However, the dynamics of FNNs with distributed delay is even
more complicated. Very recently, study concerning FNNs with distributed delay has become an active
research topic. Many researchers have devoted to the investigation of FNNs with distributed delay and
some results have been derived [47]. In [47], two sufficient conditions, which guarantee the asymptotic
stability of the Riemann-Liouville FNNs with discrete and distributed delays, have been derived in
terms of LMI.

So far, the synchronization of the integer-order CVNNs with time delays has been intensively
studied by applying various control schemes [48–51]. However, using integer-order CVNNs with time
delays to model real systems with memory and hereditary properties are inadequate in contrast with
FCVNNs with discrete time delay [52]. To the best of our knowledge, few investigations have been
devoted to the control and information synchronization of FCVNNs with time delays in spite of its
practical significance. In [36,53], the problem of synchronization of FCVNNs with discrete time delays
is analyzed and sufficient conditions are provided. On the other hand, adaptive control, as an efficient
control method, has been designed and successfully applied to fractional order neural networks [34,54].
Motivated by the above discussions, this paper is devoted to investigating the problem of information
synchronization of FCVNNs with discrete and distributed delays. An adaptive controller is designed
to synchronize two FCVNNs with discrete and distributed delays. Based on adaptive control and
Lyapunov stability theory, some sufficient conditions are derived to ensure that two FCVNNs with
discrete and distributed delays can achieve information synchronization rapidly.

This paper is organized as follows. In Section 2, some definitions in the fractional-order calculus
and some lemmas, which will be used later, are introduced. The adaptive controller is designed in
Section 3. In Section 4, a numerical example is given to illustrate the effectiveness of the main results.
Finally, conclusions are drawn in Section 5.

2. Preliminaries

There are several different definitions for fractional derivatives. Three of the most frequently used
definitions are the Riemann-Liouville definition, the Grünwald-Letnikov definition and the Caputo
definition. Since the initial conditions for fractional differential equations with Caputo derivatives
take on the same form as for integer-order differential equations, we choose the Caputo definition in
this paper.

Definition 1 ([17]). The fractional integral of order α for a function f is defined as

Iα f (t) =
1

Γ(α)

∫ t

0
(t− s)α−1 f (s) ds, (1)

where t ≥ 0 and α > 0, Γ(·) is the Gamma function defined as Γ(z) =
∫ ∞

0 tz−1e−tdt.
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Definition 2 ([17]). The Caputo fractional derivative of order α for a function f is defined as follows:

Dα f (t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1 f (n)(s) ds, (2)

where n is the positive integer such that n− 1 < α < n.

Lemma 1 ([55]). Let x(t) ∈ R be a continuous and differentiable function, then for any time instant t ≥ 0,

1
2

Dαx2(t) ≤ x(t)Dαx(t), ∀α ∈ (0, 1).

Lemma 2 ([56]). If e(t) ∈ C1([0,+∞], R) denotes a continuously differentiable function, for any α ∈ (0, 1),
the following inequality holds almost everywhere:

Dα|e(t)| ≤ sgn(e(t))Dαe(t).

Consider a simplified CVNN with discrete and distributed delays as the drive system, which is
described by

Dαx1(t) = −a1x1(t) + b11 f
(∫ t

−∞
F(t− s)x1(s) ds

)
+ b12g(x2(t− τ)) + I1(t),

Dαx2(t) = −a2x2(t) + b21 f (x2(t)) + b22g(x1(t− τ)) + I2(t),
(3)

where 0 < α < 1 denotes the fractional order, xi(t) (i = 1, 2) is the state of the ith neuron at time t,
ai > 0 (i = 1, 2), bij (i, j = 1, 2) are complex constants, τ is the discrete time delay, Ii(t) (i = 1, 2) are
the external inputs, f (·) and g(·) denote the complex-valued activation functions, and F(·) denotes
non-negative bounded delay kernel defined on [0,+∞) which reflects the influence of the past states
on the current dynamics.

In general, the kernel F(s) is taken as the following form:

F(s) = a3e−a3s, (a3 > 0, s ≥ 0), (4)

where a3 reflects the mean delay of the kernel.
For convenience, a new variable x3(t) is introduced and defined as:

x3(t) =
∫ t

−∞
F(t− s)x1(s) ds. (5)

Then, one can rewrite the drive system as

Dαx1(t) = −a1x1(t) + b11 f (x3(t)) + b12g(x2(t− τ)) + I1(t),

Dαx2(t) = −a2x2(t) + b21 f (x2(t)) + b22g(x1(t− τ)) + I2(t),

x′3(t) = −a3x3(t) + a3x1(t).

(6)

where xi(t) = ui(t) + ivi(t) (i = 1, 2, 3), ui(t) = Re(xi(t)), vi(t) = Im(xi(t)).
Similarly, the response system is defined as follows:

Dαy1(t) = −a1y1(t) + b11 f (y3(t)) + b12g(y2(t− τ)) + I1(t) + U1(t),

Dαy2(t) = −a2y2(t) + b21 f (y2(t)) + b22g(y1(t− τ)) + I2(t) + U2(t),

y′3(t) = −a3y3(t) + a3y1(t).

(7)



Entropy 2018, 20, 124 4 of 14

where Ui(t) (i = 1, 2) are the control inputs to be designed later, yi(t) = ūi(t) + iv̄i(t) (i = 1, 2, 3),
ūi(t) = Re(yi(t)), v̄i(t) = Im(yi(t)).

To obtain the main results, one makes the following assumption.

Assumption 1. Let uτ = u(t− τ), vτ = v(t− τ), x = u + iv, y = ū + iv̄. f (x) and g(x(t− τ)) can be
expressed by separating into its real and imaginary parts as

f (x) = f R(u, v) + i f I(u, v), g(x(t− τ)) = gR(uτ , vτ) + igI(uτ , vτ).

Assumption 2. The partial derivatives of f R(u, v), f I(u, v), gR(uτ , vτ) and gI(uτ , vτ) with respect to u, v,
exist and are continuous and bounded. In addition, f R(·, ·) : R2 → R, f I(·, ·) : R2 → R, gR(·, ·) : R2 → R
and gI(·, ·) : R2 → R satisfy∣∣∣ f R(ū, v̄)− f R(u, v)

∣∣∣ ≤ λRR|ū− u|+ λRI |v̄− v|,∣∣∣ f I(ū, v̄)− f I(u, v)
∣∣∣ ≤ λIR|ū− u|+ λI I |v̄− v|,∣∣∣gR(ūτ , v̄τ)− gR(uτ , vτ)

∣∣∣ ≤ µRR|ūτ − uτ |+ µRI |v̄τ − vτ |,∣∣∣gI(ūτ , v̄τ)− gI(uτ , vτ)
∣∣∣ ≤ µIR|ūτ − uτ |+ µI I |v̄τ − vτ |,

where ∣∣∣∣ ∂ f R

∂u

∣∣∣∣ ≤ λRR,
∣∣∣∣ ∂ f R

∂v

∣∣∣∣ ≤ λRI ,
∣∣∣∣ ∂ f I

∂u

∣∣∣∣ ≤ λIR,
∣∣∣∣ ∂ f I

∂v

∣∣∣∣ ≤ λI I ,∣∣∣∣ ∂gR

∂u

∣∣∣∣ ≤ µRR,
∣∣∣∣ ∂gR

∂v

∣∣∣∣ ≤ µRI ,
∣∣∣∣ ∂gI

∂u

∣∣∣∣ ≤ µIR,
∣∣∣∣ ∂gI

∂v

∣∣∣∣ ≤ µI I .

From Assumptions 1 and 2, FCVNNs (6) and (7) can be separated into its real and imaginary
parts, respectively. Then, one has

Dαu1(t) = −a1u1(t) + bR
11 f R(u3(t), v3(t))− bI

11 f I(u3(t), v3(t)) + bR
12gR(u2(t− τ), v2(t− τ))

− bI
12gI(u2(t− τ), v2(t− τ)) + IR

1 (t),

Dαu2(t) = −a2u2(t) + bR
21 f R(u2(t), v2(t))− bI

21 f I(u2(t), v2(t)) + bR
22gR(u1(t− τ), v1(t− τ))

− bI
22gI(u1(t− τ), v1(t− τ)) + IR

2 (t),

u′3(t) = −a3u3(t) + a3u1(t),

Dαv1(t) = −a1v1(t) + bR
11 f I(u3(t), v3(t)) + bI

11 f R(u3(t), v3(t)) + bR
12gI(u2(t− τ), v2(t− τ))

+ bI
12gR(u2(t− τ), v2(t− τ)) + I I

1(t),

Dαv2(t) = −a2v2(t) + bR
21 f I(u2(t), v2(t)) + bI

21 f R(u2(t), v2(t)) + bR
22gI(u1(t− τ), v1(t− τ))

+ bI
22gR(u1(t− τ), v1(t− τ)) + I I

2(t),

v′3(t) = −a3v3(t) + a3v1(t).

(8)

and

Dαū1(t) = −a1ū1(t) + bR
11 f R(ū3(t), v̄3(t))− bI

11 f I(ū3(t), v̄3(t)) + bR
12gR(ū2(t− τ), v̄2(t− τ))

− bI
12gI(ū2(t− τ), v̄2(t− τ)) + IR

1 (t) + UR
1 (t),

Dαū2(t) = −a2ū2(t) + bR
21 f R(ū2(t), v̄2(t))− bI

21 f I(ū2(t), v̄2(t)) + bR
22gR(ū1(t− τ), v̄1(t− τ))

− bI
22gI(ū1(t− τ), v̄1(t− τ)) + IR

2 (t) + UR
2 (t),

ū′3(t) = −a3ū3(t) + a3ū1(t),

Dα v̄1(t) = −a1v̄1(t) + bR
11 f I(ū3(t), v̄3(t)) + bI

11 f R(ū3(t), v̄3(t)) + bR
12gI(ū2(t− τ), v̄2(t− τ))

+ bI
12gR(ū2(t− τ), v̄2(t− τ)) + I I

1(t) + U I
1(t),

Dα v̄2(t) = −a2v̄2(t) + bR
21 f I(ū2(t), v̄2(t)) + bI

21 f R(ū2(t), v̄2(t)) + bR
22gI(ū1(t− τ), v̄1(t− τ))

+ bI
22gR(ū1(t− τ), v̄1(t− τ)) + I I

2(t) + U I
2(t),

v̄′3(t) = −a3v̄3(t) + a3v̄1(t).

(9)
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where f R(·, ·) = Re( f (·, ·)), f I(·, ·) = Im( f (·, ·)), gR(·, ·) = Re(g(·, ·)), gI(·, ·) = Im(g(·, ·)),
bR

ij = Re(bij), bI
ij = Im(bij), IR

i (t) = Re(Ii(t)), I I
i (t) = Im(Ii(t)), UR

i (t) = Re(Ui(t)), U I
i (t) = Im(Ui(t)).

3. Main Results

In this section, some sufficient conditions for the information synchronization of FCVNNs with
discrete and distributed delays are derived.

Let ei(t) = yi(t)− xi(t) = eu
i (t) + iev

i (t) (i = 1, 2, 3). Subtracting the drive system (8) from the
response system (9), one obtains the error system as follows:

Dαeu
1 (t) = −a1eu

1 (t) + bR
11[ f R(ū3(t), v̄3(t))− f R(u3(t), v3(t))]− bI

11[ f I(ū3(t), v̄3(t))− f I(u3(t), v3(t))]

+ bR
12[g

R(ū2(t− τ), v̄2(t− τ))− gR(u2(t− τ), v2(t− τ))]− bI
12[g

I(ū2(t− τ), v̄2(t− τ))

− gI(u2(t− τ), v2(t− τ))] + UR
1 (t),

Dαeu
2 (t) = −a2eu

2 (t) + bR
21[ f R(ū2(t), v̄2(t))− f R(u2(t), v2(t))]− bI

21[ f I(ū2(t), v̄2(t))− f I(u2(t), v2(t))]

+ bR
22[g

R(ū1(t− τ), v̄1(t− τ))− gR(u1(t− τ), v1(t− τ))]− bI
22[g

I(ū1(t− τ), v̄1(t− τ))

− gI(u1(t− τ), v1(t− τ))] + UR
2 (t),

[eu
3 (t)]

′ = −a3eu
3 (t) + a3eu

1 (t),

Dαev
1(t) = −a1ev

1(t) + bR
11[ f I(ū3(t), v̄3(t))− f I(u3(t), v3(t))] + bI

11[ f R(ū3(t), v̄3(t))− f R(u3(t), v3(t))]

+ bR
12[g

I(ū2(t− τ), v̄2(t− τ))− gI(u2(t− τ), v2(t− τ))] + bI
12[g

R(ū2(t− τ), v̄2(t− τ))

− gR(u2(t− τ), v2(t− τ))] + U I
1(t),

Dαev
2(t) = −a2ev

2(t) + bR
21[ f I(ū2(t), v̄2(t))− f I(u2(t), v2(t))] + bI

21[ f R(ū2(t), v̄2(t))− f R(u2(t), v2(t))]

+ bR
22[g

I(ū1(t− τ), v̄1(t− τ))− gI(u1(t− τ), v1(t− τ))] + bI
22[g

R(ū1(t− τ), v̄1(t− τ))

− gR(u1(t− τ), v1(t− τ))] + U I
2(t),

[ev
3(t)]

′ = −a3ev
3(t) + a3ev

1(t).

(10)

Design the following control input

UR
1 (t) = −d1(t)eu

1 (t)− sgn(eu
1 (t))η1(t)|eu

1 (t− τ)| − w1(t)eu
3 (t),

UR
2 (t) = −d2(t)eu

2 (t)− sgn(eu
2 (t))η2(t)|eu

2 (t− τ)|,
U I

1(t) = −p1(t)ev
1(t)− sgn(ev

1(t))θ1(t)|ev
1(t− τ)| − w2(t)ev

3(t),

U I
2(t) = −p2(t)ev

2(t)− sgn(ev
2(t))θ2(t)|ev

2(t− τ)|,
Dαdi(t) = ki|eu

i (t)|, (i = 1, 2),

Dαηi(t) = mi|eu
i (t− τ)|, (i = 1, 2),

Dα pi(t) = li|ev
i (t)|, (i = 1, 2),

Dαθi(t) = ni|ev
i (t− τ)|, (i = 1, 2),

Dαw1(t) = q1|eu
3 (t)|,

Dαw2(t) = q2|ev
3(t)|,

(11)

where di(t), ηi(t), pi(t), θi(t) and wi(t) are adjustable parameters, ki, mi, li, qi and ni are arbitrary
positive constants. When eu

i (t) → 0 and ev
i (t) → 0 (i = 1, 2), the drive system (6) and the response

system (7) achieve the information synchronization, which can be ensured by the following theorem.

Theorem 1. Under Assumptions 1 and 2, the drive system (6) and the response system (7) can achieve globally
asymptotically synchronized with the controller (11).
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Proof. Suppose that xi(t) = ui(t) + ivi(t) and yi(t) = ūi(t) + iv̄i(t) are any solution of systems (6)
and (7) with different initial values. Let

V1(t) =
2

∑
i=1
|eu

i (t)|+
2

∑
i=1
|ev

i (t)|,

V2(t) =
2

∑
i=1

1
2ki

[Xi
1(t)]

2 +
2

∑
i=1

1
2mi

[Xi
2(t)]

2 +
2

∑
i=1

1
2li

[Xi
3(t)]

2 +
2

∑
i=1

1
2ni

[Xi
4(t)]

2 +
2

∑
i=1

1
2qi

[Xi
5(t)]

2,

where Xi
1(t) = di(t)− di, Xi

2(t) = ηi(t)− ηi, Xi
3(t) = pi(t)− pi, Xi

4(t) = θi(t)− θi, Xi
5(t) = wi(t)−wi,

di, ηi, pi, wi and θi are constants to be determined later.
Now, construct a Lyapunov-like function as follows:

V(t) = V1(t) + V2(t). (12)

Based on Lemma 1, Lemma 2, one has

DαV(t) ≤
2

∑
i=1

sgn(eu
i (t))Dαeu

i (t) +
2

∑
i=1

sgn(ev
i (t))Dαev

i (t) +
2

∑
i=1

1
ki
[di(t)− di]Dαdi(t)+

2

∑
i=1

1
mi

[ηi(t)− ηi]Dαηi(t) +
2

∑
i=1

1
li
[pi(t)− pi]Dα pi(t) +

2

∑
i=1

1
ni
[θi(t)− θi]Dαθi(t)+

2

∑
i=1

1
qi
[wi(t)− wi]Dαwi(t).

See the Appendix for the proof of DαV(t) ≤ −ζV1(t) ≤ 0, where ζ is a positive constant.
From Definition 1 and (A1), one has

V(t)−V(t0) =
1

Γ(α)

∫ t

t0

(t− s)α−1DαV(s) ds ≤ 0.

Therefore V(t) ≤ V(t0), t ≥ t0. Then from (12), one knows that eu
i (t), ev

i (t), di(t), ηi(t), pi(t), θi(t)
and wi(t) are bounded on t ≥ t0. Thus, one can obtain there exists a positive constant N > 0 satisfying

|DαV1(t)| ≤ N, t ≥ t0. (13)

We declare that limt→∞ V1(t) = 0.
In [36], the authors have given the proof of limt→∞ V1(t) = 0 by contradiction. Thus, the drive

system (6) and the response system (7) are globally asymptotically synchronized under the controller (11).
This completes the proof.

4. Numerical Simulations

In this section, some numerical simulations will be provided to demonstrate the main results.
Consider the drive FCVNN (6) with α = 0.99, τ = 0.01, I1(t) = 2(sin t − i cos t),

I2(t) = cos (t + 1) + 3i sin (t− 1), a1 = 1, a2 = 2.5, a3 = 0.5, b11 = 1+ i, b12 = −1.5+ 2i, b21 = 3.5+ i,
b22 = 4.8− 4.8i, and

f (xi) =
1− e−ui

1 + e−ui
+ i

1
1 + e−vi

, g(xi) =
1− e−vi

1 + e−vi
+ i

1
1 + e−ui

,

where i = 1, 2, 3. The response FCVNN (7) share the same parameters with (6).
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It is easy to compute λRR
i = 0.5, λI I

i = 0.25, λRI
i = λIR

i = 0, µRR
i = µI I

i = 0, µRI
i = 0.5, µIR

i = 0.25.
The initial conditions are taken as{

x1(s) = −2 + 1.5i, x2(s) = −2 + 2i, x3(s) = 2− 6i,

y1(s) = −6− i, y2(s) = −1− 2.5i, y3(s) = −5 + 2i,
s ∈ [−1, 0]. (14)

And let η1(0) = 0.1, η2(0) = 0.1, d1(0) = 0.01, d2(0) = 0.01, p1(0) = 0.01, p2(0) = 0.01,
θ1(0) = 0.01, θ2(0) = 0.01, w1(0) = 0.2, w2(0) = 0.3, k1 = 0.2, k2 = 0.04, m1 = 0.2, m2 = 0.01,
l1 = 0.05, l2 = 0.02, n1 = 0.01, n2 = 0.04, q1 = 0.3, q2 = 0.05, η1 = 2.5, η2 = 1.5, d1 = 1, d2 = 3, p1 = 1,
p2 = 3, θ1 = 5, θ2 = 2, w1 = 3, w2 = 2. By calculation, one obtains

a1 + d1 > 0, a2 + d2 − |bR
21|λRR

2 − |bI
21|λIR

2 − |bR
21|λIR

2 − |bI
21|λRR

2 > 0,
w1 − |bR

11|λRR
3 − |bI

11|λIR
3 − |bR

11|λIR
3 − |bI

11|λRR
3 > 0,

w2 − |bR
11|λRI

3 − |bI
11|λI I

3 − |bR
11|λI I

3 − |bI
11|λRI

3 > 0,
η1 − |bR

22|µRR
1 − |bI

22|µIR
1 − |bR

22|µIR
1 − |bI

22|µRR
1 > 0,

η2 − |bR
12|µRR

2 − |bI
12|µIR

2 − |bR
12|µIR

2 − |bI
12|µRR

2 > 0,
a1 + p1 > 0, a2 + p2 − |bR

21|λRI
2 − |bI

21|λI I
2 − |bR

21|λI I
2 − |bI

21|λRI
2 > 0,

θ1 − |bR
22|µRI

1 − |bI
22|µI I

1 − |bR
22|µI I

1 − |bI
22|µRI

1 > 0,
θ2 − |bR

12|µRI
2 − |bI

12|µI I
2 − |bR

12|µI I
2 − |bI

12|µRI
2 > 0.

Therefore, from Theorem 1, the drive system (6) and the response system (7) with the initial values (14)
can achieve globally asymptotically synchronization under the controller (11). The curves of states x1,
x2, y1 and y2 in 2-dimensional plane and 3-dimensional space when achieving synchronization are
depicted in Figures 1 and 2, respectively. Figure 3 shows the errors between yi and xi(i = 1, 2) with
five different initial values. The errors of the introduced variables are plotted in Figure 4. Figure 5
shows the time revolution of real and imaginary parts of x1, x2, y1 and y2 with the controller (11),
respectively. From simulation results in Figures 1–5, it is clearly seen that the drive system (6) and
the response system (7) can achieve synchronization. Figure 6 shows time response of the adaptive
feedback gains di(t), pi(t), ηi(t), θi(t) and wi(t) (i = 1, 2).
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Figure 1. Time evolution of states x1, x2, y1 and y2 in 2-D plane.
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Figure 2. Time evolution of x1, x2, y1 and y2 in 3-D space.

Figure 3. Synchronization errors ei(t) = yi(t)− xi(t) with five different initial values, i = 1, 2.

Figure 4. Synchronization errors eu
3 (t) and ev

3(t) with five different initial values.
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Figure 5. Time revolution of system (6) and (7) with controllers as Equation (11).

Figure 6. Time response of the feedback gains di(t), pi(t), ηi(t), θi(t) and wi(t).

5. Conclusions

In this paper, based on adaptive control and fractional-order Lyapunov-like function method,
the information synchronization of drive-response FCVNNs with discrete and distributed delays has
been studied. Due to the consideration of distributed delay, a new variable is defined to convert the
FCVNN into a system with only discrete time delay. When systems (6) and (7) achieve information
synchronization, the errors of the introduced variables tend to zero. The adaptive controller is
designed in a elaborate way. Some sufficient conditions are developed to achieve the information
synchronization. Numerical results show the effectiveness and correctness of the theoretical result.
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Appendix A

From (10), (11) and the above formula, one has

DαV(t) ≤ sgn(eu
1 (t))

{
− a1eu

1 (t) + bR
11[ f R(ū3(t), v̄3(t))− f R(u3(t), v3(t))]− bI

11[ f I(ū3(t), v̄3(t))−

f I(u3(t), v3(t))] + bR
12[g

R(ū2(t− τ), v̄2(t− τ))− gR(u2(t− τ), v2(t− τ))]−
bI

12[g
I(ū2(t− τ), v̄2(t− τ))− gI(u2(t− τ), v2(t− τ))]− d1(t)eu

1 (t)− sgn(eu
1 (t))η1(t)|eu

1 (t− τ)|

− w1(t)eu
3 (t)

}
+ sgn(eu

2 (t))
{
− a2eu

2 (t) + bR
21[ f R(ū2(t), v̄2(t))− f R(u2(t), v2(t))]−

bI
21[ f I(ū2(t), v̄2(t))− f I(u2(t), v2(t))] + bR

22[g
R(ū1(t− τ), v̄1(t− τ))− gR(u1(t− τ), v1(t− τ))]

− bI
22[g

I(ū1(t− τ), v̄1(t− τ))− gI(u1(t− τ), v1(t− τ))]− d2(t)eu
2 (t)−

sgn(eu
2 (t))η2(t)|eu

2 (t− τ)|
}
+ sgn(ev

1(t))
{
− a1ev

1(t) + bR
11[ f I(ū3(t), v̄3(t))− f I(u3(t), v3(t))]+

bI
11[ f R(ū3(t), v̄3(t))− f R(u3(t), v3(t))] + bR

12[g
I(ū2(t− τ), v̄2(t− τ))− gI(u2(t− τ), v2(t− τ))]

+ bI
12[g

R(ū2(t− τ), v̄2(t− τ))− gR(u2(t− τ), v2(t− τ))]− p1(t)ev
1(t)−

sgn(ev
1(t))θ1(t)|ev

1(t− τ)| − w2(t)ev
3(t)

}
+ sgn(ev

2(t))
{
− a2ev

2(t) + bR
21[ f I(ū2(t), v̄2(t))−

f I(u2(t), v2(t))] + bI
21[ f R(ū2(t), v̄2(t))− f R(u2(t), v2(t))] + bR

22[g
I(ū1(t− τ), v̄1(t− τ))−

gI(u1(t− τ), v1(t− τ))] + bI
22[g

R(ū1(t− τ), v̄1(t− τ))− gR(u1(t− τ), v1(t− τ))]− p2(t)ev
2(t)

− sgn(ev
2(t))θ2(t)|ev

2(t− τ)|
}
+ ∑2

i=1
1
ki
(di(t)− di)ki|eu

i (t)|+

∑2
i=1

1
mi

(ηi(t)− ηi)mi|eu
i (t− τ)|+ ∑2

i=1
1
li
(pi(t)− pi)li|ev

i (t)|+

∑2
i=1

1
ni
(θi(t)− θi)ni|ev

i (t− τ)|+ 1
q1

(w1(t)− w1)q1|eu
3 (t)|+

1
q2

(w2(t)− w2)q2|ev
3(t)|

≤
{
− a1|eu

1 (t)|+ |bR
11|| f R(ū3(t), v̄3(t))− f R(u3(t), v3(t))|+ |bI

11|| f I(ū3(t), v̄3(t))− f I(u3(t), v3(t))|

+ |bR
12||gR(ū2(t− τ), v̄2(t− τ))− gR(u2(t− τ), v2(t− τ))|+ |bI

12||gI(ū2(t− τ), v̄2(t− τ))−

gI(u2(t− τ), v2(t− τ))| − d1|eu
1 (t)| − η1|eu

1 (t− τ)| − w1|eu
3 (t)|

}
+
{
− a2|eu

2 (t)|+

|bR
21|| f R(ū2(t), v̄2(t))− f R(u2(t), v2(t))|+ |bI

21|| f I(ū2(t), v̄2(t))− f I(u2(t), v2(t))|+
|bR

22||gR(ū1(t− τ), v̄1(t− τ))− gR(u1(t− τ), v1(t− τ))|+ |bI
22||gI(ū1(t− τ), v̄1(t− τ))−

gI(u1(t− τ), v1(t− τ))| − d2|eu
2 (t)| − η2|eu

2 (t− τ)|
}
+
{
− a1|ev

1(t)|+ |bR
11|| f I(ū3(t), v̄3(t))−

f I(u3(t), v3(t))|+ |bI
11|| f R(ū3(t), v̄3(t))− f R(u3(t), v3(t))|+ |bR

12||gI(ū2(t− τ), v̄2(t− τ))−
gI(u2(t− τ), v2(t− τ))|+ |bI

12||gR(ū2(t− τ), v̄2(t− τ))− gR(u2(t− τ), v2(t− τ))| − p1|ev
1(t)|−

θ1|ev
1(t− τ)| − w2|ev

3(t)|
}
+
{
− a2|ev

2(t)|+ |bR
21|| f I(ū2(t), v̄2(t))− f I(u2(t), v2(t))|+

|bI
21|| f R(ū2(t), v̄2(t))− f R(u2(t), v2(t))|+ |bR

22||gI(ū1(t− τ), v̄1(t− τ))−
gI(u1(t− τ), v1(t− τ))|+ |bI

22||gR(ū1(t− τ), v̄1(t− τ))− gR(u1(t− τ), v1(t− τ))|−

p2|ev
2(t)| − θ2|ev

2(t− τ)|
}

,
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From Assumptions 1 and 2, one has

DαV(t) ≤
{
− a1|eu

1 (t)|+ |bR
11|[λRR

3 |eu
3 (t)|+ λRI

3 |ev
3(t)|] + |bI

11|[λIR
3 |eu

3 (t)|+ λI I
3 |ev

3(t)|]+

|bR
12|[µRR

2 |eu
2 (t− τ)|+ µRI

2 |ev
2(t− τ)|] + |bI

12|[µIR
2 |eu

2 (t− τ)|+ µI I
2 |ev

2(t− τ)|]− d1|eu
1 (t)|−

η1|eu
1 (t− τ)| − w1|eu

3 (t)|
}
+
{
− a2|eu

2 (t)|+ |bR
21|[λRR

2 |eu
2 (t)|+ λRI

2 |ev
2(t)|] + |bI

21|[λIR
2 |eu

2 (t)|+

λI I
2 |ev

2(t)|] + |bR
22|[µRR

1 |eu
1 (t− τ)|+ µRI

1 |ev
1(t− τ)|] + |bI

22|[µIR
1 |eu

1 (t− τ)|+ µI I
1 |ev

1(t− τ)|]−

d2|eu
2 (t)| − η2|eu

2 (t− τ)|
}
+
{
− a1|ev

1(t)|+ |bR
11|[λIR

3 |eu
3 (t)|+ λI I

3 |ev
3(t)|] + |bI

11|[λRR
3 |eu

3 (t)|+

λRI
3 |ev

3(t)|] + |bR
12|[µIR

2 |eu
2 (t− τ)|+ µI I

2 |ev
2(t− τ)|] + |bI

12|[µRR
2 |eu

2 (t− τ)|+ µRI
2 |ev

2(t− τ)|]−

p1|ev
1(t)| − θ1|ev

1(t− τ)| − w2|ev
3(t)|

}
+
{
− a2|ev

2(t)|+ |bR
21|[λIR

2 |eu
2 (t)|+ λI I

2 |ev
2(t)|]+

|bI
21|[λRR

2 |eu
2 (t)|+ λRI

2 |ev
2(t)|] + |bR

22|[µIR
1 |eu

1 (t− τ)|+ µI I
1 |ev

1(t− τ)|] + |bI
22|[µRR

1 |eu
1 (t− τ)|+

µRI
1 |ev

1(t− τ)|]− p2|ev
2(t)| − θ2|ev

2(t− τ)|
}

=
[
(−a1 − d1)|eu

1 (t)|+ (−a2 − d2 + |bR
21|λRR

2 + |bI
21|λIR

2 + |bR
21|λIR

2 + |bI
21|λRR

2 )|eu
2 (t)|+ (−w1+

|bR
11|λRR

3 + |bI
11|λIR

3 + |bR
11|λIR

3 + |bI
11|λRR

3 )|eu
3 (t)|+ (−η1 + |bR

22|µRR
1 + |bI

22|µIR
1 + |bR

22|µIR
1 +

|bI
22|µRR

1 )|eu
1 (t− τ)|+ (−η2 + |bR

12|µRR
2 + |bI

12|µIR
2 + |bR

12|µIR
2 + |bI

12|µRR
2 )|eu

2 (t− τ)|
]
+[

(−a1 − p1)|ev
1(t)|+ (−a2 − p2 + |bR

21|λRI
2 + |bI

21|λI I
2 + |bR

21|λI I
2 + |bI

21|λRI
2 )|ev

2(t)|+ (−w2+

|bR
11|λRI

3 + |bI
11|λI I

3 + |bR
11|λI I

3 + |bI
11|λRI

3 )|ev
3(t)|+ (−θ1 + |bR

22|µRI
1 + |bI

22|µI I
1 + |bR

22|µI I
1 +

|bI
22|µRI

1 )|ev
1(t− τ)|+ (−θ2 + |bR

12|µRI
2 + |bI

12|µI I
2 + |bR

12|µI I
2 + |bI

12|µRI
2 )|ev

2(t− τ)|
]
.

One can subtly choose di, ηi, pi, wi and θi such that

a1 + d1 > 0, a2 + d2 − |bR
21|λRR

2 − |bI
21|λIR

2 − |bR
21|λIR

2 − |bI
21|λRR

2 > 0,
w1 − |bR

11|λRR
3 − |bI

11|λIR
3 − |bR

11|λIR
3 − |bI

11|λRR
3 > 0,

η1 − |bR
22|µRR

1 − |bI
22|µIR

1 − |bR
22|µIR

1 − |bI
22|µRR

1 > 0,
η2 − |bR

12|µRR
2 − |bI

12|µIR
2 − |bR

12|µIR
2 − |bI

12|µRR
2 > 0,

a1 + p1 > 0, a2 + p2 − |bR
21|λRI

2 − |bI
21|λI I

2 − |bR
21|λI I

2 − |bI
21|λRI

2 > 0,
w2 − |bR

11|λRI
3 − |bI

11|λI I
3 − |bR

11|λI I
3 − |bI

11|λRI
3 > 0,

θ1 − |bR
22|µRI

1 − |bI
22|µI I

1 − |bR
22|µI I

1 − |bI
22|µRI

1 > 0,
θ2 − |bR

12|µRI
2 − |bI

12|µI I
2 − |bR

12|µI I
2 − |bI

12|µRI
2 > 0.

Let

ζ1 = min
{

a1 + d1, a2 + d2 − |bR
21|λRR

2 − |bI
21|λIR

2 − |bR
21|λIR

2 − |bI
21|λRR

2 , w1 − |bR
11|λRR

3 − |bI
11|λIR

3 −

|bR
11|λIR

3 − |bI
11|λRR

3

}
,

ζ2 = min
{

a1 + p1, a2 + p2 − |bR
21|λRI

2 − |bI
21|λI I

2 − |bR
21|λI I

2 − |bI
21|λRI

2 , w2 − |bR
11|λRI

3 − |bI
11|λI I

3 −

|bR
11|λI I

3 − |bI
11|λRI

3

}
,

γ1 = min
{

η1 − |bR
22|µRR

1 − |bI
22|µIR

1 − |bR
22|µIR

1 − |bI
22|µRR

1 , η2 − |bR
12|µRR

2 − |bI
12|µIR

2 − |bR
12|µIR

2 −

|bI
12|µRR

2

}
,

γ2 = min
{

θ1 − |bR
22|µRI

1 − |bI
22|µI I

1 − |bR
22|µI I

1 − |bI
22|µRI

1 , θ2 − |bR
12|µRI

2 − |bI
12|µI I

2 − |bR
12|µI I

2 −

|bI
12|µRI

2

}
.
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Then, one can obtain

DαV(t) ≤ −ζ1

3

∑
i=1
|eu

i (t)| − γ1

2

∑
i=1
|eu

i (t− τ)| − ζ2

3

∑
i=1
|ev

i (t)| − γ2

2

∑
i=1
|ev

i (t− τ)|

≤ −ζ1

3

∑
i=1
|eu

i (t)| − ζ2

3

∑
i=1
|ev

i (t)|

≤ −ζV1(t) ≤ 0,

(A1)

where ζ = min{ζ1, ζ2} > 0.
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