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Supplementary Materials 2

In this supplementary, we further quantify the empirical capabilities of the value of information without
hyperparameter tuning via cross entropy. The aims of our simulations are two-fold. First, we want to assess
the average regret performance of our value-of-information-based search with state-of-the-art techniques. We
utilize six additional algorithms for this purpose. Four of these algorithms, Bayesian UCB, KL-UCB, empirical
KL-UCB, and CP-UCB, were chosen because they represent the best known extensions of UCB for the bandit
problem that we consider. All four methods are known to achieve logarithmic regret with good constant factors.
The fifth algorithm, DMED, was selected because it improves upon the asymptotic behavior of UCB. The last
approach is the classic Thompson sampling, which, surprisingly, remains empirically competitive against large
classes of bandit algorithms.

Secondly, we want to understand why certain cumulative average regrets were returned by these algorithms.
Toward this end, we assess the average number of sub-optimal arm pulls.

S1. Simulation Preliminaries

The difficulty of the multi-armed bandit problem is fully characterized by two attributes: the distribution
properties used to model the slot machines and the number of slot-machine arms.

For our simulations, the rewards for each of the slot-machine arms were sampled from Bernoulli
distributions. The expected values for these distributions are uniformly sampled from the unit interval. We
originally considered a range of additional reward scenarios, such as those that are bounded exponential,
unbounded exponential, and bounded Poisson, but found that the relative performances between the different
methods did not change much; we therefore only report the findings for the Bernoulli distributions.

Another aspect that changes the difficulty of the problem is the number of slot machines. We evaluate the
algorithms for three, ten, and thirty slot machine arms. Three arms leads to fairly easy tasks, while ten arms
furnishes marginally difficult ones. For Bernoulli rewards, over ten arms begins to provide tasks that are highly
challenging, especially if the expectations of the rewards have a low variance. Originally, we considered greater
numbers of slot machine arms. However, we found that their relative behaviors were mostly consistent with with
the ten-armed case.

The value of information assumes that an initial policy is supplied. The results that we obtained in the paper
indicate that regret is independent of the initial policy. Nevertheless, we specify that the initial policies have
uniform probabilities, so as to not introduce bias that could lead to simpler problems. For all other approaches,
we assume the same initialization process is followed, except in the instances where the algorithm explicitly
states otherwise. For instance, some algorithms require that each of the arms be pulled once before beginning
the exploration phase of the learning process.
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Figure A.1: Regret results for the Bernoulli-reward, multi-armed bandit problem. The plots in the first row,
(a)–(h), correspond the application of different methodologies to the 3-armed bandit problem. The plots in the
second row, (i)–(p), correspond the application of different methodologies to the 10-armed bandit problem.
For each plot, the red curve corresponds to the cumulative regret across the arm pulls. The cumulative regret is
averaged across the Monte Carlo simulations. The dark gray region corresponds to the first and third quartile of
the average cumulative regret; this captures the lower and upper twenty-five percent of the regret spread across
the simulations. The light gray region corresponds to the upper five-percent regret quantile. Low regret values
correspond to good-performing methodologiies. Tight quantile bands indicate consistency of the reported
cumulative regret.

S2. Simulation Results and Discussions

S2.1. Comparison Results

In what follows, we compare the performance of VoIMix against the different algorithms that we chose.
Our simulation results, which comprise regret and the number of sub-optimal arm pulls, are provided in figures
A.1 and A.2. For each of our simulations, we considered a thousand arm pulls, which captures the early search
performance of these different algorithms and should be sufficient to reliably identify the optimal arm. We also
considered averaging over a thousandMonte Carlo trials so as to represent the general trends in the exploration
capabilities and filter out any overly abnormal runs.

Thompson Sampling. Thompson sampling [1] is one of the best-known stochastic algorithms for addressing
the Bernoulli multi-armed bandit problem in a Bayesian fashion [2]. In this seminal work, Thompson proposed
matching the probability of playing a particular arm with that arm’s inherent probability of being the best, given
the reward observed by sampling each distribution at least once and selecting the maximum sample.

The matching of arm-playing probabilities with the probability of being the best play can be formalized as
follows. Given a set of parameters θ of the reward distribution, the probability of a given arm ai

k∈A being
the optimal one, at pull k, is expressed as follows:

∫
δ[E[Xi

k|a
i
k, sk, θ]dθ = max

aj
k
E][Xi

k|a
j
k, sk, θ]]p(θ|sk−1,

ai
k−1, Xi

k−1). Here, sk−1, ai
k−1, Xi

k−1 is an observation triple of the previous round, with sk∈S being a
context that the player receives. Rather than computing the integral using Monte Carlo techniques, Thompson
and other researchers have shown that it suffices to simply sample the estimated, parametric pay-off distribution
at each round and select the highest-sampled reward. That is, the repeated selection of the maximum of a single
draw from each distribution produces an estimate of the optimal distribution.

The simplicity of Thompson sampling, along with its good empirical performance, has contributed to its
adoption for a range of problems. Its wide-spread appeal, however, had been rather low until recent years, which
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was was due to a lack of formal regret bounds. In the case where beta prior distributions are employed, Agrawal
et al. [3] have shown that logarithmic regret can be obtained, albeit with somewhat poor constant factors. These
results were improved by Kaufmann et al. [4] and Russo et al. [5], which indicate that Thompson sampling is, at
the very least, comparable to correctly-tuned UCB-style methods.

Plots of the average cumulative regret for Thompson sampling are presented in figures A.1(b) and A.1(j) for
the 3-armed and 10-armed bandit problems. Compared to UCB and tuned UCB, whose results were equivalent
and provided in figures A.1(c) and A.1(k), Thompson sampling is far superior. On average, the regret is about
a third to a half better, which is surprising, given the current best regret results. Thompson sampling often
explores better than VoIMix, albeit not by much on average, which can be seen by contrasting figures A.1(b)
and A.1(j) with A.1(a) and A.1(i). Curiously, the regret variance for Thompson sampling is higher than that for
VoIMix, suggesting that sub-optimal arms may be pulled frequently in an attempt to construct the estimate of
the optimal distribution. That is, Thompson sampling may be over exploring the action space in some instances,
which is corroborated by the sub-optimal draw statistics reported in figures A.2(b) and A.2(j).

KL-UCB and CP-UCB. A promising state-of-the-art bandit algorithm, which has received marked attention
in recent years, is Kullback-Leibler UCB (KL-UCB). KL-UCB was proposed by Lai and Robbins [6] and
analyzed by Garivier and Cappé [7,8]. This approach improves upon the regret bounds of earlier UCB-style
algorithms [9] by considering the divergence between the estimated distributions of each arm as a factor in the
padding function pi of UCB: arg maxai µi + pi, where ai∈A is one of the i slot-machine arms.

For each episode of KL-UCB, arms a1, a2, . . .∈A can be chosen by solving the following expression:
arg maxai nidivKL(µi, κ)≤ log(k) + clog(log(k)), where κ is picked from the set of all possible reward
distributions. Here, ni is the number of times that arm ai∈A has been played. Due to the incorporation of
the Kullback-Leibler divergence divKL(·, ·), this problem is strictly convex and increasing. The solution can
hence be efficiently computed using a variety of existing techniques.

Various adaptations of KL-UCB have been considered for specific bandit problems. One of these is
Clopper-Pearson UCB (CP-UCB), which is a specialization of KL-UCB to the case where Bernoulli rewards are
used. CP-UCB differs from KL-UCB in the way that the upper-confidence bound on the performance of each
arm is computed. That is, it chooses arms a1, a2, . . .∈A by solving: arg maxai uCP(ri, ni, k−1log(k)−c), where
ri is the cumulative reward for arm ai∈A across the total number of pulls k and ni is again the number of times
that arm ai ∈A has been played. The function uCP(·, ·, ·) represents the Clopper-Pearson interval [10], which
provides an exact method for calculating binomial confidence intervals.

Cumulative regret results for KL-UCB and an empirical variant of it are provided in figures A.1(e)–(f)
and A.1(m)–(n). Outcomes for CP-UCB are given in figures A.1(g) and A.1(o). All of these algorithms
typically produce worse regret than Thompson sampling. For the 3-armed bandit case, they noticeably lag
behind VoIMix, which can be seen by comparing figure A.1(a) to figures A.1(e)–(g). For 10-armed bandits, the
performance difference narrows, which is highlighted in figure A.1(i) and figures A.1(m)–(o). VoIMix is, on
average, only marginally better than either KL-UCB or CP-UCB. Increasing the number of bandit arms beyond
this range illustrated that KL-UCB and CP-UCB would often have average cumulative regrets that were par with
VoIMix. In the event that the expected rewards were highly clustered, KL-UCB and CP-UCB tended to be better
suited than VoIMix for finding the best-paying arm.

Bayesian UCB. Alongside KL-UCB, a Bayesian variant of UCB proposed by Kaufmann, Cappé and Garivier
[11,12] represents the current state of the art in the exploration of stochastic, multi-armed bandits. For this
approach, each arm is represented as an estimate of a distribution that resembles the upper confidence bounds
in UCB. The arm with the best estimated score is chosen. The scoring process is modeled by a dynamic-in-time
quantile of the posterior estimate.

More specifically, Bayesian UCB assumes that each arm has an associated prior distribution. This prior
distribution is updated to an estimate of the posterior by computing quantiles of the expected distributions. The
arm ai∈A that maximizes the posterior quantile is chosen at iteration k: arg maxai Q(1− k−1log(K)−c, πi

k−1).
Here, πi

k−1 is the estimated posterior distribution of the arm ai
k−1∈A chosen at iteration k−1. The function

Q represents the quantile associated with the posterior distribution πi
k−1 at the previous iteration:
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Figure A.2: Sup-optimal arm draw results for the Bernoulli-reward, multi-armed bandit problem. The plots
in the first row, (a)–(h), correspond the application of different methodologies to the 3-armed bandit problem.
The plots in the second row, (i)–(p), correspond the application of different methodologies to the 10-armed
bandit problem. For each plot, the red curve corresponds to the average number of incorrect arm pulls made
for the simulations. The dark gray region corresponds to the first and third quartile of the average number of
incorrect arm pulls; this captures the lower and upper twenty-five percent of the sub-optimal draw spread across
the simulations. The light gray region corresponds to the upper five-percent quantile. Low numbers of incorrect
draws correspond to good-performing methodologiies. Tight quantile bands indicate algorithmic consistency in
choosing the arms.

p(Xi
k−1≤Q(·, πi

k−1))=1− k−1log(K)−c, with Xi
k−1 being the reward at that round. The posterior distribution

is then revised according to the Bayesian updating rule and then used as the prior for the next step.
Much like KL-UCB, Bayesian UCB has a cumulative regret that empirically outperforms the best of the

original UCB algorithms by a substantial margin. In fact, in their theoretical analyses, Kaufmann et al. showed
that Bayesian UCB achieves asymptotic optimality. Their approach also has the advantage of being distribution
agnostic; it also does not rely on user-supplied information about the reward statistics.

Simulation results for the 3-armed and 10-armed bandit problems for Bayesian UCB are given in figures
A.1(d) and A.1(l), respectively. Regardless of the difficulty of the problem, Bayesian UCB was either the
best-performing or second best-performing algorithm out of those that we considered. On average, the regret
was about a third better than either KL-UCB and its variants or VoIMix when the average rewards had a high
variance. It additionally handled highly clustered expected rewards very well. In such cases, the average
cumulative regret was between a half and a third that of the other UCB-style algorithms, which is a testament to
the strong capabilities of Bayesian approaches when they utilize meaningful starting priors.

DMED. The final method that we consider, deterministic minimum empirical divergence (DMED) [13,14],
improves upon the basic UCB approach by providing a means of achieving the theoretical asymptotic bound
furnished by Lai and Robbins [6]. It does this in a manner similar to KL-UCB: by considering the divergence
between the empirical distribution and the empirical mean of the best-paying arm that is currently found and
using this divergence as a padding function. The arm that takes on the highest value of this padding function are
chosen in each round.

DMED chooses arms a1, a2, . . .∈A at each round by finding the arms that minimize: niinfκi dKL(µ∗k , κi
k)+

log(ni)≤ log(k). Here, κi
k is the empirical distribution found for the first k rounds from pulling arm ai∈A.

µ∗k =maxj µ
j
k denotes the highest empirical mean after the first k arm pulls. As before, ni denotes the number

of times a particular arm has been played up to the current round. In essence, DMED attempts to minimize the
posterior expectation of the regret. It does this by considering a term niinfκi dKL(µ∗k , κi

k) that corresponds to a
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penalty for empirical distributions that are unlikely to occur from a distribution with expectation larger than µ∗k .
It also considers another term log(ni) that penalizes arms which are pulled too many times; this second term
acts as a main driver for exploration.

Results for DMED are presented in figures A.1(h), A.1(p), A.2(h) and A.2(p). As with KL-UCB and
CP-UCB, DMED performed comparably to VoIMix. For highly simple problems, such as those with two arms,
DMED actually had worse average regret. For problems with more than two arms, the expected cumulative
regret was only slightly lower than that of VoIMix. An analysis of the sub-optimal arm draws, in figures A.2(h)
and A.2(o) yielded a more interesting finding: there are simulations where DMED frequently tried poorly
paying arms. In fact, the upper quantile bound suggests that non-optimal arms were tried about fifteen percent
more often than for VoIMix, which is surprising. The only reason why DMED sometimes behaved better, on
average, than VoIMix was because there were simulations where it consistently eschewed sub-optimal arms,
thereby balancing out the effects of the poor runs.

S2.2. Comparison Discussions

These results indicate that the un-tuned version of VoIMix performs, in the short term, similarly to some
of the state-of-the-art methodologies that we considered. Over a longer term it does too. There are some
algorithms, however, that routinely outperformed VoIMix regardless of the number of arm pulls. These include
Thompson sampling and Bayesian UCB.

Thompson sampling worked well, on average, because it carefully tracked the beliefs about the arms’
possible pay-outs. That is, by sampling actions according to the posterior, the algorithm continues to consider
and play all arms that could plausibly be optimal. While doing this, it shifts away from playing those arms those
that are extremely unlikely to be optimal. Roughly speaking, the algorithm tries all promising actions while
gradually discarding those that are believed to yield sub-par rewards. In some instances, however, it may not
ignore poor arms quickly enough, which was captured by the quantile regions in figures A.2(b) and A.2(j).

VoIMix implements a similar behavior to Thompson sampling. That is, it experiences a period of pure
exploration wherein all arms should, plausibly, be sampled more than once. This facilitates the estimation of
the slot-machine expected pay-outs. After a certain number of pulls, the pure search phase gives way to the
exploitation of the best-paying arm, as the exploration rate is iteratively decreased. It would appear, however,
based upon the sub-optimal arm pull trends in figures A.2(a) and A.2(i), that the exploration phase may be too
long compared to Thompson sampling. The number of sub-optimal arm pulls for Thompson sampling tapers off
more quickly for higher number of arms, as indicated in figure A.2(j). Specifying a quicker annealing schedule
may provide an adequate sampling of all of the arms and allow for the gambling strategy to focus on high-paying
arms more quickly. This may help decrease the constant factor in our regret bound and improve the empirical
performance of VoIMix. Alternatively, it may be necessary to account for the number of previous arm pulls,
in VoIMix, when choosing which arm to play. This would ensure that all arms are played frequently enough
to construct meaningful averages of the pay-outs. We plan to do the latter by revising the exponential terms in
VoIMix, which yields a UCB-like algorithm.

Bayesian UCB provided excellent results for a few reasons. One of the most apparent is that Bayesian UCB
can exploit the whole posterior distribution over the actions to determine which should be played. This becomes
a major advantage when good priors are chosen for a given problem. That is, a great deal of insight can be
conveyed, through the priors, about how to play the slot-machine arms if the form of the parametric reward
distribution is known. The gambler can hence quickly settle on high-paying arms, as shown in figures A.2(d)
and A.2(l). Although highest sub-optimal arm quantile for Bayesian UCB is comparable to other methods,
its quartiles are often much better, which suggests that the beta priors that we chose were informative for the
Bernoulli-based rewards. Another reason why Bayesian UCB performs well is that, as Kaufmann et al. have
shown [11], it automatically constructs confidence intervals of the arm means that are adapted to the geometry
of the problem. This helps the gambler to eschew otherwise good-performing arms, that are not optimal, much
better and more quickly than other UCB-style approaches. This marked advantage is illustrated by comparing
the results in figures A.2(e)–A.2(g) and A.2(m)–(o) to those in figures A.2(d) and A.2(l).
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In his seminal work, Stratonovich had highlighted that the Bayesian-based value of information, when using
Gaussian priors, has a algebraic solution for the two-state case [15]. In the future, we plan to consider a Bayesian
version of the value of information to take advantage of these properties. Toward this end, we have already
extended this result to both the multi-state and single-state case and shown that it is still possible to arrive at
closed-form expressions. This formulation permits us to consider multi-armed bandit problems with Gaussian
rewards from an entirely Bayesian context. It may also be possible to formulate closed-form expressions of
this information-theoretic criterion for other parametric reward distributions. In doing so, we can definitively
answer the following question: what is the benefit of performing a certain amount of exploration in this setting?
It will also answer the question: how can we optimally perform this exploration when taking into account any
relevant prior knowledge? This Bayesian framework may hence prove more fruitful than simply accounting for
the number of times each arm has been played.

As shown in our simulations, VoIMix performs comparably to KL-UCB, CP-UCB, and DMED for this
problem. This is despite the fact that such algorithms have a better constant factor in the regret expressions
than our approach currently does. There are a few possible reasons why this occurred. Foremost, the regret
expressions that have been derived for DMED and these UCB-style algorithms are asymptotic. For finite
numbers of arm pulls, the instantaneous regret can be worse. Many thousands or tens of thousands more
episodes beyond what we considered may be required before the empirical regret begins to align with the
theoretical expectations. Another reason is that, as Kaufmann has noted [12], KL-UCB and its derivatives
tend to over-explore the action space. This is because the exploration rate does not decrease in proportion with
the number of times that an arm has been drawn. The same arm may hence be unnecessarily pulled multiple
times, even if the expected reward estimate is good. The short-term regret may hence be artificially inflated.
While VoIMix can suffer from the same issue, the results in figures A.2(a) and A.2(i) indicate that it was less
slightly pronounced than in figures A.2(e)–A.2(h) and A.2(m)–A.2(p).

Somewhat surprisingly, CP-UCB failed to perform markedly better than either KL-UCB or empirical
KL-UCB, let alone VoIMix, for the Bernoulli-reward bandit problem. This was despite CP-UCB being
specifically formulated for such rewards. Similar findings were reported by Garivier and Cappé [8]. This could
be due to the Clopper-Pearson interval estimation not providing coverage probabilities close to the nominal
confidence level [16]. Better performance may be possible by substituting approximate schemes in place of the
exact Clopper-Pearson method. Making this change would likely further sharpen the confidence intervals and
make them more effective at discerning and ignoring poor-performing arms.
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