
entropy

Article

Feature Selection based on the Local Lift
Dependence Scale

Diego Marcondes *,† ID , Adilson Simonis † and Junior Barrera †,‡

Institute of Mathematics and Statistics, University of São Paulo, São Paulo 05508-090, Brazil;
asimonis@ime.usp.br (A.S.); jb@ime.usp.br (J.B.)
* Correspondence: dmarcondes@ime.usp.br; Tel.: +55-11-97585-6644
† These authors contributed equally to this work.
‡ Junior Barrera was supported by grants 2013/07467-1 and 2015/01587-0, São Paulo Research

Foundation (FAPESP).

Received: 11 November 2017; Accepted: 25 January 2018; Published: 30 January 2018

Abstract: This paper uses a classical approach to feature selection: minimization of a cost function
applied on estimated joint distributions. However, in this new formulation, the optimization search
space is extended. The original search space is the Boolean lattice of features sets (BLFS), while the
extended one is a collection of Boolean lattices of ordered pairs (CBLOP), that is (features, associated
value), indexed by the elements of the BLFS. In this approach, we may not only select the features
that are most related to a variable Y, but also select the values of the features that most influence
the variable or that are most prone to have a specific value of Y. A local formulation of Shannon’s
mutual information, which generalizes Shannon’s original definition, is applied on a CBLOP to
generate a multiple resolution scale for characterizing variable dependence, the Local Lift Dependence
Scale (LLDS). The main contribution of this paper is to define and apply the LLDS to analyse local
properties of joint distributions that are neglected by the classical Shannon’s global measure in order
to select features. This approach is applied to select features based on the dependence between: i—the
performance of students on university entrance exams and on courses of their first semester in the
university; ii—the congress representative party and his vote on different matters; iii—the cover type
of terrains and several terrain properties.

Keywords: feature selection; local lift dependence scale; mutual information; variable dependence;
variable selection

1. Introduction

The problem of feature selection is equivalent to the problem of nonparametric estimation of
a discrete joint distribution P(X, Y) from a sample of n pairs {(x1, y1), . . . , (xn, yn)}, in which X is
an m-dimensional real or integer vector of features, i.e., measures of phenomenon characteristics,
and Y is a natural number, which represents the class of X. The problem is to find a subspace of
characteristics χ with dimension k < m that permits to properly estimate P(χ, Y), emphasizing one of
its important characteristics: for example, that χ is a good predictor of Y, i.e., for all x, the conditional
distribution P(Y | χ = x) has its mass concentrated around some value Y = yx.

Formally, let X be an m-dimensional feature vector and Y a single variable. Let χ be a feature
vector, whose features are also in X, and denote P(X) as the set of all feature vectors whose features
are also in X. In this scenario, we define the classical approach to feature selection, in which the search
space is the Boolean lattice of features sets (BLFS), as follows.
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Definition 1. Given a variable Y, a feature vector X and a cost function CY : P(X)→ R+ calculated from the
estimated joint distribution of χ ∈ P(X) and Y, the classical approach to feature selection consists in finding
a subset χ ∈ P(X) of features such that CY(χ) is minimum.

In light of Definition 1, we note that some families of feature selection algorithms may be
considered as classical approaches. In fact, according to the taxonomy of feature selection, as presented
in [1] for example, feature selection algorithms may be divided into three families, filters, wrappers and
embedded methods, being the last two classical approaches to feature selection. Indeed, in the wrappers
methods, the feature selection algorithm exists as a wrapper around a learning machine (or induction
algorithm), so that a subset of features is chosen by evaluating its performance on the machine [2].
Furthermore, in the embedded methods, a subset of features is also chosen based on its performance on
a learning machine, although the feature selection and the learning machine cannot be separated [3].
Therefore, both wrappers and embedded methods satisfy Definition 1, as the performance on the learning
machine may be established by a cost function, so that these methods are special cases of the classical
approach to feature selection. For more details about these methods see [1–7].

Under this approach for feature selection, a classical choice for the cost function is the estimated
mean conditional entropy [8] that measures the mean mass concentration of the conditional distribution.
Great mass concentration indicates that the chosen features define equivalence classes with almost
homogeneous classifications, hence it is a good choice to represent the complete set of features.
For a joint distribution estimated by a sample of size n, the curve formed by this cost function applied
in a chain of the BLFS has an U shape and is called U-curve. For a small set of features, in the left
side of the U-curve, the cost is high for the small amount of features generates large equivalence
classes that mix labels, which leads to high entropy. For a large set of features, in the right side
of the U-curve, the cost is also high, for severe conditional distribution estimation error leads to
high entropy. Therefore, the ideal set of features in this chain is in the U-curve minimum, that is
achieved by a set that contains the maximum number of features, whose corresponding distribution
estimation is not seriously affected by estimation error. Choosing the best set of features consists of
comparing the minimum of all lattice chains. There are some NP-hard algorithms that find the absolute
minimum [9,10]. There are also some heuristics that give approximate solutions such as Sequential
Forward Selection (SFS) [11], which adds features progressively until it finds a local minimum, and
Sequential Forward Floating Selection (SFFS) [11], which, at first, adds features, but after takes some of
them out and adds others, trying to improve the first local minimum found.

The main goal of the classical approach is to select the features that are most related to Y according
to a metric defined by a cost function. Although useful in many scenarios, this approach may not be
suitable in some applications in which it is of interest to select not only the features that are most related
to Y, but also the features’ values that most influence Y, or that are most prone to have a specific value y
of Y. Therefore, it would be relevant to extend the search space of the classical approach to an extended
space that also contemplates the range of the features, so that we may select features and subsets of
their range. This extended space is a collection of Boolean lattices of ordered pairs (features,associated
values) (CBLOP) indexed by the elements of the BLFS. In other words, for each χ ∈ P(X) we have the
Boolean lattice that represents the powerset of its range Rχ, that is denoted by P(Rχ), and the CBLOP
is the collection of these Boolean lattices, i.e., {P(Rχ) : χ ∈ P(X)}. If X = (X1, X2) are Boolean
features, then its CBLOP is as the one in Figure 1. Note that the circle nodes and solid lines form
a BLFS, that around each circle node there is an associated Boolean lattice that represents the powerset
of Rχ, for a χ ∈ P(X), and that the whole tree is a CBLOP (Note that if the features X are not Boolean,
we also have that P(χ) is a Boolean lattice for all χ ∈ P(X), so that the search space of the algorithm
is always a CBLOP in this framework, regardless of the features’ range).

A downside of this extension is that the sample size needed to perform feature selection at the
extended space is greater than the one needed at the associated BLFS, what demands more refined
optimal and sub-optimal algorithms in order to select features and subsets of their range. Nevertheless,
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the extended space brings advances to the state-of-art in feature selection, as it expands the method to
a new variety of applications. As an example of such applications, we may cite market segmentation.
Suppose it is of interest to segment a market according to the products that each market share is most
prone to buy. Denote Y as a discrete variable that represents the products sold by a company, i.e.,
P(Y = y) is the probability of an individual of the market buying the product y ∈ {1, . . . , p} sold by
the company, and X as the socio-economic and demographic characteristics of the people that compose
the market. In this framework, it is not enough to select the characteristics (features) that are most
related to Y: we need to select, for each product (value of Y), the characteristics χ ∈ P(X) and their
values W ∈ P(Rχ) (the profile of the people) that are prone to buy a given product, so that feature
selection must be performed on a CBLOP instead of a BLFS.

We call the approach to feature selection in which the search space is a CBLOP multi-resolution,
for we may choose the features based on a global cost function calculated for each χ ∈ P(X) (low
resolution); or choose the features and a subset of their range based on a local cost function calculated
for each χ ∈ P(X) and W ∈ P(Rχ) (medium resolution); or choose the features and a point of their
range based on a local cost function calculated for each χ ∈ P(X) and x ∈ Rχ (high resolution).
Formally, the multi-resolution approach to feature selection may be defined as follows.

Definition 2. Given a variable Y, a feature vector X and cost functions Ck
Y : P(X) × Rk → R+, k ∈

{1, . . . , m}, calculated from the estimated joint distribution of χ ∈ P(X) and Y, the multi-resolution approach
to feature selection consists in finding a subset χ ∈ P(X) of k ∈ {1, . . . , m} features and a W ∈ P(Rχ) such
that Ck

Y(χ, W) is minimum.

The cost functions Ck
Y(χ, W) considered in this paper measure the local dependence between

χ ∈ P(X) of length k ∈ {1, . . . , m} and Y restricted to the subset W ∈ P(Rχ), i.e., for χ ∈ W. More
specifically, our cost functions are based on the Local Lift Dependence Scale, a scale for measuring variable
dependence in multiple resolutions. In this scale we may measure variable dependence globally and
locally. On the one hand, global dependence is measured by a coefficient, that summarizes it. On
the other hand, local dependence is measured for each subset W ∈ P(Rχ), again by a coefficient.
Therefore, if the cardinality ofRχ is N, we have 2N − 1 dependence coefficients: one global and 2N − 2
local, each one measuring the influence of χ in Y restricted to a subset ofRχ. Furthermore, the Local
Lift Dependence Scale also provides a propensity measure for each point of the joint range of χ and Y.
Note that the dependence is indeed measured in multiple resolutions: globally, for each subset ofRχ

and pointwise.
Thus, in this paper, we extend the classical approach to feature selection in order to select not only

the features, but also their values that are most related to Y in some sense. In order to do so, we extend
the search space of the feature selection algorithm from the BLFS to the CBLOP and use cost functions
based on the Local Lift Dependence Scale, which is an extension of Shannon’s mutual information.
The feature selection algorithms proposed in this paper are applied to a dataset consisting of student
performances on a university’s entrance exam and on undergraduate courses in order to select exam’s
subjects, and the performances on them, that are most related to undergraduate courses, considering
student performance on both. The method is also applied to two datasets publicly available at the UCI
Machine Learning Repository [12], namely, the Congressional Voting Records and Covertype datasets.
We first present the main concepts related to the Local Lift Dependence Scale. Then, we propose feature
selection algorithms based on the Local Lift Dependence Scale and apply them to solve real problems.

2. Local Lift Dependence Scale

The Local Lift Dependence Scale (LLDS) is a scale for measuring the dependence between
a random variable Y and a random vector X (also called feature vector) in multiple resolutions.
Although consisting of well known mathematical objects, there does not seem to exist any literature
that thoroughly defines and study the properties of the LLDS, even though it is highly used in
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marketing [13] and data mining [14] (Chapter 10), for example. Therefore, we present an unprecedented
characterization of the LLDS, despite the fact that much of it is known in the theory.

The LLDS analyses the raw dependence between the variables, as it does not make any assumption
about its kind, nor restrict itself to the study of a specific kind of dependence, e.g., linear dependence.
Among LLDS dependence coefficients, there are three measures of dependence, one global and two
local, but with different resolutions, that assess variable dependence on multiple levels. The global
measure and one of the local are based on well known dependence measures, namely, the Mutual
Information and the Kullback-Leibler Divergence. In the following paragraphs we present the main
concepts of the LLDS and discuss how they can be applied to the classical and multi-resolution
approaches to feature selection. The main concepts are presented for discrete random variables
X = {X1, . . . , Xm} and Y defined on (Ω,F,P), with range RX,Y = RX × RY, although, with
simple adaptations, i.e., by interchanging probability functions with probability density functions,
the continuous case follows from it.

The Mutual Information (MI), proposed by [15], is a classical dependence quantifier that measures
the mass concentration of a joint probability function. As more concentrated the joint probability
probability function is, the more dependent the random variables are and greater is their MI. In fact,
the MI is a numerical index defined as

I(X, Y) := ∑
(x,y)∈RX,Y

f (x, y) log

(
f (x, y)

g(x)h(y)

)

in which f (x, y) := P(X = x, Y = y), g(x) := P(X = x) and h(y) := P(Y = y) for all (x, y) ∈ RX,Y.
An useful property of the MI is that it may be expressed as

I(X, Y) = − ∑
y∈RY

h(y) log h(y) + ∑
(x,y)∈RX,Y

f (x, y) log

(
f (x, y)
g(x)

)
:= H(Y)− H(Y|X) (1)

in which H(Y) is the Entropy of Y and H(Y|X) is the Conditional Entropy (CE) of Y given X. The form
of the MI in (1) is useful because, if we fix Y, and consider features (X1, . . . , Xm), we may determine
which one of them is the most dependent with Y by observing only the CE of Y given each one,
as the feature that maximizes the MI is the one that minimizes the CE. In this paper, we consider the
normalized MI that is given by

ηX(Y|RX) =

∑
(x,y)∈RX,Y

f (x, y) log

(
f (x,y)

g(x)h(y)

)
−∑y∈RY

h(y) log h(y)
:=

I(X, Y)
H(Y)

(2)

when H(Y) 6= 0. We have that 0 ≤ ηX(Y|RX) ≤ min{H(Y),H(X)}
H(Y) ≤ 1, that ηX(Y|RX) = 0 if, and only if,

X and Y are independent and that ηX(Y|RX) = 1 if, and only if, there exists a function Q : RX → RY
such that P(Y = Q(X)) = 1, i.e., Y is a function of X. The η, MI and CE are equivalent global and
general measures of dependence, that summarize to an index a variety of dependence kinds that are
expressed by mass concentration.

On the other hand, we may define a LLDS local and general measure of dependence that expands
the global dependence measured by the MI into local indexes, enabling a local interpretation of
variable dependence. As the MI is an index that measures variable dependence by measuring the mass
concentration incurred in one variable by the observation of another, it may only give evidences about
the existence of a dependence, but cannot assert what kind of dependence is being observed. Therefore,
it is relevant to break down the MI by region, so that it can be interpreted in an useful manner and the
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kind of dependence outlined by it may be identified. The Lift Function (LF) is responsible for this break
down, as it may be expressed as

L(X,Y)(x, y) :=
f (x, y)

g(x)h(y)
=

f (y|x)
h(y)

, ∀(x, y) ∈ RX,Y

in which f (y|x) := P(Y = y|X = x). When there is no doubt about which variables the LF refers to,
it is denoted simply by L(x, y). Note that the LF is the exponential of the pontual mutual information
(see [16,17] for example for more details).

The MI is the expectation on (X, Y) of the LF logarithm, so that the LF presents locally the mass
concentration measured by the MI. As the LF may be written as the ratio between the conditional
probability of Y given X and the marginal probability of Y, the main interest in its behaviour is in
determining for which points (x, y) ∈ RX,Y L(x, y) > 1 and for which L(x, y) < 1. If L(x, y) > 1
then the fact of X being equal to x increases the probability of Y being equal to y, as the conditional
probability is greater than the marginal one. Therefore, we say that event {X = x} lifts event {Y = y}
or that instances with profile x are prone to be of class y. In the same way, if L(x, y) < 1, we say that
event {X = x} inhibits event {Y = y}, for f (y|x) < h(y). If L(x, y) = 1, ∀(x, y) ∈ RX,Y, then the
random variables are independent. Note that the LF is symmetric: {X = x} lifts {Y = y} if, and only
if, {Y = y} lifts {X = x}. Therefore, the LF may be interpreted as X lifting Y or Y lifting X. From now
on, we interpret it as X lifting Y, even though it could be the other way around.

An important property of the LF is that it cannot be greater than one nor lesser than one for all
points (x, y) ∈ RX,Y. Indeed, if L(x, y) > 1, ∀(x, y) ∈ RX,Y, then f (y | x) > h(y), ∀(x, y) ∈ RX,Y, what
implies the absurd 1 = ∑y∈RY

f (y | x) > ∑y∈RY
h(y) = 1 for x ∈ RX . With an analogous argument

we see that L(x, y) cannot be lesser than one for all (x, y) ∈ RX,Y. Therefore, if there are LF values
greater than one, then there must be values lesser than one, what makes it clear that the values of the
LF are dependent and that the lift is a pointwise characteristic of the joint probability function and
not a global property of it. Thus, the study of the LF behaviour gives the full view of the dependence
between the variables, without restricting it to a specific kind nor making assumptions about it.

Although the LF presents a wide picture of variable dependence, it may present it in a too high
resolution, making it complex to interpret. Therefore, instead of measuring dependence for each point
in the range RX,Y, we may measure it for a window W ∈ P(RX). The dependence between X and Y in
the window W, i.e., for X ∈W, may be measured by the η coefficient defined as

ηX(Y|W) :=
∑

x∈W
g(x) ∑

y∈RY

f (y|x) log f (y|x)
h(y)

− ∑
x∈W

g(x) ∑
y∈RY

f (y|x) log h(y)
=

E
{

DKL( f (·|X)||h(·))
∣∣∣X ∈W

}
E
{

H
(
[Y|X], Y

)∣∣∣X ∈W
} (3)

when E
{

H
(
[Y|X], Y

)∣∣X ∈ W
}
6= 0 and P(X ∈ W) > 0, in which DKL(·||·) is the Kullback-Leibler

divergence [18], H(·, ·) is the cross-entropy [19] and H
(
[Y|X], Y

)
means the cross-entropy between the

conditional distribution of Y given X and the marginal distribution of Y. The η coefficient (3) compares
the conditional probability of Y given x, ∀x ∈W, with the marginal probability of Y, so that as greater
the coefficient, as distant the conditional probability is from the marginal one and, therefore, greater is
the influence of the event {X ∈W} in Y. Note that, analogously to the MI, we may write

E
{

DKL( f (·|X)||h(·))
∣∣∣X ∈W

}
=

− ∑
x∈W

g(x) ∑
y∈RY

f (y|x) log h(y) + ∑
x∈W

g(x) ∑
y∈RY

f (y|x) log f (y|x)

P(X ∈W)

=E
{

H
(
[Y|X], Y

)∣∣∣X ∈W
}
− E

{
H
(
[Y|X]

)∣∣∣X ∈W
}

in which H
(
[Y|X]

)
means the Entropy of the conditional distribution of Y given X, and we have that

0 ≤ ηX(Y|W) ≤ 1, that ηX(Y|W) = 0 if, and only if, h(y) ≡ f (y|x), ∀x ∈ W, and that ηX(Y|W) = 1
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if, and only if, there exists a function Q : W → RY such that P(Y = Q(X)|X ∈ W) = 1. Observe
that the η coefficient of a window is also a local dependence quantifier, although its resolution is
lower than that of the LF if the cardinality of W is greater than one. Also note that the η coefficient (3)
is a generalization of (2) to all subsets (windows) of RX , as W = RX is a window and that the
numerator of ηX(Y|W) equals E

{
log L(X, Y) | (X, Y) ∈ W ×RY

}
. It is important to outline that

we may complete the LLDS with coefficients that are given by E
{

log L(X, Y) | (X, Y) ∈ WX ×WY
}

normalized, with WX ∈ P(RX) and WY ∈ P(RY), that measure the dependence between X and Y
for (X, Y) ∈WX ×WY. However, we do not use coefficients of this type in this paper for in our case
the variable Y and its range are always fixed. Note that if the cardinality of WX ×WY is one then
E
{

log L(X, Y) | (X, Y) ∈WX ×WY
}
= log L(WX , WY) so that the scale is indeed complete.

The three dependence coefficients presented, when analysed collectively, measure variable
dependence in all kinds of resolutions: since the low resolution of the MI, through the middle
resolutions of the windows W, until the high resolution of the LF. Indeed, the η coefficients and the
LF define a dependence scale in RX , that we call LLDS, that gives a dependence measure for each
subset W ∈ P(RX). This scale may be useful for various purposes and we outline some of them in the
following paragraphs.

Potential applications of the Local Lift Dependence Scale

The LLDS, more specifically the LF, is relevant in frameworks in which we want to choose a set of
elements, e.g, people, in order to apply some kind of treatment to them, obtaining some kind of response
Y, and are interested in maximizing the number of elements with a given response y ∈ RY. In this
scenario, given the features X, the LF provides the set of elements that must be chosen, that is the set
whose elements have profile x ∈ RX such that L(x, y) is greatest. Formally, we must choose elements
whose profile is

xopt(y) = arg max
x∈RX

L(x, y).

Indeed, if we choose n elements randomly from our population, we expect that n × P(Y = y) of
them will have the desired response. However, if we choose n elements from the population of all
elements with profile xopt(y) ∈ RX , then we expect that n× P(Y = y|X = xopt(y)) of them will have
the desired response, what is [L(xopt(y), y)− 1]× n more elements when comparing with the whole
population sampling framework. Observe that this framework is the exact opposite of the classification
problem. In the classification problem, we want to classify an instance given its profile x ∈ RX into
a class y ∈ RY, that may be, for example, the class y such that f (y|x) is maximum. On the other hand,
in this framework, we are interested in, given a y ∈ RY, finding the profile xopt(y) ∈ RX such that
f (y|xopt(y)) is maximum. In the applications section we further discuss the differences between this
framework and the classification problem, and how the LLDS may be applied to both.

Furthermore, the η coefficient is relevant in scenarios in which we want to understand the
influence of X in Y by region, i.e., for each subset of RX . As an example of such framework, consider
an image in the grayscale, in which X = (X1, X2) represents the pixels of the image and Y is the
random variable whose distribution is the distribution of the colors in the picture, i.e., P(Y = y) = ny

n
in which ny is the number of pixels whose color is y ∈ {1, . . . , 255} and n is the total number of pixels
in the image. If we define the distribution of Y|X = (x1, x2) properly for all (x1, x2) ∈ RX , we may
calculate ηX(Y|W), W ∈ P(RX), in order to determine the regions that are a representation of the
whole picture, i.e., whose color distribution is the same of the whole image, and the regions W whose
color distribution differs from that of the whole image. The η coefficient may be useful for identifying
textures and recognizing patterns in images.

Lastly, the LLDS may be used for feature selection, when we are not only interested in selecting
the features χ ∈ P(X) that are most related to Y, but also want to determine the features χ ∈ P(X)

whose levels W ∈ P(Rχ) most influence Y. In the same manner, we may want to select the features χ

whose level xopt(y) ∈ Rχ maximizes L(χ,Y)(xopt(y), y), for a given y ∈ RY, so that we may sample from
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the population of elements with profile xopt(y) ∈ Rχ in order to maximize the number of elements
of class y. Feature selection based on the LLDS is a special case of the classical and multi-resolution
approaches to feature selection as presented next.

3. Feature Selection Algorithms based on the Local Lift Dependence Scale

In this section we present the characteristics of feature selection algorithms based on the LLDS.
We first outline the special case of the classical approach to feature selection that is based on the LLDS,
and then propose multi-resolution feature selection algorithms that are also based on the LLDS.

3.1. Classical Feature Selection Algorithm

Let Y and X = (X1, . . . , Xm) be random variables. We call the random variables in X features
and note that P(X), the set of all feature vectors whose features are also in X, may be seen as a BLFS,
in which each vector represents a subset of features. In this scheme, feature selection is given by the
minimization, in the BLFS, of a cost function applied on the estimated joint probability of a feature
vector and Y. In fact, the subset of features selected by this approach is given by

χ = arg min
χ∗∈P(X)

CY(χ
∗)

in which CY : P(X)→ R+ is a cost function. The estimated error of a predictor Ψ as presented in [20]
(Chapter 2), for example, is a classical cost function. Another classical cost function is the CE as defined
in (1). A pseudo-code for such algorithm is presented in Algorithm 1. Algorithm 1 is naive, performs
an exhaustive search on the BLFS and is known to be NP-hard [21]. However, some other algorithms
may be applied to find a sub-optimal solution to this problem, as sequential selection algorithms
and floating search methods [22–27]. Also, the search space may be restricted to a subspace of P(X).
Nevertheless, there are algorithms, as the branch-and-bound [28] and the u-curve [9,10,29], that does not
perform an exhaustive search, but ensure that the selected subset of features is optimal.

Algorithm 1 Select χ ∈ P(X) that minimizes CY(χ).

Ensure: c = ∞
Ensure: χ = ∅

1: for χ∗ ∈ P(X) do

2: if CY(χ
∗) < c then

3: c← CY(χ
∗)

4: χ← χ∗
5: end if
6: end for
7: return χ

As an example of the classical approach to feature selection, suppose that X = (X1, X2), in which
X1 and X2 are Boolean features. Then, the search space P(X) may be represented by a tree, i.e., a BLFS,
as the one displayed in Figure 1, considering only the circle nodes and solid lines. Algorithm 1 may be
performed by walking through this tree seeking the minimum of CY.
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{X1, X2}

({X1, X2}, {(0, 0), (1, 0), (0, 1)}) ({X1, X2}, {(0, 0), (1, 0), (1, 1)}) ({X1, X2}, {(0, 0), (0, 1), (1, 1)}) ({X1, X2}, {(1, 1), (1, 0), (0, 1)})

({X1, X2}, {(0, 0), (1, 0)}) ({X1, X2}, {(0, 0), (0, 1)}) ({X1, X2}, {(0, 0), (1, 1)}) ({X1, X2}, {(1, 0), (0, 1)}) ({X1, X2}, {(1, 0), (1, 1)}) ({X1, X2}, {(0, 1), (1, 1)})

({X1, X2}, {(0, 0)}) ({X1, X2}, {(1, 0)}) ({X1, X2}, {(0, 1)}) ({X1, X2}, {(1, 1)})

.

{X1} {X2}

({X1}, {0}) ({X1}, {1}) ({X2}, {0}) ({X2}, {1})

Figure 1. Example of multi-resolution tree for feature selection. The circle nodes and solid lines form a BLFS. The rectangular nodes and dashed lines around each
circle node form a Boolean lattice. The whole tree is a CBLOP.
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3.2. Multi-resolution Feature Selection based on the Local Lift Dependence Scale

Feature selection based on the LLDS may be performed in three distinct resolutions. As a low
resolution approach, we may select the features χ that are most globally related to Y, that are given by

χ = arg max
χ∗∈P(X)

ηχ∗(Y|Rχ∗). (4)

Note that, in this resolution, the feature selection approach is the classical one, with 1/η in (2) as the
cost function, i.e., Algorithm 1 may be applied to determine (4) taking CY as 1/η. The use of the MI as
a cost function in classical feature selection algorithms is quite common in the literature (see [30–32]
for example) and is not original of this paper. The search space of (4) may be restricted, sub-optimal
algorithms may be applied or the discretization of the continuous features may be performed jointly,
so that the subset selected in (4) is not always the subset of all features. In the applications section we
show how the continuous features may be discretized jointly.

Increasing the resolution, we may be interested in finding not the features most related to Y,
but the features levels that most influence Y. In this approach the selected features and their levels are

(χ, W) = arg max
χ∗∈P(X)

W∗∈P(Rχ∗ )

ηχ∗(Y|W∗). (5)

A pseudo-code for this feature selection approach is presented in Algorithm 2. Note that the space
in which the exhaustive search is conducted in Algorithm 2, i.e., the CBLOP, is even greater than
the one in Algorithm 1. However, optimal algorithms that do not exhaustively search the space,
and sub-optimal algorithms, may also be applied in this scenario, saving some computational time.
Note that this approach is not suitable for the case in which the features in X are continuous, as Rχ,
χ ∈ P(X), is uncountable, although the continuous features may be discretized. Furthermore, as is
further discussed in the applications section, this algorithm is subjected to overfitting if the sample size
is not relatively great (as is the majority of statistical models and feature selection algorithms), so that
it may be needed to restrict its search space to a subset of the CBLOP.

Algorithm 2 Select χ ∈ P(X) and W ∈ P(Rχ) that maximizes ηχ(Y|W).

Ensure: c = 0
Ensure: χ = ∅
Ensure: W = ∅

1: for χ∗ ∈ P(X) do

2: for W∗ ∈ P(Rχ∗) do

3: if ηχ∗(Y|W∗) > c then

4: c← ηχ∗(Y|W∗)
5: χ← χ∗
6: W ←W∗
7: end if
8: end for
9: end for

10: return (χ, W)

Finally, as a higher resolution approach, we may fix an y ∈ RY and then look for the features
levels that maximize the LF at the point y. Formally, the selected features and levels are given by

(χ, xopt(y)) = arg max
χ∗∈P(X)
x∗∈Rχ∗

L(χ∗,Y)(x∗, y). (6)
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A pseudo-code to perform (6) is presented in Algorithm 3, that is analogous to Algorithm 2.
Note that the search space of Algorithm 3 is greater than that of Algorithm 1 and smaller than that of
Algorithm 2. Nevertheless, it has the same general characteristics of Algorithm 2: optimal algorithms
that do not search all the space, and sub-optimal algorithms, may be applied; it cannot be applied to
continuous features; and it is subjected to overfitting.

Algorithm 3 Select χ ∈ P(X) and x ∈ Rχ that maximizes L(χ,Y)(x, y) for some fixed y ∈ RY.

Ensure: c = 0
Ensure: χ = ∅
Ensure: x = ∅
Ensure: y = y

1: for χ∗ ∈ P(X) do

2: for x∗ ∈ Rχ∗ do

3: if L(χ∗ ,Y)(x∗, y) > c then

4: c← L(χ∗ ,Y)(x∗, y)
5: χ← χ∗
6: x← x∗
7: end if
8: end for
9: end for

10: return (χ, x)

As an example of a multi-resolution approach to feature selection based on the LLDS, suppose
again that X = (X1, X2) are Boolean features. Then, for all the proposed resolutions, the selection
of the features and their levels, i.e., Algorithms 1, 2 and 3, may be performed by walking through
the tree (CBLOP) in Figure 1. Indeed, we may calculate the global η at the circle nodes, the η on all
windows W at the rectangular nodes and the LF at the leaves, where we may determine its maximum
for a fixed value y ∈ RY. Therefore, we call a tree as the one in Figure 1 a multi-resolution tree for
feature selection, where we may apply feature selection algorithms for all the resolutions of the LLDS,
i.e., Algorithms 1, 2 and 3.

4. Applications

The multi-resolution approach proposed in the previous sections is now applied to three different
datasets. First, we apply it to the performances dataset, that consists of student performances on
entrance exams and undergraduate courses. Then, we apply the algorithms to two UCI Machine
Learning Repository datasets: the Congressional Voting Records and Covertype datasets [12].

4.1. Performances dataset

A recurrent issue in universities all over the world is the framework of their recruitment process,
i.e., the manner of selecting their undergraduate students. In Brazilian universities, for example,
the recruitment of undergraduate students is solely based on their performance on exams that cover
high school subjects, called vestibulares, so that knowing which subjects are most related to the
performance on undergraduate courses is a matter of great importance to universities admission
offices, as it is important to optimize the recruitment process in order to select the students that are
most likely to succeed. Therefore, in this scenario, the algorithm presented in the previous sections
may be an useful tool in determining the entrance exam subjects, and the performances on them, that
are most related to the performance on undergraduate courses, so that students may be selected based
on their performance on these subjects.

The recruitment of students to the University of São Paulo is based on an entrance exam that
consists of an essay and questions of eight subjects: Mathematics, Physics, Chemistry, Biology,
History, Geography, English and Portuguese. The selection of students is entirely based on this exam,
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although the weights of the subjects differ from one course to another. In the exact sciences courses,
as Mathematics, Statistics, Physics, Computer Science and Engineering, for example, the subjects
with greater weights are Portuguese, Mathematics and Physics, as those are the subjects that are
qualitatively most related to what is taught at these courses. Although weights are given to each
subject in a systematic manner, it is not known what subjects are indeed most related to the performance
on undergraduate courses. Therefore, it would be of interest to measure the relation between the
performance on exam subjects and undergraduate courses and, in order to do so, we apply the
algorithms proposed on the previous sections.

The dataset to be considered consists of 8,353 students that enrolled in 28 courses of the University
of São Paulo between 2011 and 2016. The courses are those of its Institute of Mathematics and
Statistics, Institute of Physics and Polytechnic School, and are in general Mathematics, Computer
Science, Statistics, Physics and Engineering courses. The variable of interest (Y) is the weighted mean
grade of the students on the courses they attended in their first year at the university (the weights
being the courses credits), and is a number between zero and ten. The features, that are denoted
X = (X1, X2, X3, X4, X5, X6, X7, X8, X9), are the performances on each one of the eight entrance exam
subjects, that are numbers between zero and one, and the performance on the essay, that is a number
between zero and one hundred.

In order to apply the proposed algorithm to the data at hand, it is necessary to conveniently
discretize the variables and, to do so, we take into account an important characteristic of the data:
the scale of the performances. The scale of the performances, both on the entrance exam and the
undergraduate courses, depends on the course and the year. Indeed, the performance on the entrance
exam of students of competitive courses is better, as only the students with high performance are able
to enrol in these courses. In the same way, the performances differ from one year to another, as the
entrance exam is not the same every year and the teachers of the first year courses also change from
one year to another, what causes the scale of the grades to change. Therefore, we discretize all variables
by tertiles inside each year and course, i.e., we take the tertiles considering only the students of a given
course and year. Furthermore, we do not discretize each variable by itself, but rather discretize the
variables jointly, by a method based on distance tertiles, as follows.

Suppose that at a step of the algorithm we want to measure the relation between Y and the
features χ ∈ P(X). In order to do so, we discretize Y by its tertiles inside each course and year,
e.g., a student is in the third tertile if he is on the top one third students of his class according to the
weighted mean grade, and discretize the performance on χ jointly, i.e., by discretizing the distance
between the performance of each student on these subjects and zero by its tertiles. Indeed, students
whose performance is close to zero have low joint performance on the subjects χ, while those whose
performance is far from zero have high joint performance on the subjects χ. Therefore, we take the
distance between each performance and zero, and then discretize it inside each course and year,
e.g., a student is at the first tertile if he is on the bottom students of his class according to his joint
performance on the subjects χ. The Mahalanobis distance [33] is used, as it takes into account the
variance and covariance of the performance on the subjects χ.

As an example, suppose that we want to measure the relation between the performances on
Mathematics and Physics and the weighted mean grade of students that enrolled in the Statistics
undergraduate course in 2011 and 2012. In order to do so, we discretize the weighted mean grade
by year and the performance on Mathematics and Physics by the Mahalanobis distance between it
and zero, also by year, as is displayed in Figure 2. Observe that each year has its own ellipses that
partition the performance on Mathematics and Physics in three and the tertile of a student depends
on the ellipses of his year. The process used in Figure 2 is extended to the case in which there are
more than two subjects and one course. When there is only one subject, the performance is discretized
in the usual manner inside each course and year. The LF between the weighted mean grade and
the joint performance on Mathematics and Physics is presented in Table 1. From this table we may
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search for the maximum lift or calculate the η coefficient for its windows. In this example, we have
η(M,P)(Y|R(M,P)) = 0.0387, in which (M,P) = (Mathematics,Physics).

Figure 2. Discretization of the joint performance on Mathematics and Physics of Statistics students that
enrolled at the University of São Paulo in 2011 and 2012 by the tertiles of the Mahalanobis distance
inside each year.

Table 1. The Lift Function between the weighted mean grade, discretized by year, and the joint
performance on Mathematics and Physics, discretized by the Mahalanobis distance inside each year,
of Statistics students that enrolled at the University of São Paulo in 2011 and 2012. The numbers in
parentheses represent the quantity of students in each category.

Mathematics and Physics
Weighted Mean Grade

Relative Frequency
Tertile 1 Tertile 2 Tertile 3

Tertile 1 0.975 (9) 1.46 (13) 0.563 (5) 0.34
Tertile 2 1.01 (9) 0.935 (8) 1.05 (9) 0.33
Tertile 3 1.01 (9) 0.584 (5) 1.4 (12) 0.33

Relative Frequency 0.342 0.329 0.329 1

The proposed algorithm is applied to the discretized variables using three cost functions. First,
we use the η coefficient on the window that represents the whole range of the features in order to
determine what are the subjects (features) that are most related to the weighted mean grade, i.e.,
the features (4). Then, we apply the algorithm using as cost function the η coefficient for all windows
in order to determine the subjects performances (features and window) that are most related to the
weighted mean grade, i.e., the subjects and performances (5). Finally, we determine what are the
subjects and their performance that most lift the weighted mean grade third tertile, i.e., the subjects
and performances (6) with y = Tertile 3.

The subjects that are most related to the weighted mean grade, according to the proposed
discretization process and the η coefficient (2), are χ = (M,P,C,B,Po) and ηχ(Y|Rχ) = 0.0354,
in which (M,P,C,B,Po) = (Mathematics,Physiscs,Chemistry,Biology,Portuguese). The LF between
the weighted mean grade and χ is presented in Table 2. The features χ are the ones that are in
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general most related to the weighted mean grade, i.e., are the output of the classical feature selection
algorithm that employs the inverse of the global η coefficient as cost function (Algorithm 1). Therefore,
the recruitment of students could be optimized by taking into account only the subjects χ.

Table 2. The Lift Function between the weighted mean grade and the joint performance on
χ = (Mathematics, Physiscs, Chemistry, Biology, Portuguese). The numbers in parentheses represent
the quantity of students in each category.

Performance in χ
Weighted Mean Grade

Relative Frequency
Tertile 1 Tertile 2 Tertile 3

Tertile 1 1.33 (1277) 1.1 (1018) 0.566 (533) 0.34
Tertile 2 0.992 (921) 1.06 (951) 0.954 (871) 0.33
Tertile 3 0.669 (630) 0.848 (775) 1.49 (1377) 0.33

Relative Frequency 0.339 0.329 0.333 1

Applying Algorithms 2 and 3 we obtain the same result, that the performance, i.e., window,
that is most related to the weighted mean grade and that most lifts the third tertile of the
weighted mean grade is the third tertile in Mathematics, for which ηM(Y|{Tertile 3}) = 0.0575 and
L(M,Y)(Tertile 3,Tertile 3) = 1.51, in which M = Mathematics. The LF between the weighted mean grade
and the performance on Mathematics is presented in Table 3.

Table 3. The Lift Function between the weighted mean grade and the performance on Mathematics.
The numbers in parentheses represent the quantity of students in each category.

Performance in Mathematics
Weighted Mean Grade

Relative Frequency
Tertile 1 Tertile 2 Tertile 3

Tertile 1 1.3 (1398) 1.06 (1111) 0.631 (667) 0.38
Tertile 2 0.935 (843) 1.11 (972) 0.956 (847) 0.32
Tertile 3 0.689 (587) 0.8 (661) 1.51 (1267) 0.30

Relative Frequency 0.339 0.329 0.333 1

The output of the algorithms provides relevant information to the admission office of the
University. Indeed, it is now known that the subjects that are most related to the performance on the
undergraduate courses are Mathematics, Physics, Chemistry, Biology and Portuguese. Furthermore, in
order to optimize the number of students that will succeed in the undergraduate courses, the office
must select those that have high performance on Mathematics, as it lifts by more than 50% the
probability of the student having also a high performance on the undergraduate course, i.e., students
with high performance on Mathematics are prone to have high performance on the undergraduate
course. Although the subjects that are most related to the performance on the courses are obtained
from the classical feature selection algorithm, only the LLDS outlines what is the performance on the
entrance exam that is most related to the success on the undergraduate course, that is high performance
on Mathematics. Therefore, feature selection algorithms based on the LLDS provide more information
than the classical feature selection algorithm, as they have a greater resolution and take into account
the local relation between the variables.

4.2. Congressional Voting Records dataset

The Congressional Voting Records dataset consists of 435 instances of 16 Boolean features and
a Boolean variable that indicates the party of the instance (democrat or republican). The features
indicate how the instance voted (yes or no) in the year of 1984 about each one of 16 matters, that are
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displayed in Table 4. Algorithm 3 is applied to this dataset in order to determine what are the voting
profiles that are most prone to be that of a republican and that of a democrat.

Table 4. Features of the Congressional Voting Records dataset.

ID Matter (Feature)

HI Handicapped infants
WP Water project cost sharing
AB Adoption of the budget resolution
PF Physician fee freeze
SA El Salvador aid
RG Religious groups in schools
ST Anti satellite test ban
AN Aid to Nicaraguan contras
MM MX missile
IM Immigration
SC Synfuels corporation cutback
ES Education spending
SR Superfund right to sue
CR Crime
DF Duty Free exports
EA Export administration act South Africa

As the number of instances is relatively small, we perform Algorithm 3 under a restriction that
avoids overfitting. Indeed, if we apply the algorithm without the restriction, then the chosen profiles are
those in which all the instances are of the same party. If there is only a couple of instances with some
profile, and all of them are of the same party, then this profile is chosen as a prone one for the party.
However, we do not know if the profile is really prone, i.e., everybody with it is in fact of the same
party, or if the fact of everybody with this profile being of the same party is just a sample deviation.
In other words, without the restriction, the estimation error of the LF is too great as some profiles have
low frequency in the sample and the feature selection algorithm overfits.

Therefore, we restrict the search space to the profiles with a relative frequency in the sample of at
least 0.15. In other words, we select the profiles

(χ, xopt(y)) = arg max
χ∗∈P(X)
x∗∈Rχ∗

P(χ∗=x∗)>0.15

L(χ∗,Y)(x∗, y)

for y ∈ {democrat, republican}, in which P(χ∗ = x∗), χ∗ ∈ P(X), x∗ ∈ Rχ∗ , is estimated by the relative
frequency of the profile. The selected profiles, their LF value and the sample size considered are
presented in Table 5. At each iteration of the algorithm, only the instances that have no missing data in
the features being considered are taken into account when calculating the LF, so that the sample size of
each iteration is not the same.

The profiles with maximum LF lifts by 94% the probability of democrat and by around 165% the
probability of republican. This difference in the lift is due to the fact that there are more democrats
than republicans, so that the probability of democrat is greater and, therefore, cannot be lifted as much
as the probability of republican can. The profiles in Table 5 present a wide view of the voting profile
of democrats and republicans, what allows an understanding of what differentiates a democrat from
a republican regarding their vote.
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Table 5. Selected profiles obtained applying Algorithm 3 to the Congressional Voting Records dataset

with the restriction that only the profiles with relative frequency greater than 0.15 are considered.

The instances with missing data were excluded at each iteration of the algorithm, i.e., L(χ∗,Y)(x∗, y) is
calculated using only the instances that have all the observations on the features χ∗.

Party Features (χ) LF Profile (x) Sample Size

democrat

(AB,PF,SA,RG,MM,ES,SR,EA) 1.94 (y,n,n,n,y,n,n,y) 277
(HI,AB,PF,SA,RG,MM,ES,SR,EA) 1.94 (y,y,n,n,n,y,n,n,y) 275
(AB,PF,RG,ST,MM,ES,SR,EA) 1.94 (y,n,n,y,y,n,n,y) 279
(HI,AB,PF,RG,ST,MM,ES,SR,EA) 1.94 (y,y,n,n,y,y,n,n,y) 277
(AB,PF,SA,RG,ST,MM,ES,SR,EA) 1.94 (y,n,n,n,y,y,n,n,y) 276
(HI,AB,PF,SA,RG,ST,MM,ES,SR,EA) 1.94 (y,y,n,n,n,y,y,n,n,y) 274
(AB,PF,SA,RG,MM,ES,SR,CR,EA) 1.94 (y,n,n,n,y,n,n,n,y) 275
(AB,PF,RG,ST,MM,ES,SR,CR,EA) 1.94 (y,n,n,y,y,n,n,n,y) 276
(AB,PF,SA,RG,ST,MM,ES,SR,CR,EA) 1.94 (y,n,n,n,y,y,n,n,n,y) 274
(AB,PF,RG,ST,MM,ES,SR,DF,EA) 1.94 (y,n,n,y,y,n,n,y,y) 269
(AB,PF,SA,RG,ST,MM,ES,SR,DF,EA) 1.94 (y,n,n,n,y,y,n,n,y,y) 266

republican

(WP,PF,SC,ES,CR) 2.65 (n,y,n,y,y) 342
(AB,PF,AN,SC,CR,DF) 2.64 (n,y,n,n,y,n) 369
(PF,AN,IM,ES,CR,DF) 2.64 (y,n,y,y,y,n) 361
(PF,AN,SC,CR,DF) 2.64 (y,n,n,y,n) 373
(AB,PF,AN,SC,ES) 2.63 (n,y,n,n,y) 376
(HI,AB,PF,AN,SC,ES) 2.63 (n,n,y,n,n,y) 373
(AB,PF,AN,SC,ES,CR) 2.63 (n,y,n,n,y,y) 368
(HI,AB,PF,AN,SC,ES,CR) 2.63 (n,n,y,n,n,y,y) 365
(PF,AN,SC,DF) 2.63 (y,n,n,n) 380
(AB,PF,AN,SC,DF) 2.63 (n,y,n,n,n) 376
(PF,AN,IM,ES,DF) 2.63 (y,n,y,y,n) 368
(AB,PF,AN,SC,ES,DF) 2.63 (n,y,n,n,y,n) 360
(HI,AB,PF,AN,SC,CR,DF) 2.63 (n,n,y,n,n,y,n) 365
(PF,AN,SC,ES,CR,DF) 2.63 (y,n,n,y,y,n) 356
(AB,PF,AN,SC,ES,CR,DF) 2.63 (n,y,n,n,y,y,n) 353
(HI,AB,PF,AN,SC,ES,CR,DF) 2.63 (n,n,y,n,n,y,y,n) 350

y = yes; n = no.

This application to the Congressional Voting Records dataset shed light on two interesting
properties of the LLDS approach to feature selection in its higher resolution. First, this approach is
indeed local, as we are not interested in selecting the features that best classify the representatives
accordingly to their party, but rather the voting profiles that are most prone to be that of a democrat or
republican. Secondly, the problem treated here is the opposite of the classification problem. Indeed,
in the classification problem, we are interested in classifying a representative according to his party,
given his voting profile. On the other hand, the problem treated here is the exact opposite: given
a party, we want to know what are the profiles of the representatives that are most prone to be of that
party. In other words, in the classification problem we want to determine the party given the voting
profile, while on the LLDS problem we want to determine the voting profile given the party.

4.3. Covertype dataset

The Covertype dataset consists of 581,012 instances (terrains) of 54 features (10 continuous
and 44 discrete) and a variable that indicates the cover type of the terrain (7 types). We apply
Algorithms 1, 2 and 3 to select features among the continuous ones that are displayed in Table 6.
The features are discretized in the same way they were in the performances dataset: by taking sample
quantiles of the Mahalanobis distance between the features and zero. However, we now consider the
quantiles 0.2, 0.4, 0.6 and 0.8 as cutting points, i.e., quintiles, instead of tertiles.



Entropy 2018, 20, 97 16 of 20

Table 6. Features of the Covertype dataset that are considered in this application.

ID Feature

E Elevation
A Aspect
S Slope

HH Horizontal distance to hydrology
HR Horizontal distance to roadways
HF Horizontal distance to fire points
H9 Hillshade 9 a.m.
HN Hillshade Noon
H3 Hillshade 3 p.m.
VH Vertical distance to hydrology

Applying Algorithm 1 we select the features χ = (E,HH,HF), with a coefficient ηχ(Y | Rχ) = 0.307
and the LF in Table 7. We see that being in the first quintile of the selected features lifts classes 3, 4,
5 and 6; being in the second quintile lifts classes 2 and 5; being in the third quintile lifts class 2; being
in the fourth quintile lifts class 1; and being in the fifth quintile lifts classes 1 and 7. From Table 7 we
may interpret the relation between the selected features and the cover type. For example, we see that
terrains with cover types 3, 4, 5 and 6 tend to have low joint values in the selected features, while
terrains with cover 7 tend to have great joint values in them. This example shows how the proposed
approach allows not only to select the features, but also understand why these features were selected,
i.e., what is the relation between them and the cover type, by analysing the local dependence between
the variables.

Table 7. The Lift Function between the cover type of the terrain and the features Elevation, Horizontal
distance to hydrology and Horizontal distance to fire points discretized by the sample quintiles of the
Mahalanobis distance to zero. The numbers in parentheses represent the sample size of each category.

(E,HH,HF)
Cover Type

Relative Frequency
1 2 3 4 5 6 7

Quintile 1 0.0766 (3244) 0.961 (54,473) 4.94 (35,344) 5 (2747) 1.78 (3385) 4.9 (17,010) 0 (0) 0.20
Quintile 2 0.444 (18,816) 1.6 (90,872) 0.0573 (410) 0 (0) 2.98 (5663) 0.103 (357) 0.0205 (84) 0.20
Quintile 3 0.949 (40,195) 1.33 (75,562) 0 (0) 0 (0) 0.234 (445) 0 (0) 0 (0) 0.20
Quintile 4 1.66 (70,427) 0.8 (45,314) 0 (0) 0 (0) 0 (0) 0 (0) 0.112 (461) 0.20
Quintile 5 1.87 (79,158) 0.301 (17,080) 0 (0) 0 (0) 0 (0) 0 (0) 4.87 (19,965) 0.20

Relative Frequency 0.365 0.488 0.0615 0.00473 0.0163 0.0299 0.0353 1

Applying Algorithm 2 to this dataset we obtain the windows displayed in Table 8. We see that
the window that seems to most influence the cover type is the first and fifth quintile of the features
Elevation and Horizontal distance to hydrology. Indeed, all the top ten windows contain those two
features, and either their first or fifth quintile. As we can see in Table 7, the influence of the fifth quintile
of χ = (E,HH,HF), the top window, is given by the fact that no terrain of the types 3, 4, 5 and 6 is in
this quintile. Note that, again, our approach allows a better interpretation of the selected features by
the analysis of the local dependence between the features and the cover type.

Finally, applying Algorithm 3 we choose the profiles displayed in Table 9 for y ∈ {1, 2, 3, 4, 5, 6, 7}.
We see, for example, that the profile most prone to be of type 1 is (E,HH,HF) = Quintile 5 and of
type 3 is (E,HH,HR,HF) = Quintile 1. Note that it does not mean that most of the terrains with these
profiles are of type 1 and 3, but rather that the probability of a terrain with these profiles being of
types 1 and 3, respectively, is 87% and 396% greater than the probability of a terrain for which we
do not know the profile. Therefore, we see again the difference between the LLDS approach and the
classification problem. In the LLDS approach, given a profile, we are interested in determining the
type of which the conditional probability given the profile is greater than the marginal probability,
while in the classification problem, given a profile, we are interested in determining the type for which
the conditional probability given the profile is the greatest.



Entropy 2018, 20, 97 17 of 20

Table 8. Features selected applying Algorithm 2 to the Covertype dataset.

Features (χ) Window (W) ηχ(Y |W)

(E,HH,HF) Quintile 5 0.38
(E,A,HH,HF) Quintile 5 0.38

(E,HH) Quintile 5 0.37
(E,A,HH) Quintile 5 0.37

(E,HH,VH,HF) Quintile 5 0.37
(E,A,HH,VH,HF) Quintile 5 0.36

(E,HH,HF) Quintiles 1 & 5 0.36
(E,A,HH,VH) Quintile 5 0.36

(E,HH,VH) Quintile 5 0.36
(E,HH) Quintiles 1 & 5 0.36

Table 9. Profiles selected applying Algorithm 3 to the Covertype dataset for y ∈ {1, 2, 3, 4, 5, 6, 7}.

Cover Type Features LF Maximum Profile

1 (E,HH,HF) 1.87 Quintile 5
2 (E,HH,HR) 1.63 Quintile 2
3 (E,HH,HR,HF) 4.96 Quintile 1
4 (E,HH,HF) 1 5 Quintile 1
5 (E,HR,HF) 3.31 Quintile 2
6 (E,HH,HF) 4.90 Quintile 1
7 (E,HH) 4.89 Quintile 5

1 Among other profiles.

As an example, suppose the joint distribution that generated the LF of Table 7 and the profile
Quintile 1. We have that the maximum conditional probability given this profile is the probability
of type 2 (54, 473/116, 203 = 0.47), while the maximum lift is that of type 4, although its conditional
probability is only 2, 747/116, 203 = 0.02. However, the conditional probability of type 4 given
the profile, even though absolutely small, is relatively great: it is 5 times the marginal probability
0.004. Therefore, on the one hand, if there is a new terrain whose profile is (E,HH,HF) = Quintile 1,
we classify it as being of type 2. On the other hand, if we want to sample terrains from a population
and are interested in maximizing the number of terrains of type 4, we may sample from the population
with profile (E,HH,HF) = Quintile 1 instead of the whole population, expecting to sample four times
more terrains of type 4.

5. Final Remarks

The feature selection algorithms based on the LLDS extend the classical approach to feature
selection to a higher resolution one, as they take into account the local dependence between the
features and the variable of interest. Indeed, classical feature selection may be performed by walking
through a tree in which each node is a vector of features, i.e., a BLFS, while feature selection based
on the LLDS is established by walking through an extended tree, i.e., a CBLOP, in which inside each
node there is another tree, that represents the windows of the features, as displayed in the example
in Figure 1. Therefore, feature selection based on the LLDS increases the reach of feature selection
algorithms to a new variety of applications.

The LLDS may treat a problem that is the opposite of that of classification, i.e., when we are
interested in, given a class y, finding the profile x of which we may sample from its population in
order to maximize the number of instances of class y. Indeed, in the classification problem we want to
do the exact opposite: classify a instance with known profile x into a class of Y. Therefore, although
LLDS tools may also be applied to the classification problem (as they are in the literature), they are of
great importance in problems that we may call the reverse engineering of the classification one. Thus,
our approach broadens the application of feature selection algorithms to a new set o problems by the
extension of their search spaces from BLFs to CBLOPs.
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The algorithms proposed in this paper may be optimized in order to not walk through the entire
CBLOP, as its size increases exponentially with the number of features, so that the algorithm may
not be computable for a great number of features. Moreover, the algorithms may be subjected to
overfitting if the sample size is relatively small, so that their search space may be restricted. The methods
of [1–7,9,10,22–29], for example, may be adapted to the multi-resolution algorithms in order to optimize
them. Furthermore, the properties of the η coefficients and the LF must be studied in a theoretical
framework, in order to establish their variances, sample distributions and develop statistical methods
to estimate and test hypothesis about them.

The LLDS adapts classical measures, such as the MI and the Kullback-Leibler Divergence, into
coherent dependence coefficients that assess the dependence between random variables in multiple
resolutions, presenting a wide view of it. As it does not make any assumption about the dependence
kind, the LLDS measures the raw dependence between the variables and, therefore, may be relevant for
numerous purposes, being feature selection just one of them. We believe that the algorithms proposed
in this paper, and the LLDS in general, bring advances to the state-of-art in dependence measuring
and feature selection, and may be useful in various frameworks.

Supplementary Materials: The following are available online at www.mdpi.com/1099-4300/20/2/97/s1:
an R [34] package called localift that performs the algorithms proposed by this paper; an R object that contains the
results of the algorithms used to analyse the performances dataset; and an R code that apply the algorithms to the
Congressional Voting Records and Covertype datasets.
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Abbreviations

The following abbreviations are used in this manuscript:

BLFS Boolean lattice of feature sets
CBLOP Collection of Boolean lattices of ordered pairs
CE Conditional Entropy
LF Lift Function
LLDS Local Lift Dependence Scale
MI Mutual Information
SFFS Sequential Forward Floating Selection
SFS Sequential Forward Selection
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31. Śmieja, M.; Warszycki, D. Average information content maximization—A new approach for fingerprint
hybridization and reduction. PLoS ONE 2016, 11, e0146666.

32. Kwak, N.; Choi, C.H. Input feature selection by mutual information based on Parzen window. IEEE Trans.
Pattern Anal. Mach. Intell. 2002, 24, 1667–1671.

33. Mahalanobis, P.C. On the generalized distance in statistics. Proc. Natl. Inst. Sci. (Calcutta) 1936, 2, 49–55.
34. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:

Vienna, Austria, 2016.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Local Lift Dependence Scale
	Feature Selection Algorithms based on the Local Lift Dependence Scale
	Classical Feature Selection Algorithm
	Multi-resolution Feature Selection based on the Local Lift Dependence Scale

	Applications
	Performances dataset
	Congressional Voting Records dataset
	Covertype dataset

	Final Remarks
	References

