

Article

Some Iterative Properties of $(\mathcal{F}_1, \mathcal{F}_2)$ -Chaos in Non-Autonomous Discrete Systems

Xiao Tang¹, Guanrong Chen² and Tianxiu Lu^{3,*}

- ¹ School of Mathematical Sciences, Sichuan Normal University, Chengdu 610068, China; 80651177@163.com
- ² Department of Electronic Engineering, City University of Hong Kong, Hong Kong SAR 999077, China; eegchen@cityu.edu.hk
- ³ School of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong 643000, China
- * Correspondence: lubeeltx@163.com; Tel.: +86-813-2105950

Received: 24 January 2018; Accepted: 7 March 2018; Published: 12 March 2018

Abstract: This paper is concerned with invariance $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled sets under iterations. The main results are an extension of the compound invariance of Li–Yorke chaos and distributional chaos. New definitions of $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled sets in non-autonomous discrete systems are given. For a positive integer k, the properties P(k) and Q(k) of Furstenberg families are introduced. It is shown that, for any positive integer k, for any $s \in [0, 1]$, Furstenberg family $\overline{M}(s)$ has properties P(k) and Q(k), where $\overline{M}(s)$ denotes the family of all infinite subsets of \mathbb{Z}^+ whose upper density is not less than s. Then, the following conclusion is obtained. D is an $(\overline{M}(s), \overline{M}(t))$ -scrambled set of $(X, f_{1,\infty})$ if and only if D is an $(\overline{M}(s), \overline{M}(t))$ -scrambled set of $(X, f_{1,\infty})$.

Keywords: nonautonomous discrete system; Furstenberg family; scrambled sets; chaos

MSC2010: 37B55, 37D45, 54H20

1. Introduction

Chaotic properties of a dynamical system have been extensively discussed since the introduction of the term chaos by Li and Yorke in 1975 [1] and Devaney in 1989 [2]. To describe some kind of unpredictability in the evolution of a dynamical system, other definitions of chaos have also been proposed, such as generic chaos [3], dense chaos [4], Li–Yorke sensitivity [5], and so on. An important generalization of Li–Yorke chaos is distributional chaos, which is given in 1994 by B. Schweizer and J. Smítal [6]. Then, theories related to scrambled sets are discussed extensively (see [7–12] and others). In 1997, the Furstenberg family was introduced by E. Akin [13]. J. Xiong, F. Tan described chaos with a couple of Furstenberg Families. ($\mathcal{F}_1, \mathcal{F}_2$)-chaos has also been defined [14]. Moreover, \mathcal{F} -sensitivity was given in [15] and shadowing properties were discussed in [16]. Most existing papers studied the chaoticity in autonomous discrete systems (X, f). However, if a sequence of perturbations to a system are described by different functions, then there are a sequence of maps to describe them, giving rise to non-autonomous systems. Non-autonomous discrete systems were precisely introduced in [17], in connection with non-autonomous difference equations (see [18,19] and some references therein).

Let (X, ρ) (briefly, X) be a compact metric space and consider a sequence of continuous maps $f_n : X \to X, n \in \mathbb{N}$, denoted by $f_{1,\infty} = (f_1, f_2, \cdots)$. This sequence defines a non-autonomous discrete system $(X, f_{1,\infty})$. The orbit of any point $x \in X$ is given by the sequence $(f_1^n(x)) = Orb(x, f_{1,\infty})$, where $f_1^n = f_n \circ \cdots \circ f_1$ for $n \ge 1$, and f_1^0 is the identity map.

For $m \in \mathbb{N}$, define

 $g_1 = f_m \circ \cdots \circ f_1, g_2 = f_{2m} \circ \cdots \circ f_{m+1}, \dots, g_p = f_{pm} \circ \cdots \circ f_{(p-1)m+1}, \dots$

Call $(X, g_{1,\infty})$ a compound system of $(X, f_{1,\infty})$.

Also, denote $g_{1,\infty}$ by $f_{1,\infty}^{[m]}$ and denote $f_n^k = f_{n+k-1} \circ \cdots \circ f_n$ for $n \ge 1$. By [5], if $(f_n)_{n=1}^{\infty}$ converges uniformly to a map f. Then, for any $m \ge 2(m \in \mathbb{N})$, the sequence $(f_n^{n+m-1})_{n=1}^{\infty}$ converges uniformly to f^m .

In the present work, some notions relating to Furstenberg families and properties P(k), Q(k) are recalled in Sections 2 and 3. Section 4 states some definitions about $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos. In Section 5, it is proved that, under the conditions of property P(k) and positive shift-invariant, $f_{1,\infty}$ is $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos (strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, strong \mathcal{F} -chaos) implies $f_{1,\infty}^{[k]}(k \in \mathbb{Z}^+)$ is $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos (strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, strong \mathcal{F} -chaos). If the conditions property Q(k) and negative shift-invariant both hold, the above conclusion can be inversed. As a conclusion, for arbitrary *s* and *t* in [0, 1], for every $k \in \mathbb{Z}^+$, $f_{1,\infty}$ and $f_{1,\infty}^{[k]}$ can share the same $(\overline{M}(s), \overline{M}(t))$ -scrambled set (Theorem 3).

In this paper, it is always assumed that all the maps f_n , $n \in \mathbb{N}$, are surjective. It should be noted that this condition is needed by most papers dealing with this kind of system (for example, [20–23]). It is assumed that sequence $(f_n)_{n=1}^{\infty}$ converges uniformly. The aim of this paper is to investigate the $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled sets of $f_{1,\infty}$.

2. Furstenberg Families

Let \mathcal{P} be the collection of all subsets of the positive integers set $\mathbb{Z}^+ = \{0, 1, 2, ...\}$. A collection $\mathcal{F} \subset \mathcal{P}$ is called a Furstenberg family if it is hereditary upwards, i.e., $F_1 \subset F_2$ and $F_1 \in \mathcal{F}$ imply $F_2 \in \mathcal{F}$. Obviously, the collection of all infinite subsets of \mathbb{Z}^+ is a Furstenberg family, denoted by \mathcal{B} .

Define the dual family $k\mathcal{F}$ of a Furstenberg family \mathcal{F} by

$$k\mathcal{F} = \{F \in \mathcal{P} : \mathbb{Z}^+ - F \notin \mathcal{F}\} = \{F \in \mathcal{P} : F \cap F' \neq \phi \text{ for any } F' \in \mathcal{F}\}.$$

It is clear that $k\mathcal{F}$ is a Furstenberg family and $k(k\mathcal{F}) = \mathcal{F}$ (see [13]).

For $F \in \mathcal{P}$, $i \in \mathbb{Z}^+$, let $F - i = \{j - i \ge 0 : j \in F\}$ and $F + i = \{j + i \ge 0 : j \in F\}$. Furstenberg family \mathcal{F} is positive shift-invariant if $F + i \in \mathcal{F}$ for every $F \in \mathcal{F}$ and any $i \in \mathbb{Z}^+$. Furstenberg family \mathcal{F} is negative shift-invariant if $F - i \in \mathcal{F}$ for every $F \in \mathcal{F}$ and any $i \in \mathbb{Z}^+$. Furstenberg family \mathcal{F} is shift-invariant if it is positive shift-invariant and negative shift-invariant.

The following shows a class of Furstenberg families which is related to upper density.

Let $F \subset \mathcal{P}$. The upper density and the lower density of *F* are defined as follows:

$$\overline{\mu}(F) = \limsup_{n \to \infty} \frac{\#(F \cap \{0, 1, \dots, n-1\})}{n}, \ \underline{\mu}(F) = \liminf_{n \to \infty} \frac{\#(F \cap \{0, 1, \dots, n-1\})}{n},$$

where #(A) denotes the cardinality of the set *A*.

For any *s* in [0, 1], set $\overline{M}(s) = \{F \in \mathcal{B} : \overline{\mu}(F) \ge s\}.$

Proposition 1. For any s in [0, 1], $\overline{M}(s)$ is shift-invariant Furstenberg family. And $\overline{M}(0) = \mathcal{B}$.

Proof.

(i) Let $F_1, F_2 \in \overline{M}(s), F_1 \subset F_2$, then, $\forall n \in \mathbb{N}$ (where $\mathbb{N} = \{1, 2, 3, ...\}$),

$$\overline{\mu}(F_1) = \limsup_{n \to \infty} \frac{\#(F_1 \cap \{0, 1, \dots, n-1\})}{n} \le \limsup_{n \to \infty} \frac{\#(F_2 \cap \{0, 1, \dots, n-1\})}{n} = \overline{\mu}(F_2)$$

Thus, $F_1 \in \overline{M}(s)$ (i.e., $\overline{\mu}(F_1) \ge s$) implies $F_2 \in \overline{M}(s)$ (i.e., $\overline{\mu}(F_1) \ge s$). So, $\overline{M}(s)(\forall s \in [0,1])$ are Furstenberg families.

(ii) Let $F \in \overline{M}(s)$, that is, $\overline{\mu}(F) = \limsup_{n \to \infty} \frac{\#(F \cap \{0, 1, \dots, n-1\})}{n} \ge s$. Denote $F = \{t_1, t_2, \dots\}$ (where $t_k \in \mathbb{Z}^+$, $t_{k_1} < t_{k_2}(k_1 < k_2)$), then $F + i = \{t_1 + i, t_2 + i, \dots\}$ and $F - i = \{t_{k_1} - i, t_{k_2} - i, \dots\}(t_{k_j} - i \ge 0)$ for any $i \in \mathbb{Z}^+$.

$$\limsup_{n \to \infty} \frac{\#((F+i) \cap \{0, 1, \dots, n-1\})}{n} = \limsup_{n \to \infty} \frac{\#(\{t_1 + i, t_2 + i, \dots\} \cap \{0, 1, \dots, n-1\})}{n}$$
$$= \limsup_{n \to \infty} \frac{\#(\{t_1, t_2, \dots\} \cap \{0, 1, \dots, n-1\})}{n} = \overline{\mu}(F) \ge s$$

and

$$\limsup_{n \to \infty} \frac{\#((F-i) \cap \{0, 1, \dots, n-1\})}{n} \ge \limsup_{n \to \infty} \frac{\#(F \cap \{0, 1, \dots, n-1\}) - i}{n} = \overline{\mu}(F) \ge s$$

So, $\overline{M}(s)$ is shift-invariant.

(iii) Obviously,

$$\overline{M}(0) = \{F \in \mathcal{B} : \overline{\mu}(F) \ge 0\} = \{F \in \mathcal{B} : \limsup_{n \to \infty} \frac{\#(F \cap \{0, 1, \dots, n-1\})}{n} \ge 0\} = \mathcal{B}$$

This completes the proof.

3. Properties P(k), Q(k) of Furstenberg Families

Definition 1. Let k be a positive integer and \mathcal{F} be a Furstenberg family.

- (1) For any $F \in \mathcal{F}$, if there exists an integer $j \in \{0, 1, \dots, k-1\}$ such that $F_{k,j} = \{i \in \mathbb{Z}^+ : ki+j \in F\} \in \mathcal{F}$, we say \mathcal{F} have property P(k);
- (2) If $F_k = \{ki + j \in \mathbb{Z}^+ : j \in \{0, 1, \cdots, k-1\}, i \in F\} \in \mathcal{F}$, we say \mathcal{F} have property Q(k).

The following proposition is given by [24]. For completeness, we give the proofs.

Proposition 2. For any $s \in [0, 1]$ and any $k \in \mathbb{Z}^+$, $\overline{M}(s)$ have properties P(k) and Q(k).

Proof.

(1) If k = 1, $\forall F \in \overline{M}(s)$, $F_{1,0} = \{i \in \mathbb{Z}^+ : i \in F\} = F$, i.e., there exists an integer j = 0 such that $F_{k,j} \in \overline{M}(s)$. The following will discuss the case k > 1.

If s = 0, $\overline{M}(0) = \mathcal{B}$. $\forall F \in \mathcal{B}$, $\forall k \in \mathbb{Z}^+$, obviously, there exist $j \in \{0, 1, ..., k-1\}$ such that $F_{k,j} \in \mathcal{B}$.

If $0 < s \le 1$, suppose properties P(k) does not hold. Then there exists a $F \in \overline{M}(s)$ such that $\overline{\mu}(F_{k,j}) < s$ for every $j \in \{0, 1, ..., k-1\}$.

For any $j \in \{0, 1, ..., k - 1\}$, put $\varepsilon_j > 0$ which satisfied $\overline{\mu}(F_{k,j}) < s - \varepsilon_j$. One can find a sufficiently large number N such that, $n \ge N$, $\#_n(F_{k,j}) < n(s - \varepsilon_j)$ (where $\#_n(F_{k,j})$) denotes the cardinality of the set $F_{k,j} \cap \{0, 1, ..., n - 1\}$). Then $\#_n(F_{k,j}^c) > n - n(s - \varepsilon_j)$, where $F_{k,j}^c$ denotes the complementary set of $F_{k,j}$.

Give an integer $m = kn + l_m > kN$, $l_m \in \{0, 1, ..., k - 1\}$. By the definition of $F_{k,j}$, $ki + j \notin F$ if $i \notin F_{k,j}$. And $ki_1 + j_1 \neq ki_2 + j_2$ if $i_1, i_2 \in \{0, 1, ..., n - 1\}$, $j_1, j_2 \in \{0, 1, ..., k - 1\}$ and $j_1 \neq j_2$. Then

$$\#_m(F^c) \ge \sum_{j=0}^{k-1} \#_n(F^c_{k,j}) > \sum_{j=0}^{k-1} (n - n(s - \varepsilon_j)).$$

So,

$$#_m(F) < m - \sum_{j=0}^{k-1} (n - n(s - \varepsilon_j)).$$

Put $\varepsilon = min\{\varepsilon_j : j = 0, 1, \dots, k-1\}$, then

$$\overline{\mu}(F) = \limsup_{n \to \infty} \frac{\#_m(F)}{m} \le \lim_{n \to \infty} \frac{m - \sum_{j=0}^{k-1} (n - n(s - \varepsilon_j))}{m} \le \lim_{n \to \infty} \frac{m - k(n - n(s - \varepsilon))}{m}$$
$$= \lim_{n \to \infty} \frac{kn + l_m - kn + kn(s - \varepsilon)}{kn + l_m} = s - \varepsilon < s$$

This contradicts to $\overline{\mu}(F) \ge s$.

(2) Similarly, just consider the case $k > 1, 0 < s \le 1$.

Suppose properties Q(k) does not hold. Then there exists an integer $F \in \overline{M}(s)$ such that $\overline{\mu}(F_k) < s$. Put $\varepsilon > 0$ which satisfied $\overline{\mu}(F_k) < s - \varepsilon$. One can find a sufficiently large number N such that, $m \ge N$, $\#_m(F_k) < m(s - \varepsilon)$. Give a $m = kn + l_m > kN(m \ge N)$, $l_m \in \{0, 1, ..., k - 1\}$. By the definition of F_k , $ki + j \in F_k(j \in \{0, 1, ..., k - 1\})$ if $i \in F$. And $ki_1 + j_1 \ne ki_2 + j_2$ if $i_1 \ne i_2$ and $j_1, j_2 \in \{0, 1, ..., k - 1\}$. Then

$$k(\#_n(F)) \le \#_m(F_k) < m(s-\varepsilon).$$

So,

$$\overline{\mu}(F) \leq \lim_{n \to \infty} \frac{m(s-\varepsilon)}{kn} = \lim_{n \to \infty} \frac{(kn+l_m)(s-\varepsilon)}{kn} = s-\varepsilon \leq s.$$

This contradicts to $\overline{\mu}(F) \ge s$.

This completes the proof.

4. $(\mathcal{F}_1, \mathcal{F}_2)$ -Chaos in Non-Autonomous Systems

Now, we state the definition of $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos in nonautonomous systems.

Definition 2. Let (X, ρ) be a compact metric space, \mathcal{F}_1 and \mathcal{F}_2 are two Furstenberg families. $\mathcal{D} \subset X$ is called a $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $(X, f_{1,\infty})$ (briefly, $f_{1,\infty}$), if $\forall x \neq y \in \mathcal{D}$, the following two conditions are satisfied:

 $\begin{array}{ll} (i) & \forall t > 0, \left\{ n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) < t \right\} \in \mathcal{F}_1; \\ (ii) & \exists \delta > 0, \left\{ n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) > \delta \right\} \in \mathcal{F}_2. \end{array}$

The pair (x, y) which satisfies the above two conditions is called an $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled pair of $f_{1,\infty}$. $f_{1,\infty}$ is said to be $(\mathcal{F}_1, \mathcal{F}_2)$ -chaotic if there exists an uncountable $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}$. If $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{F}$, $f_{1,\infty}$ is said to be \mathcal{F} -chaotic and (x, y) is an \mathcal{F} -scrambled pair. $f_{1,\infty}$ is said to be strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaotic if there are some $\delta > 0$ and an uncountable subset $\mathcal{D} \subset X$ such that for any $x, y \in \mathcal{D}$ with $x \neq y$, the following two conditions holds:

 $\begin{array}{ll} (i) & \left\{ n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) < t \right\} \in \mathcal{F}_1 \ \text{for all} \ t > 0; \\ (ii) & \left\{ n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) > \delta \right\} \in \mathcal{F}_2. \end{array}$

 $f_{1,\infty}$ is said to be strong \mathcal{F} -chaos if it is strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaotic and $\mathcal{F}_1 = \mathcal{F}_2 = \mathcal{F}$.

Let us recall the definitions of Li-Yorke chaos and distributional chaos in non-autonomous systems (see [25,26]).

Definition 3. Assume that $(X, f_{1,\infty})$ is a non-autonomous discrete system. If $x, y \in X$ with $x \neq y$, (x, y) is called a Li–Yorke pair if

$$\limsup_{n \to \infty} \rho(f_1^n(x), f_1^n(y)) > 0 \quad and \quad \liminf_{n \to \infty} \rho(f_1^n(x), f_1^n(y)) = 0.$$

The set $\mathcal{D} \subset X$ is called a Li–Yorke scrambled set if all points $x, y \in \mathcal{D}$ with $x \neq y$, (x, y) is a Li–Yorke pair. $f_{1,\infty}$ is Li–Yorke chaotic if X contains an uncountable Li–Yorke scrambled set.

Assume that $(X, f_{1,\infty})$ is a non-autonomous discrete system. For any pair of points $x, y \in X$, define the upper and lower (distance) distributional functions generated by $f_{1,\infty}$ as

$$F_{xy}^{*}(t, f_{1,\infty}) = \limsup_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \chi_{[0,t)}(\rho(f_{1}^{i}(x), f_{1}^{i}(y)))$$

and

$$F_{xy}(t, f_{1,\infty}) = \liminf_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \chi_{[0,\delta)}(\rho(f_1^i(x), f_1^i(y)))$$

respectively. Where $\chi_{[0,t)}$ is the characteristic function of the set [0, t), i.e., $\chi_{[0,t)}(a) = 1$ when $a \in [0, t)$ or $\chi_{[0,t)}(a) = 0$ when $a \notin [0, t)$.

Definition 4. $f_{1,\infty}$ is distributionally chaotic if exists an uncountable subset $D \subset X$ such that for any pair of distinct points $x, y \in D$, we have that $F_{xy}^*(t, f_{1,\infty}) = 1$ for all t > 0 and $F_{xy}(t, f_{1,\infty}) = 0$ for some $\delta > 0$. The set D is a distributionally scrambled set and the pair (x, y) a distributionally chaotic pair.

It is not difficult to obtain that the pair (x, y) is a $(\overline{M}(0), \overline{M}(0))$ -scrambled pair if and only if (x, y) is a Li–Yorke scrambled pair, and the pair (x, y) is a $(\overline{M}(1), \overline{M}(1))$ -scrambled pair if and only if (x, y) is a distributionally scrambled pair. In fact,

$$\overline{M}(0) = \mathcal{B}, \overline{M}(1) = \{F \in \mathcal{B} : \limsup_{n \to \infty} \frac{\#(F \cap \{1, 2, \dots, n\})}{n} = 1\}.$$

Then, $\{n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) < t\} \in \overline{M}(0)$ for any t > 0 and $\{n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) > \delta\} \in \overline{M}(0)$ for some $\delta > 0$ is equivalent to that $\limsup_{n \to \infty} \rho(f_1^n(x), f_1^n(y)) > 0$ and $\liminf_{n \to \infty} \rho(f_1^n(x), f_1^n(y)) = 0$. $\{n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) < t\} \in \overline{M}(1)$ for any t > 0 and $\{n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) > \delta\} \in \overline{M}(1)$ for some $\delta > 0$ is equivalent to that $F_{xy}^*(t, f_{1,\infty}) = 1$ and $F_{xy}(\delta, f_{1,\infty}) = 0$.

Hence, $(\overline{M}(0), \overline{M}(0))$ -chaos is Li–Yorke chaos and $(\overline{M}(1), \overline{M}(1))$ -chaos is distributional Chaos.

5. Main Results

Theorem 1. Let \mathcal{F}_1 and \mathcal{F}_2 are two Furstenberg families with property P(k), where k is a positive integer. \mathcal{F}_1 is positive shift-invariant. If the system $(X, f_{1,\infty})$ is $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, then the system $(X, f_{1,\infty}^{[k]})$ is $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos too.

Proof. If *D* is an $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}$, the following proves that *D* is an $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}^{[k]}$.

(i) Since *X* is compact and $f_i(i \in \mathbb{N})$ are continuous, then, for any $j \in \{1, 2, ..., k-1\}, f_{s_1}, ..., f_{s_{k-j}}$ are uniformly continuous (where $f_{s_1}, ..., f_{s_{k-j}}$ are freely chosen from the sequence $f_i(i \in \mathbb{N})$). That is, for any $\delta > 0$, there exists a $\delta^* > 0$, $\forall a, b \in X$, $\rho(a, b) < \delta^*$ implies $\rho(f_{s_{k-j}} \circ \cdots \circ f_{s_1}(a), f_{s_{k-i}} \circ \cdots \circ f_{s_1}(b)) < \delta$ (j = 1, 2, ..., k - 1). Since *D* is an $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}$, then, $\forall x \neq y \in D$, for the above δ^* , we have

$$F = \{n \in \mathbb{N} : \rho(f_1^n(x), f_1^n(y)) < \delta^*\} \in \mathcal{F}_1.$$

And because \mathcal{F}_1 have property P(k), there exists some $j \in \{1, 2, ..., k - 1\}$ such that

$$F_{k,j} = \{i \in \mathbb{Z}^+ : ki+j \in F\} = \{i \in \mathbb{Z}^+ : \rho(f_1^{ki+j}(x), f_1^{ki+j}(y)) < \delta^*\} \in \mathcal{F}_1.$$

By the selection of δ^* , we put $s_r = ki + j + r(r = 1, 2, ..., k - j)$, then

$$F_{k,j} \subset \{i \in \mathbb{Z}^+ : \rho(f_1^{ki+j+k-j}(x), f_1^{ki+j+k-j}(y)) < \delta\} = \{i \in \mathbb{Z}^+ : \rho(f_1^{k(i+1)}(x), f_1^{k(i+1)}(y)) < \delta\}.$$

Write $F_{k,j} + 1 = \{i + 1 : i \in \mathbb{Z}^+, ki + j \in \mathcal{F}_1\}(\forall j = 1, 2, ..., k - 1)$, then $F_{k,j} + 1 \subset \{i \in \mathbb{Z}^+ : \rho(f_1^{ki}(x), f_1^{ki}(y)) < \delta\}$.

By the positive shift-invariant of \mathcal{F}_1 and $F_{k,j} \in \mathcal{F}_1$, we have $F_{k,j} + 1 \in \mathcal{F}_1$. And with the hereditary upwards of \mathcal{F}_1 , for any $x, y \in D : x \neq y, \forall \delta > 0, \{i \in \mathbb{Z}^+ : \rho(f_1^{ki}(x), f_1^{ki}(y)) < \delta\} \in \mathcal{F}_1$.

(ii) Since *D* is a $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}$, then, for the above $x, y \in D(x \neq y)$, $\exists \varepsilon^* > 0$, such that $E = \{n \in \mathbb{Z}^+ : \rho(f_1^n(x), f_1^n(y)) > \varepsilon^*\} \in \mathcal{F}_2$. And because \mathcal{F}_2 have property P(k), then, there exists some $j \in \{1, 2, ..., k - 1\}$ such that

$$E_{k,j} = \{i \in \mathbb{Z}^+ : ki+j \in E\} = \{i \in \mathbb{Z}^+ : \rho(f_1^{ki+j}(x), f_1^{ki+j}(y)) > \varepsilon^*\} \in \mathcal{F}_2.$$

X is compact and $f_i(i \in \mathbb{N})$ are continuous, then, for any $j \in \{1, 2, ..., k-1\}$, $f_{s_1}, ..., f_{s_j}$ are uniformly continuous (where $f_{s_1}, ..., f_{s_j}$ are freely chosen from the sequence $f_i(i \in \mathbb{N})$). For the above $\varepsilon^* > 0$, $\exists \varepsilon > 0$, $\forall p, q \in X$ satisfied $\rho(p, q) \leq \varepsilon$, inequality $\rho(f_{s_j} \circ \cdots \circ f_{s_1}(p), f_{s_j} \circ \cdots \circ f_{s_1}(q)) \leq \varepsilon^*$ holds.

The following will prove that $\{i \in \mathbb{Z}^+ : \rho(f_1^{ki}(x), f_1^{ki}(y)) > \varepsilon\} \in \mathcal{F}_2$. Suppose $\{i \in \mathbb{Z}^+ : \rho(f_1^{ki}(x), f_1^{ki}(y)) > \varepsilon\} \notin \mathcal{F}_2$, then

$$\mathbb{Z}^{+} - \{i \in \mathbb{Z}^{+} : \rho(f_{1}^{ki}(x), f_{1}^{ki}(y)) > \varepsilon\} = \{i \in \mathbb{Z}^{+} : \rho(f_{1}^{ki}(x), f_{1}^{ki}(y)) \le \varepsilon\} \in k\mathcal{F}_{2}$$

By the selection of ε^* , we put $s_r = ki + r(r = 1, 2, ..., j)$, then

$$\{i \in \mathbb{Z}^+ : \rho(f_1^{ki+j}(x), f_1^{ki+j}(y)) \le \varepsilon^*\} \in k\mathcal{F}_2.$$

So,

$$\{i \in \mathbb{Z}^+ : \rho(f_1^{ki+j}(x), f_1^{ki+j}(y)) > \varepsilon^*\} \notin k\mathcal{F}_2,$$

This contradicts $E_{k,j} \in \mathcal{F}_2$.

Hence, for $x \neq y \in D$ in (i), there exists a $\varepsilon > 0$ such that $\{i \in \mathbb{Z}^+ : \rho(f_1^{ki}(x), f_1^{ki}(y)) > \varepsilon\} \in \mathcal{F}_2$. Combining with (i) and (ii), $f_{1,\infty}^{[k]}$ is $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos.

This completes the proof.

Theorem 2. Let \mathcal{F}_1 and \mathcal{F}_2 are two Furstenberg families with property Q(k), where k is a positive integer. \mathcal{F}_2 is negative shift-invariant. If the system $(X, f_{1,\infty}^{[k]})$ is $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, then the system $(X, f_{1,\infty})$ is $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos too.

Proof. If *D* is a $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}^{[k]}$, the following prove that *D* is a $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}$.

(i) Similar to Theorem 1, for any $j \in \{1, 2, ..., k-1\}$, $f_{s_1}, ..., f_{s_j}$ are uniformly continuous (where $f_{s_1}, ..., f_{s_j}$ are freely chosen from the sequence $f_i (i \in \mathbb{N})$). That is, for any $\delta > 0$, there exists a $\delta^* > 0$, $\forall a, b \in X$, $\rho(a, b) < \delta^*$ implies $\rho(f_{s_j} \circ \cdots \circ f_{s_1}(a), f_{s_j} \circ \cdots \circ f_{s_1}(b)) < \delta$ (j = 1, 2, ..., k-1). For any pair of distinct points $x, y \in D$, for the above δ^* , one has

$$F = \{ n \in \mathbb{Z}^+ : \rho(f_1^{kn}(x), f_1^{kn}(y)) < \delta^* \} \in \mathcal{F}_1.$$

By the selection of δ^* , for $\forall n \in F$, $\forall j \in \{1, 2, \dots, k-1\}$, put $s_r = ki + j + r(r = 1, 2, \dots, j)$, then $\rho(f_1^{kn+j}(x), f_1^{kn+j}(y)) < \delta$. And because \mathcal{F}_1 have property Q(k), then

$$F_k = \{kn + j \in \mathbb{Z}^+ : j = 1, 2, \dots, k - 1, n \in F\} \in \mathcal{F}_1.$$

Notice that $F_k \subset \{m \in \mathbb{Z}^+ : \rho(f_1^m(x), f_1^m(y)) < \delta\}$, then $\{m \in \mathbb{Z}^+ : \rho(f_1^m(x), f_1^m(y)) < \delta\} \in \mathcal{F}_1$. (ii) Since *D* is an $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}^{[k]}$, then, for the above $x, y \in D(x \neq y)$, there exist $\varepsilon^* > 0$, such that $E = \{n \in \mathbb{Z}^+ : \rho(f_1^{kn}(x), f_1^{kn}(y)) > \varepsilon^*\} \in \mathcal{F}_2$.

For any $j \in \{1, 2, ..., k-1\}$, $f_{s_1}, ..., f_{s_j}$ are uniformly continuous (where $f_{s_1}, ..., f_{s_j}$ are freely chosen from the sequence $f_i(i \in \mathbb{N})$), then, for the above $\varepsilon^* > 0$, there exist $\varepsilon > 0$ such that $\rho(p,q) < \varepsilon(p,q \in X)$ implies $\rho(f_{s_j} \circ \cdots \circ f_{s_1}(p), f_{s_j} \circ \cdots \circ f_{s_1}(q)) \le \varepsilon^*(j = 1, 2, ..., k-1)$. That is, $\rho(f_1^k(p), f_1^k(q)) > \varepsilon^*(p,q \in X)$ implies $\rho(f_1^j(p), f_1^j(q)) > \varepsilon(j = 1, 2, ..., k-1)$. $\forall n \in E, \forall j = 1, 2, ..., k-1$, put $s_r = k(n-1) + r(r = 1, 2, ..., j)$, then

$$\rho(f_1^{k(n-1)+j}(x), f_1^{k(n-1)+j}(y)) > \varepsilon$$

Since \mathcal{F}_2 is negative shift-invariant, then $E - 1 \in \mathcal{F}_2$. And because \mathcal{F}_2 have property Q(k), then $(E-1)_k \in \mathcal{F}_2$, i.e., $\{k(n-1) + j \in \mathbb{Z}^+ : n-1 \in E-1, j = 1, 2, ..., k-1\} \in \mathcal{F}_2$. Combining $(E-1)_k \subset \{m \in \mathbb{Z}^+ : \rho(f_1^m(x), f_1^m(y)) > \varepsilon\}$ with the hereditary upwards of \mathcal{F}_2 , we have $\{m \in \mathbb{Z}^+ : \rho(f_1^m(x), f_1^m(y)) > \varepsilon\} \in \mathcal{F}_2$.

By (i) and (ii), *D* is an $(\mathcal{F}_1, \mathcal{F}_2)$ -scrambled set of $f_{1,\infty}$.

This completes the proof.

Similarly, the following corollaries hold.

Corollary 1. Let \mathcal{F}_1 and \mathcal{F}_2 are two Furstenberg families with property P(k), where k is a positive integer. \mathcal{F}_1 is positive shift-invariant. If the system $(X, f_{1,\infty})$ is \mathcal{F} -chaos (strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, or strong \mathcal{F} -chaos), then the system $(X, f_{1,\infty}^{[k]})$ is \mathcal{F} -chaos (strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos).

Corollary 2. Let \mathcal{F}_1 and \mathcal{F}_2 are two Furstenberg families with property Q(k), where k is a positive integer. \mathcal{F}_2 is negative shift-invariant. If the system $(X, f_{1,\infty}^{[k]})$ is \mathcal{F} -chaos (strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, or strong \mathcal{F} -chaos), then the system $(X, f_{1,\infty})$ is \mathcal{F} -chaos (strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, or strong \mathcal{F} -chaos).

Combining with Propositions 1 and 2, Theorems 1 and 2, and Corollarys 1 and 2, the following conclusions are obtained.

Theorem 3. Let *s* and *t* are arbitrary two numbers in [0, 1], then

- (1) If D is an $(\overline{M}(s), \overline{M}(t))$ -scrambled set (or strong $(\overline{M}(s), \overline{M}(t))$ -scrambled set) of $f_{1,\infty}$, then, for every $k \in \mathbb{Z}^+$, D is an $(\overline{M}(s), \overline{M}(t))$ -scrambled set(or strong $(\overline{M}(s), \overline{M}(t))$ -scrambled set) of $f_{1,\infty}^{[k]}$.
- (2) For some positive integer k, if D is an $(\overline{M}(s), \overline{M}(t))$ -scrambled set (or strong $(\overline{M}(s), \overline{M}(t))$ -scrambled set) of $f_{1,\infty}^{[k]}$, then D is an $(\overline{M}(s), \overline{M}(t))$ -scrambled set (or strong $(\overline{M}(s), \overline{M}(t))$ -scrambled set) of $f_{1,\infty}$.

Proof.

- (1) By Proposition 1, $\overline{M}(s)$ is shift-invariant (obviously positive shift-invariant). And because $\overline{M}(s)$, $\overline{M}(t)$ are two Furstenberg families with property P(k) (Proposition 2). Then, according to the proof of Theorem 1, if D is an $(\overline{M}(s), \overline{M}(t))$ -scrambled set of $f_{1,\infty}$, then, for every $k \in \mathbb{Z}^+$, D is an $(\overline{M}(s), \overline{M}(t))$ -scrambled set of $f_{1,\infty}^{[k]}$.
- (2) In the same way, (2) holds.This completes the proof.

With the preparations in Section 4, we have

Corollary 3.

- (1) If *D* is a Li–Yorke scrambled set (or distributionally scrambled set) of $f_{1,\infty}$, then, for every $k \in \mathbb{Z}^+$, *D* is a Li–Yorke scrambled set (or distributionally scrambled set) of $f_{1,\infty}^{[k]}$.
- (2) For some positive integer k, if D is a Li–Yorke scrambled set (or distributionally scrambled set) of $f_{1,\infty}^{[k]}$, then, D is a Li–Yorke scrambled set (or distributionally scrambled set) of $f_{1,\infty}$.

Remark 1. In the non-autonomous systems, the iterative properties of Li–Yorke chaos and distributional chaos are discussed in [25,26] before. The conclusions in Corollary 3 remains consistent with them.

This paper has presented several properties of $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, strong $(\mathcal{F}_1, \mathcal{F}_2)$ -chaos, and strong \mathcal{F} -chaos. There are some other problems, such as generically \mathcal{F} -chaos and \mathcal{F} -sensitivity, to discuss. Moreover, property P(k) is closely related to congruence theory. Follow this line, one can consider other Furstenberg families which consist of number sets with some special characteristics.

Acknowledgments: This work was supported by National Natural Science Foundation of China (11501391, 61573010) and the Artificial Intelligence of Key Laboratory of Sichuan Province (2015RZJ01).

Author Contributions: Tianxiu Lu proposed the idea; Most of the conclusions are proved by Xiao Tang and Tianxiu Lu; Some important steps in Theorem 1 and Theorem 2 are inferred by Guanrong Chen; Tianxiu Lu wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Li, T.; Yorke, J. Period 3 implies chaos. *Am. Math. Month.* **1975**, *82*, 985–992.
- 2. Devaney, R.L. An Introduction to Chaotic Dynamical Systems; Addison Wesley: Boston, MA, USA, 1989.
- 3. Piorek, J. On generic chaos of shifts in funtion spaces. Ann. Polon. Math. 1990, 52, 139–146.
- 4. Snoha, L. Dense chaos. Comment. Math. Univ. Carolin. 1992, 33, 747–752.
- 5. Akin, E.; Kolyada, S. Li-Yorke sensitivity. Nonlinearity 2003, 16, 1421–1433.
- 6. Schweizer, B.; Smital, J. Measures of chaos and a spectral decomposition of dynamical systems on the interval. *Trans. Am. Math. Soc.* **1994**, 344, 737–754.
- 7. Balibrea, F.; Smital, J. Strong distributional chaos and minimal sets. *Topol. Appl.* **2009**, *156*, 1673–1678.
- 8. Balibrea, F.; Smital, J.; Stefankova, M. On open problems concerning distributional chaos for triangular maps. *Nonlinear Anal. Theor.* **2011**, *74*, 7342–7346.
- 9. Li, R. A note on the three versions of distributional chaos. *Commun. Nonlinear Sci. Numer. Simul.* **2011**, *16*, 1993–1997.
- 10. Balibrea, F.; Smital, J.; Stefankova, M. Dynamical systems generating large sets of probability distribution functions. *Chaos Soliton. Fract.* **2014**, *67*, 38–42.
- 11. Wang, L.; Ou, X.; Gao, Y. A weakly mixing dynamical system with the whole space being a transitive extremal distributionally scrambled set. *Chaos Soliton. Fract.* **2015**, *70*, 130–133.
- 12. Shao, Y.; Gao, Y. The scrambling index set of primitive minimally strong digraphs. *Linear Algebra Appl.* **2016**, 500, 1–14.

- 13. Akin, E. Recurrence in Topological Dynamics: Furstenberg and Ellis Action; Plenum Press: New York, NY, USA, 1997.
- 14. Tan, F.; Zhang, R.F. On *F*-sensitive pairs. Acta Math. Sci. 2011, 31, 1425–1435.
- 15. Wu, X.; Wang, J.; Chen, G. *F*-sensitivity and Multi-sensitivity of hyperspatial dynamical systems. *J. Math. Anal. Appl.* **2015**, *429*, 16–26.
- 16. Wu, X.; Oprocha, P.; Chen, G. On various definitions of shadowing with average error in tracing. *Nonlinearity* **2016**, *29*, 1942–1972.
- Kolyada, S.; Snoha, L. Topological entropy of non-autonomous dynamical systems. *Random Comput. Dyn.* 1996, 4, 205–233.
- Elaydi, S.N. Non-autonomous difference equations: Open problems and conjectures. *Fields Inst. Commum.* 2004, 42, 423–428.
- 19. Elaydi, S.N.; Sacker, R.J. Non-autonomous Beverton-Holt equations and the Cushing-Henson conjectures. *J. Differ. Equ. Appl.* **2005**, *11*, 337–346.
- Kolyada, S.; Snoha, L.; Trofimchuk, S. On minimality of non-autonomous dynamical systems. *Neliniini Koliv.* 2004, 7, 86–92.
- 21. Dvorakova, J. Chaos in non-autonomous discrete dynamical systems. *Commun. Nonlinear Sci. Number. Simul.* **2012**, *17*, 4649–4652.
- 22. Wu, X.; Ding, X.; Lu, T.; Wang, J. Topological dynamics of Zadeh's extension on upper semi-continuous fuzzy sets. *Int. J. Bifurc. Chaos* **2017**, *27*, 1750165.
- 23. Wu, X.; Wang, X.; Chen, G. On the large deviations theorem of weaker types. *Int. J. Bifurc. Chaos* 2017, 27, 1750127.
- 24. Li, Z.; Wang, H.; Xiong, J. Some remarks on \mathcal{F}_{∞} , \mathcal{F}_{\in} -scrambled sets. *ACTA Math. Sin. (Chin. Ser.)* **2010**, *53*, 727–732.
- 25. Wu, X.; Zhu, P. Chaos in a class of non-autonomous discrete systems. Appl. Math. Lett. 2013, 26, 431–436.
- Lu, T.; Zhu, P.; Wu, X. Distributional chaos in non-autonomous discrete systems. *Acta Math. Sci. (Chin. Ser.)* 2015, 35, 558–566.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).