
entropy

Article

Trustworthiness Measurement Algorithm for TWfMS
Based on Software Behaviour Entropy

Qiang Han 1,2

1 School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, China;
hanqiang@bupt.edu.cn; Tel.: +86-139-9501-3650

2 Key Laboratory of Trustworthy Distributed Computing and Services (Ministry of Education),
Beijing University of Posts and Telecommunications, Beijing 100871, China

Received: 3 February 2018; Accepted: 10 March 2018; Published: 14 March 2018

Abstract: As the virtual mirror of complex real-time business processes of organisations’ underlying
information systems, the workflow management system (WfMS) has emerged in recent decades
as a new self-autonomous paradigm in the open, dynamic, distributed computing environment.
In order to construct a trustworthy workflow management system (TWfMS), the design of a
software behaviour trustworthiness measurement algorithm is an urgent task for researchers.
Accompanying the trustworthiness mechanism, the measurement algorithm, with uncertain software
behaviour trustworthiness information of the WfMS, should be resolved as an infrastructure. Based on
the framework presented in our research prior to this paper, we firstly introduce a formal model
for the WfMS trustworthiness measurement, with the main property reasoning based on calculus
operators. Secondly, this paper proposes a novel measurement algorithm from the software behaviour
entropy of calculus operators through the principle of maximum entropy (POME) and the data mining
method. Thirdly, the trustworthiness measurement algorithm for incomplete software behaviour
tests and runtime information is discussed and compared by means of a detailed explanation.
Finally, we provide conclusions and discuss certain future research areas of the TWfMS.

Keywords: software behaviour trustworthiness; principle of maximum entropy; measurement algorithm;
workflow management system

1. Introduction

The workflow management system (WfMS) is considered a multidisciplinary system-of-systems
(SoS)-oriented software under the modern IT background of cloud computing, internet of things (IoT),
big data, and advanced technologies for the future. When a WfMS encounters unexpected accidents,
human intervention or offline adjustment is insufficient to be appropriated for its complex undertaken
commissions and high availability requirements. Similar to real-time systems, a WfMS requires
online adjustment to accommodate random changes occurring in its surroundings or software
architecture under human control strategies, which may affect its functionalities or non-functionalities
and transaction data consistence—and even its trustworthiness level. For example, addressing course
timetabling problems [1] from the case-based reasoning (CBR) system viewpoint, to adapt to the
limited classroom capacity for the ever-increasing number of students, the CBR system may change
the venue to a new classroom with larger capacity to prevent basic teaching functionality from
being interrupted. In addition, to adapt to enable more effective teaching, the CBR system may
adjust the venue to a new classroom that better suits the preference of the teacher and students to
optimise the potential teaching non-functionality. Furthermore, to adapt to achieve more consistent
teaching transactions log data, the CBR system may recover or repair the transactions with a uniform
state; otherwise, the complete student achievement would not be generated from the conflicting
data. Although the CBR system works for education-oriented business process management tasks,

Entropy 2018, 20, 195; doi:10.3390/e20030195 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e20030195
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 195 2 of 13

i.e., a special type of WfMS, the random changes mentioned above could mislead the WfMS software
behaviour and eventually directly or indirectly affect the WfMS service behaviour realised by its
software, ultimately reducing the WfMS software trustworthiness and resulting in users abandoning
the candidate WfMS adoption. In order to solve the abovementioned problem, we present a novel
measurement algorithm based on previous research results. Our approach includes a self-automatic
framework for random changes and relative algorithms, concentrating on measuring the similarity
between software behaviour and its claims through black-box testing with incomplete software
behaviour entropy. The remainder of this paper consists of three sections: Section 2 discusses the related
work on measurement methods regarding the WfMS; Section 3 illustrates the novel measurement
algorithm from two perspectives, namely the calculus implemented on the WfMS and the normal forms
of the WfMS; and Section 4 discusses the proposed algorithm and summarises future research areas.

2. Related Work

Software trustworthiness [2] is considered a non-functionality combination of software quality
against the conformance degree oriented to subjective user evaluation. Against this background,
the difference between user requirements and actual software behaviour will determine the
trustworthiness perceived by the user. In recent decades, considerable efforts have been made
to design intelligence algorithms to measure the difference between objective software or service
behaviour and subjective user evaluation. In references [3,4], the authors define the similarity and
design based on the genes of the firing sequences generated from transition adjacency relations (TARs).
The corresponding distance measures between processes were taken as a metric to be applied in
artificial processes and evaluations for clustering real-life processes. As a promising candidate for
further research areas, the authors of reference [5] took into account the active feedback of evaluation
data in workflow process modelling, which encompassed the entire lifecycle of workflow and enabled
active real-time controlling using workflow audit trail data from three perspectives, namely process,
resource, and object. In order to assist users in selecting a sufficient workflow with appropriate quality
of service (QoS) to meet their requirements, reference [6] proposed a novel approach to scientific
workflow retrieval with cost constraints and defined a distance measure for comparing the similarities
among cost constrained graph (CCGs), through which workflow retrieval and ranking could be
conducted based on similarity computations. To allow companies to respond to changing markets by
creating product variants derived from different combinations of existing or new modular components,
reference [7] sought to define and measure workflow modularity. The authors made three contributions:
they designed two important performance measures regarding flow time and flexibility; they proposed
an integer nonlinear programming (INLP) optimisation model for designing modular workflows that
can be adopted for small processes; and they presented a heuristic model for the same commission
adopted for larger processes. From a workflow standardisation perspective, in order to translate
business data into bytes that are consumable by daily information systems with less automation
difficulty and more reliability, as well as to make business competition comparisons more precise and
invariable, reference [8] focused on health care data and workflow, reengineering the coding workflow
and performance benchmarks, and proposed the establishment of useful tools for improving data
quality, which can be used by everyone. In terms of the practical computation environment known
as grid computing, reference [9] layered the clustering approach of the reusable workflow into a
hierarchical model consisting of activity, event, condition-action, rule, and process similarity measures
based on event condition action event condition action (ECA) theories. In the industry-integrated
manufacturing environment, digital printing should eliminate redundant processes in order to shorten
press runs and save costs. In order to select equipment and software for supporting such workflows,
reference [10] introduced a workflow configuration tool that can elicit customer printing requirements
and classified the requirements into a set of equivalent workflows according to their configuration
using a compression-based dissimilarity measure (CDM) approach. The continuous improvement
of business process management (BPM) is an ongoing issue for the WfMS, and in order to address



Entropy 2018, 20, 195 3 of 13

this, a solid understanding of the success elements and waste experience during the same workflow
process is essential. With the trend of lean production, reference [11] surveyed research and presented
a conceptualisation for understanding the workflow and simultaneously occurring waste in the
production of buildings through the three different dimensions of smoothness (high level of direct
work), quality, and intensity. Moreover, they summarised the methods for this purpose, consisting of
an integrated method of observation and self-reporting, as well as the last planner system (LPS) based
on the method to measure workflow as handover of work between trades.

From an overview of the above related works, we can draw the conclusion that BPM measurement
can be transformed from socialised human production to mechanised computing by means of electronic
equipment. Therefore, there is a need for a comprehensive approach to connect the macroscopic and
microscopic measurements systematically, thereby reflecting the user’s subjective experience of the
trustworthiness of BPM according to the objective evidence of trustworthiness of the WfMS. However,
in the dynamic and open WfMS runtime environment, the goal of comprehensively interpreting
and obtaining the WfMS software behaviour is almost impossible to achieve. Generally, we can
only obtain partial software behaviour, which represents incomplete trustworthiness of the entire
service QoS without sufficient preciseness when the parameters regarding other software behaviour
are uncertain [12]. Accordingly, we first present a quality management system (QMS) [13] of
maximum entropy (QMSOME) derived from the trustworthy WfMS (TWfMS) framework, which is
a thermodynamics-related interpretive model, as the virtual mirror of complex real-time business
processes of the underlying information systems of organisations. Secondly, we present a novel recursive
measurement algorithm for WfMS trustworthiness by means of a hybrid method derived from large-scale
software black-box testing, as illustrated in the following sections, which is also an application of the
principle of maximum entropy (POME) or maximum-entropy principle (MEP) [14,15].

3. Measurement Algorithm for the Workflow Management System Trustworthiness

In line with the related works discussed above, as a special type of QMS for workflow quality
management, WfMSs experience multiple loops consisting of re-engineering and/or reorganisations.
This process improves the WfMS into a high-level order—with relatively low entropy of information
systems—from low-level disorder—with high entropy of information systems in the long term— along
with consistently maintaining its trustworthiness as defined by users. This cycle, which covers the
entire life of the WfMS, is also known as the resilience engineering (RE) [16] model and is illustrated
in this section. Thereafter, we introduce its definition, including integrated manufacturing business
processes, and the translation of these into models. Prior to proposing the RE model for the WfMS,
we illustrate our thoughts regarding the TWfMS according to the standard WfMC reference model
with the extension of methods and mechanisms, which is the fundamental goal of RE. Considering that
the implementation of RE for the WfMS is ultimately imposed on the WfMS components, we first
provide the preliminary component definition for the WfMS. Secondly, as the fundamental goal of
WfMS RE is to assure its trustworthiness as perceived by users, we provide the trustworthy component
definition of the WfMS. Thirdly, in order to certify WfMS recovery as its common function under RE,
we present a normal form (NF) set [17] as a so-called paradigm to label the WfMS trustworthiness
level at runtime.

3.1. Formal Representation of the Workflow Management System Trustworthiness

As SoS-oriented, complex system software, a formal representation of the mechanisms and
methods revealing the internal principles of WfMS trustworthiness is imperative for the design,
development, and maintenance tasks covering the entire WfMS lifecycle. In our prior research,
we presented a reference model for the TWfMS [18,19], as illustrated in Figure 1, inspired by the RE
concept. As indicated in Figure 1, we expand the WfMC reference model from interfaces no.0 and
no.6–no.11. In the following paragraphs, we explain the differences between the TWfMS and WfMS in
terms of each of these interfaces.



Entropy 2018, 20, 195 4 of 13

(1) Interface no.0 is linked to the core work engine(s) component of the WfMS and the additional
self-configuration-parameter system for the WfMS (SCP4WMS) RE tool in the process execution
service module; that is, we consider the SCP4WMS tools an extension of and supplementary to
the process execution service module.

(2) Interfaces no.6 and no.7 are linked to the self-optimization framework system for the WfMS
(SOF4WMS) and self-healing model system for WfMS (SHM4WMS) RE tools, respectively,
with the management and monitoring tool, which constructs the TWfMS mechanism with the
SCP4WMS tool; that is, we consider the SOF4WMS and SHM4WMS tools extensions of and
supplementary to the management and monitoring tool.

(3) Interface no.8 is linked to the tools for communication on called application of typical web services
with an additional tool, the auto construction method for the WfMS (ACM4WMS), based on
services combination; that is, we consider the ACM4WMS tool an extension of and supplementary
to the standard tools linked to the process execution service module via interface no.3.

(4) Interface no.9 is linked to the requirement auto-analysis tool with the process definition tool,
where the former consists of four components known as acquisition, decomposition, combination,
and verification based on a Petri net (ADCV-PN); that is, we consider the ADCV-PN tools
extensions of and supplementary to the process definition tool.

(5) Interface no.10 is connected to the management and monitoring tool with the ACM4WMS tool
when the WfMS encounters “local break points”, whereby the WfMS trustworthiness can no
longer be maintained by the management and monitoring tool, even with the assistance of the
tool sets of SCP4WMS, SOF4WMS, and SHM4WMS. In the context of the scenario described
above, via interface no.10, the management and monitoring tool transfers the exceptional event
unsolved by the SCP4WMS, SOF4WMS, and SHM4WMS tool sets sequentially to the ACM4WMS
tool, in order to reconstruct the WfMS by searching for resources in the cloud. At such a time,
we consider the WfMS as beginning local resilience engineering (LRE).

(6) Interface no.11 is connected to the management and monitoring tool with the ADCV-PN tools
when the WfMS encounters “global break points”, whereby the WfMS trustworthiness can no
longer be sufficiently accurate by means of the ACM4WMS tool, even if all of the resources in the
cloud are traversed by means of the ACM4WMS tool. In the context of the scenario described
above, via interface no.11, the management and monitoring tool finally transfers the exceptional
event unsolved by the ACM4WMS tool to the ADCV-PN tools, in order to remodel the WfMS
under user validation. At such a time, we consider the WfMS as beginning global resilience
engineering (GRE).

Based on the above model, from the implementation view of software architecture, we propose
the core components of the methods and mechanisms [18,19] as illustrated in Figure 2. Compared with
the method of trustworthiness and the TWfMS in the cloud in Figure 2, here we place emphasis on the
mechanisms of trustworthiness, comprising SCP4WMS, SOF4WMS, and SHM4WMS:

1. SCP4WMS means self-configuration-parameter system for the WfMS. It has the function
of analysing the parameters transferred from the trustworthiness data collection (TDC)
component, which gathers real-time data from the WfMS at the multilevel of components,
component combinations, and application software. According to the analysis, SCP4WMS carries
out the following procedures.

1.1. If the parameters of the operating environment variables of workflow engines have changed
and will cause WfMS failure and improper operation, SCP4WMS will modify the parameters
of the WfMS itself according to predefined rules and return the new parameters of the
WfMS itself to the TDC in order to be adaptable to the new environment variables of the
workflow engines.



Entropy 2018, 20, 195 5 of 13

1.2. SCP4WMS should transmit the remaining parameters to SOF4WMS to deal with other
WfMS mechanisms.

1.3. SCP4WMS should compute the WfMS behaviour trustworthiness according to the algorithm
illustrated in Section 3.2 and transform it into the subsequent mechanism SOF4WMS.

1.4. When SCP4WMS receives the new parameters of the WfMS itself, modified by SOF4WMS,
it should return these to the TDC in order to be optimised with the new operating condition
variables of the workflow engines.

1.5. When SCP4WMS receives the new parameters of the WfMS itself, modified by SHM4WMS,
it should return these to the TDC in order to be recovered with the new transaction
consistence variables of the workflow engines.

2. SOF4WMS means self-optimisation framework system for the WfMS, and one of its functions is
analysing the parameters transferred from the SCP4WMS component. According to the analysis,
SOF4WMS carries out the following procedures.

2.1. If the parameters of the operating condition variables of the workflow engines have changed
and will lead to worse or better WfMS performance, SOF4WMS will modify the parameters
of the WfMS itself, according to predefined ECA rules, and return the new parameters of the
WfMS itself to SCP4WMS to be optimised with the new operating condition variables of the
workflow engines.

2.2. SOF4WMS should transmit the remaining parameters to SHM4WMS in order to deal with
other WfMS mechanisms.

2.3. SOF4WMS should verify the WfMS behaviour trustworthiness according to the algorithm for
software/service behaviour trustworthiness validation and transform it into the subsequent
mechanism SHM4WMS.

2.4. When SOF4WMS receives the new parameters of the WfMS itself, modified by SHM4WMS,
it should return these to SCP4WMS to be recovered with the new transaction consistence
variables of the workflow engines.

3. SHM4WMS means self-healing-model system for the WfMS, and one of its functions is
analysing the parameters transferred from the SOF4WMS component. According to the analysis,
SHM4WMS carries out the following procedures.

3.1. If the parameters of the transaction consistence variables of the workflow engines have
changed and will cause an inconsistent transaction record in the WfMS, SHM4WMS will
modify the parameters of the WfMS itself, according to predefined ECA rules, and return the
new parameters to SOF4WMS to be recovered with the new transaction consistence variables
of the workflow engines.

3.2. SHM4WMS should compute the WfMS behaviour trustworthiness according to the NF
algorithm (NF paradigms):

3.2.1. If the WfMS NF is higher than or equal to the requirement NF of users when the
ACM4WMS constructs the WfMS at the initial time, jump to step (3.3) directly.

3.2.2. Otherwise, SHM4WMS will transfer it to the TWfMS method, which means that
SHM4WMS will suggest the management and monitoring tool to transfer it to
ACM4WMS through the local RE path (3.2.3). The management and monitoring
tool transfers the NF that is lower than that of the initial WfMS to ACM4WMS through
the local RE path.

3.3. If ACM4WMS can reconstruct a WfMS with a new NF that is higher than or equal to the
requirement NF of users from the source service in the cloud successfully, then jump to
step (3.3) directly.



Entropy 2018, 20, 195 6 of 13

3.4. Otherwise, the management and monitoring tool sends the NF that is lower than that of the
initial WfMS to the ADCV-PN tools through the global RE path (that is, the ADCV-PN tools
set will begin to remodel the WfMS under user validation of users).

3.5. Register the new WfMS NF into the SHM4WMS database and return to step (1).

Entropy 2018, 20, x FOR PEER REVIEW  6 of 14 

 

3.4.  Otherwise, the management and monitoring tool sends the NF that is lower than that of the 
initial WfMS to the ADCV-PN tools through the global RE path (that is, the ADCV-PN tools 
set will begin to remodel the WfMS under user validation of users). 

3.5. Register the new WfMS NF into the SHM4WMS database and return to step (1). 

 
Figure 1. Reference model for a trustworthy workflow management system (TWfMS) with resilience 
engineering (RE). 

 
Figure 2. Methods and mechanisms of a TWfMS with RE. 

Figure 1. Reference model for a trustworthy workflow management system (TWfMS) with resilience
engineering (RE).

Entropy 2018, 20, x FOR PEER REVIEW  6 of 14 

 

3.4.  Otherwise, the management and monitoring tool sends the NF that is lower than that of the 
initial WfMS to the ADCV-PN tools through the global RE path (that is, the ADCV-PN tools 
set will begin to remodel the WfMS under user validation of users). 

3.5. Register the new WfMS NF into the SHM4WMS database and return to step (1). 

 
Figure 1. Reference model for a trustworthy workflow management system (TWfMS) with resilience 
engineering (RE). 

 
Figure 2. Methods and mechanisms of a TWfMS with RE. Figure 2. Methods and mechanisms of a TWfMS with RE.



Entropy 2018, 20, 195 7 of 13

3.2. Measurement Algorithm for the Trustworthy Workflow Management System Based on Calculus

In this section, we introduce the general recursive measurement algorithm for the TWfMS based
on the priority according to calculus. We provide the application server (AS) of the WfMS, consisting
of the components and operations organised as a tree.

Firstly, the initial trustworthiness of AS is set to the value of 0.5, which means that we cannot
judge whether or not it is more trustworthy than the initial value of 0.5 for proper trustworthiness
when the ACM4WMS tool constructs the WfMS at the initial time, as illustrated in the following
Equation (1):

ASInitial_Trustwothiness = 〈C, O〉 = 0.5. (1)

Secondly, we add the start and end components as the first and last activities of the original
process with an absolute trustworthiness value of 1, which means they are coded with a simple but
stable start or stop program with our absolute trust. Furthermore, we set the other components as
the remaining immediate activities with an initial trustworthiness value of 0.5 for the same reason
as that mentioned above. The initial trustworthiness of components is expressed by the following
Equation (2):

C = Components =


Original_processInitial_Trustworthiness

Start = 1,
Original_processInitial_Trustworthiness

i,j,k∈[1,N]
= 0.5

Original_processInitial_Trustworthiness
End = 1

. (2)

Thirdly, we classify the operations among these components into three types of calculus. That is,
for the operated component A, which is operated with the operating component B via dependency
calculus C.

If, following the operation, the trustworthiness of A is replaced with the minimum trustworthiness
of components A and B, we name C strong dependency calculus.

If, following the operation, the trustworthiness of A is replaced with the multiplication value of
the trustworthiness of components A and B, we name C indirect dependency calculus.

If, following the operation, the trustworthiness of A is replaced with the average value of the
trustworthiness of components A and B, we name C weak dependency calculus.

The operations can be illustrated as the following Equations: (3) with classes or (4) with a sequence
order perspective from start, immediate, and end activities.

O = Operations =


SDCUnsearched =

{
Strong_Dependency_CalculusUnsearched

}
,

IDCUnsearched =
{

Indirect_Dependency_CalculusUnsearched
}

,

WDCUnsearched =
{

Weak_Dependency_CalculusUnsearched
}

.

 (3)

O = Operations = {CalculusUnsearched
start,1 ; CalculusUnsearched

i,j ; CalculusUnsearched
k,End }. (4)

The trustworthiness of AS can be computed by the following Algorithm 1:



Entropy 2018, 20, 195 8 of 13

Algorithm 1: General_Recursive_Measure (ASInitial_Trustwothiness)

Input: ASInitial_Trustwothiness = 0.5; GRM = 0.5; Output: ASTrustwothiness ∈ [0, 1];
1: If AS.Components = ∅;
2: Return; End if;
3: For every OpInitial_Trustworthiness

i∈[start,1,2,...,n,end] do
//Traverse the tree in proper order of calculus priority from high to low:
SDCUnsearched > IDCUnsearched > WDCUnsearched

4: Compute behaviour trustworthiness (OpTrustworthiness
i∈[start,1,2,...,n,end]) for OpInitial_Trustworthiness

i∈[start,1,2,...,n,end] , replace

OpInitial_Trustworthiness
i∈[start,1,2,...,n,end] with OpTrustworthiness

i∈[start,1,2,...,n,end] in ASInitial_Trustwothiness;

5: While exist CalculusUnsearched
i,j ∈ SDCUnsearched do

6: GRM = General_Recursive_Measure (OpInitial_Trustworthiness
j∈[start,1,2,...,n,end] );

7: Replace CalculusUnsearched
i,j with CalculusSearched

i,j in ASInitial_Trustwothiness

8: Set OpTrustworthiness
i∈[start,1,2,...,n,end] ← OpTrustworthiness

i∈[start,1,2,...,n,end]

(
CalculusSearched

i,j

)
GRM ;

9: End do;
10: While exist CalculusUnsearched

i,j ∈ IDCUnsearched do

11: GRM = General_Recursive_Measure (OpInitial_Trustworthiness
j∈[start,1,2,...,n,end] );

12: Replace CalculusUnsearched
i,j with CalculusSearched

i,j in ASInitial_Trustwothiness

13: Set OpTrustworthiness
i∈[start,1,2,...,n,end] ← OpTrustworthiness

i∈[start,1,2,...,n,end]

(
CalculusSearched

i,j

)
GRM ;

14: End do;
15: While exist CalculusUnsearched

i,j ∈WDCUnsearched do

16: GRM = General_Recursive_Measure (OpInitial_Trustworthiness
j∈[start,1,2,...,n,end] );

17: Replace CalculusUnsearched
i,j with CalculusSearched

i,j in ASInitial_Trustwothiness

18: Set OpTrustworthiness
i∈[start,1,2,...,n,end] ← OpTrustworthiness

i∈[start,1,2,...,n,end]

(
CalculusSearched

i,j

)
GRM ;

19: End do;
20: End for;
21: Set ASInit_Trustwothiness ← OpTrustworthiness

i∈[start,1,2,...,n,end] ;

22: Replace ASInit_Trustwothiness with ASTrustwothiness;
23: Return ASTrustwothiness.

Following completion of this algorithm, the trustworthiness of AS should be computed as follows:

ASTrustwothiness = 〈C, O〉 ∈ [0, 1]. (5)

C = Components =


Original_processTrustworthiness

Start = 1,
Original_processTrustworthiness

i,j,k∈[1,N]
∈ [0, 1],

Original_processTrustworthiness
End = 1.

 (6)

O = Operations =


SDCSearched =

{
Strong_Dependency_CalculusSearched

}
,

IDCSearched =
{

Indirect_Dependency_CalculusSearched
}

,

WDCSearched =
{

Weak_Dependency_CalculusSearched
}

.

 (7)

O = Operations =
{

CalculusSearched
start,1 ; CalculusSearched

i,j ; CalculusSearched
k,End

}
. (8)

3.3. Basic Software Behaviour Trustworthiness Metric for Components

In this section, based on our prior works on data mining [20,21], and now in the uncertain
environment, we introduce the basic component trustworthiness metrics expanded with POME in
order to obtain the appropriate trustworthiness entropy of software behaviour according to the
deterministic software behaviour of AS components.



Entropy 2018, 20, 195 9 of 13

Definition 1. Trust is a three-tuple (E1, E2, teE2
E1
), where E1 is the trustor, E2 is the trustee, teE2

E1
is the value of

trust entropy made by E1 upon E2, and E1∩ E2 = ∅, E1∪ E2 6= ∅; teE2
E1
∈ [0, 1].

Definition 2. Software trustworthiness entropy (TE) is a combination entropy attribute consisting of
sub-attributes according to the requirement, where TE ∈ [0, 1] and a greater value of TE results in higher trust
in the software.

Definition 3. Software initialisation trustworthiness entropy (Tsite(s)) is set at software start-up,
where Tsite(s) ∈ [0, 1] and greater values of Tsite(s) entropy mean higher trust in the initialised software
is required.

Definition 4. Software trusted threshold entropy (Tstte(s)) is set by the user prior to the software running,
where Tstte(s) ∈ [0, 1] and greater values of Tstte(s) entropy mean higher trust in the terminated software
is required.

Definition 5. Software runtime trustworthiness entropy (Tsrte(s)) is measured at the software runtime by a
software measurement tool or agent, according to its actual behaviour and user evaluation.

It is clear that the trustworthy software running condition should be Tsite(s) ≥ Tsrte(s) ≥ Tstte(s);
otherwise, the software should be terminated.

From the perspective of software engineering, all of the initial software attributes can be reflected
by software test data entropy (STDE). It is well known that any STDE partition can be uniquely
associated with an equivalence relation on the STDE. Therefore, we define the STDE as the static
trustworthiness data to reflect the Tsite(s) through the equivalence partition of black-box testing prior
to delivering the software.

In contrast, all dynamic software attributes can only be reflected by software executed data
entropy (SEDE). Thus, we define SEDE as dynamic trustworthiness data for reflecting the Tsrte(s)
through an equivalence partition approach to black-box testing after delivering the software and
comparison with the equivalence partition on STDE.

Definition 6. Assume that X is an incomplete and finite collection consisting of STDE or SEDE, and recall
that an equivalence relation R on X is a mapping R : X× X → {0, 1} .

Therefore, we denote RTi as test data when RTi is a real case of R defined above and collected
from a software test environment prior to being delivered for use.

In contrast, we denote REi as executed data when REi is a real case of R defined above and
collected from a software runtime environment after being delivered for use.

Definition 7. Taking the equivalence relation R as rule-type information, according to the artificial intelligence
theory, we can introduce the theory for software trustworthiness measurement and evaluation. Here, R is
represented as follows:

i f R then H ; [0 ≤ (CF(R), CF(R, H)) ≤ 1],

where H means the trustworthiness of the owning trustee. The rule can be explained as follows: given that R
occurred with a probability of CF(R), the trustee is the software itself, and the trustworthiness of the rule is (R,H)
with probability CF(R,H). Thus, the trustworthiness of the software is H with probability CF(H).

We can calculate CF(H) by means of criteria 1 to 3.



Entropy 2018, 20, 195 10 of 13

Criterion 1. According to the definitions above, CF(H) can be calculated as follows:

Tsite(s) = CF(H) = CF(R, H)× CF(R). (9)

Criterion 2. Given an equivalence relation R on X = {x1, x2, . . . . . . , xl}, assume that we have two partitions
of the test space X. According to the definition above, X comprises:

X =
Card({(Ri ,H)})

∪
i=1

Ri. (10)

PSTDE = RT1, . . . , RTp, RTi ∩ RTj = ∅, i 6= j,
Tp
∪

i=1
RTi = STDE ⊆X. (11)

PSEDE = RE1, . . . , REq, REi ∩ REj = ∅, i 6= j,
Eq
∪

i=1
REi = SEDE ⊆X. (12)

Criterion 3. According to the definitions above, given an equivalence relation R on X = {x1, x2, . . . . . . , xl},
n = Card({(Ri, H)}), CF(R) can be calculated as follows:

CF(R) =
n

∑
i=1

 l

∑
j=1,xj∈(Ri ,H)

pr
(

Ri
∣∣xj
)
−

l

∑
j=1,xj /∈(Ri ,H)

pr
(

Ri
∣∣xj
), (13)

where the uncertainty regarding CF(R) consisting of pr
(

Rj
∣∣xi
)
, measured by the entropy function for ∀xj ∈ X,

n = Card({(Ri, H)}), is given as follows:

Max. size : max
∀xj∈X

(
−

n

∑
i=1

[
pr
(

Ri
∣∣xj
)]

ln
[
pr
(

Ri
∣∣xj
)])

. (14)

Subject to :
n

∑
i=1

[
pr
(

Ri
∣∣xj
)]

= 1, pr
(

Ri
∣∣xj
)
≥ 0. (15)

n

∑
i=1

[
pr
(

Ri
∣∣xj
)]

fk(xk) = E[ fk] = Fk, k ∈ [1, m], (16)

where pr
(

Ri
∣∣xj
)

is the probability of each set of possible information or state Ri related to evidence of whether
or not the equivalence relation R belongs to user requirements, given every test item xj of X. Suppose that
we obtain:

pr
(

Ri
∣∣xj
)
=

1
Z(λ1, λ2, . . . , λm)

exp[λ1 f1(Ri) + λ2 f2(Ri)+, . . . ,+λm fm(Ri)], (17)

where Z(λ1, λ2, . . . , λm) =
n
∑

i=1
exp[λ1 f1(Ri) + λ2 f2(Ri)+, . . . ,+λm fm(Ri)], and the λk parameters are

Lagrange multipliers with values determined by Fk = − ∂
∂λk

Z(λ1, λ2, . . . , λm).

Above, we have introduced the definitions of STDE and SEDE associated with the Tsite(s)
calculated on STDE. We consider formulating the congruence measurement from the perspective
of the partitions on STDE and SEDE in order to calculate Tsrte(s).

It is critical to obtain a mapping congruence: PSTDE × PSEDE → [0, 1] (where P stands for the
equivalence relation on the software test data entropy (STDE) or software executed data entropy
(SEDE)) indicating the degree of congruence or similarity between PSTDE and PSEDE.



Entropy 2018, 20, 195 11 of 13

Here, we calculate the congruence between PSTDE and PSEDE using the underlying equivalence
relations. We note that if, for x 6= y, we indicate an unordered pair by 〈x, y〉, 〈x, y〉 = 〈y, x〉, and if X

has n = Card({(Ri, H)}) elements, we have

(
n
2

)
= (n)(n−1)

2 = nc2 unordered pairs.

We now suggest a general congruence measure between partitions of PSTDE and PSEDE, which we
express in terms of their underlying equivalence relations.

Cong(PSTDE, PSEDE) = 1− Di f f _Val(PSTDE, PSEDE)

nc2
, (18)

where D = Di f f _Val(PSTDE, PSEDE) is the number of pairs that have different values in PSTDE
and PSEDE. Then, we can calculate the software runtime trustworthiness Tsrte(s) from the software
initialization trustworthiness Tsite(s):

Tsrte(s) = Cong(PSTDE, PSEDE)× Tsite(s). (19)

In the section above, we have introduced a general measure of similarity or congruence between
two partitions on STDE and SEDE using the underlying equivalence relations. Equation (19) implies
that we should traverse all of the equivalence relations from the STDE and SEDE circularly.
Thus, the largest complexity of Equation (19) is O

(
(Card(Ri)|(Ri, H) ∈ X))2

)
.

We now consider the perspective of the partitions themselves. Taking into account Equations (11)
and (12), without loss of generality, we can assume that q = p, and if q > p, we can augment the
partition PSEDE by adding q− p subsets REp+1 = REp+2 = . . . = REq = ∅. Thus, in the following we
assume that the two partitions have the same number of classes, q. We now introduce an operation
known as a pairing of PSTDE and PSEDE, denoted by g(PSTDE, PSEDE), which associates with each
subset RTi of PSTDE a unique REi from PSEDE, grouped according to (Ri, H) ∈ X. We then have the fact
that a pairing g(PSTDE, PSEDE) is a collection of q pairs, g(PTi, PEi). We now associate with each pairing
a score, g(PSTDE, PSEDE), defined as follows. Denoting Dg.j = PTj ∩ PEj, for j = 1 to q, we obtain:

Score(g(PSTDE, PSEDE)) =
q

∑
j=1

Card
(

Dg.j
)
. (20)

We now use this to obtain the congruence:

Cong(PSTDE, PSEDE) =
Score(g(PSTDE, PSEDE))

Card(X)
. (21)

Then, we can calculate Tsrte(s) from Tsite(s),

Tsrte(s) = Cong(PSTDE, PSEDE)× Tsite(s). (22)

Through analysis, the complexity of Equation (22) is determined as O(Card(STDE)×Card(SEDE)),
which is less than or equal to the complexity of Cong(PSTDE, PSEDE) in Equation (18), because
Card(STDE) ≤ Card(X) and Card(SEDE) ≤ Card(X), according to Equations (6) and (7).

Therefore, can we conclude that the performance of Equation (22) is far superior to that of Equation (19)
simply by their differing complexities? Indeed, with the trends of infrastructure-as-a-service (IaaS),
platform-as-a-service (PaaS), and software-as-a-service (SaaS) in the cloud, increasing software
components encapsulated as services are emanating from third parties so that there no longer exists a
steady and closed STDE. For this reason, the precondition of Equation (11) that clusters STDE into the
test space X would visibly increase its complexity.



Entropy 2018, 20, 195 12 of 13

4. Conclusions

In order to address the measurement problem of WfMS trustworthiness, based on prior
research [17–21], this paper has proposed a novel algorithm for WfMS trustworthiness based
on the TWfMS framework mechanisms in an uncertain environment with incomplete software
behaviour test cases, which means that the deterministic entropy of services or its underlying software
behaviour is partial. Similar to BPM, we can consider the entire WfMS lifecycle as a group of
long-term processes, which we categorise into three aspects: the ‘as-is process’ in the build-time
stage, the ‘to-be process’ in the runtime stage, and the ‘agile-consistent process’ in maintenance
time. This study focuses on the measurement algorithm of the first SCP4WMS mechanism of
the ‘agile-consistent process’, which supports the computing infrastructure of the SOF4WMS and
SHM4WMS mechanisms. In order to guarantee the current agile and consistent attributes in the WfMS
mechanisms, we serialise the three mechanisms SCP4WMS, SOF4WMS, and SHM4WMS in a sequence
list to solve the agile and consistent WfMS problems into three self-autonomous propriety grades:
functionalities, non-functionalities, and transactions. Direct feedback is used to adjust the workflow
engine online by the TDC, accompanied by three trustworthy propriety grades–measurement,
verification, and evaluation—indirectly proposed for the ACM4WMS or ADCV-PN tools by the
management and monitoring tool encountered in the LRE or GRE loops. Moreover, this means that,
for exception events that cannot be solved by WfMS mechanisms, we transform these with event
parameters into the method of the WfMS in order to pursue further solving with LRE or GRE.

In summary, our study is closely related to former works, but it differs from these in terms of two
aspects on which we place emphasis simultaneously: self-autonomic computing and trust computing,
including the evaluation method [22], which indicates that Equation (13), if applied only to the CF(R)
of Equation (9) and not the CF(R, H), has not resolved the problem of incomplete information on
the set of (R, H). Similarly, Equations (18) and (19) are all based on the relatively static software
test environment while WfMSs are in runtime. Then, we compare the difference between the PSTDE
and PSEDE by using Equation (18) and compute the Tsrte(s) by using Equation (19). Indeed, in order
to obtain more precise Tsite(s) and Tsrte(s), we might update Equations (18) and (19) with the same
style as Equation (9) in future works. Furthermore, we plan to implemented the WfMS based on the
fundamental features of Internetware [23], and all of these works involve software architecture or
service paradigms representing their trustworthiness concentrically, from direct or indirect viewpoints,
which also indicate that the PSEDE would be more frequently influenced by the dynamic software test
environment while WfMSs are more in runtime than the PSTDE, which is generated from the relatively
static software test environment.

In future work, we plan to conduct simulations or practical industry experiments to verify and
evaluate our measurement algorithm for the WfMS mechanism. It is our hope that future works will be
completed in the context of the reduction process of WfMS behaviour entropy, given the unavoidable
nature of WfMS behaviour entropy increasing.

Acknowledgments: This work was supported by the National Natural Science Foundation of China
(Grant No. 61363001). The author would like to thank the anonymous reviewers and editors for their suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Qu, R. Case-Based Reasoning for Couse Timetabling Problems. Ph.D. Thesis, University of Nottingham,
Nottingham, UK, 2002.

2. Liu, K.; Shan, Z.; Wang, J.; He, J.; Zhang, Z.; Qin, Y. Overview on Major Research Plan of Trustworthy Software.
Bull. Natl. Sci. Found. China 2008, 22, 145–151.

3. Zha, H.; Wang, J.; Wen, L.; Wang, C.; Sun, J. A workflow net similarity measure based on transition adjacency
relations. Comput. Ind. 2010, 61, 463–471. [CrossRef]

http://dx.doi.org/10.1016/j.compind.2010.01.001


Entropy 2018, 20, 195 13 of 13

4. Zha, H.; Wang, J.; Wen, L.; Wang, C. A label-free similarity measure between workflow nets. In Proceedings of
the IEEE Asia-Pacific Services Computing Conference (IEEE APSCC 2009), Singapore, 7–11 December 2009;
pp. 463–469.

5. Mühlen, M. Workflow-based process controlling-or: What you can measure you can control. In Workflow
Handbook 2001, Workflow Management Coalition; Future Strategies: Lighthouse Point, FL, USA, 2001; pp. 61–77.

6. Ma, Y.; Shi, M.; Wei, J. Cost and accuracy aware scientific workflow retrieval based on distance measure.
Inf. Sci. 2015, 314, 1–13. [CrossRef]

7. Chin, D.-M. A Definition and Measure of Workflow Modularity. Master’s Thesis, Florida International
University, Miami, FL, USA, 2005.

8. Wilson, D.; Hamptonbagshaw, K.; Jorwic, T.M.; Bishop, J.; Giustina, E. A new focus on process and measure:
Raising data quality with a standard coding workflow and benchmarks. J. AHIMA 2008, 79, 54–58. [PubMed]

9. Wang, Y.; Li, M.; Cao, J.; Lin, X.; Tang, F. Workflow similarity measure for process clustering in grid.
In Proceedings of the International Conference on Fuzzy Systems and Knowledge Discovery, Haikou, China,
24–27 August 2007; pp. 629–635.

10. Wei, L.; Handley, J.; Martin, N.; Sun, T.; Keogh, E. Clustering workflow requirements using compression
dissimilarity measure. In Proceedings of the Sixth IEEE International Conference Data Mining Workshops
(ICDM Workshops), Hong Kong, China, 18–22 December 2006; pp. 50–54.

11. Bo, T.K.; Gundersen, M.; Berge, T.O. To measure workflow and waste: A concept for continuous improvement.
In Proceedings of the 22th Annual Conference of the International Group for Lean Construction (IGLC 2014),
Oslo, Norway, 25–27 June 2014; pp. 835–846.

12. Dai, Y.S.; Min, X.; Quan, L.; Szu-Hui, N. Uncertainty Analysis in Software Reliability Modeling by Bayesian
Analysis with Maximum-Entropy Principle. IEEE Trans. Softw. Eng. 2007, 33, 781–795. [CrossRef]

13. Lollai, S.A. Quality Systems. A Thermodynamics-Related Interpretive Model. Entropy 2017, 19, 418. [CrossRef]
14. Jaynes, E.T. Information Theory and Statistics Mechanics. Stat. Phys. 1963, 106, 181–218.
15. Kapur, J. Maximum-Entropy Models in Science and Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1989.
16. Madni, A.M.; Jackson, S. Towards a Conceptual Framework for Resilience Engineering. IEEE Syst. J. 2009, 3,

181–191. [CrossRef]
17. Han, Q.; Yuan, Y. Research on trustworthiness measurement approaches of component based BPRAS.

J. Commun. 2014, 35, 47–57. (In Chinese)
18. Han, Q. TWfMS: A framework of trustworthy workflow management system. In Proceedings of the International

Conference on Subject-Oriented Business Process Management (S-BPM) ONE 2017, Darmstadt, Germany,
30–31 March 2017; pp. 78–85.

19. Han, Q. Resilience engineering for trustworthy workflow management system. In Proceedings of the
IEEE International Conference on Software Quality, Reliability and Security Companion (QRS-C), Prague,
Czech Republic, 25–29 July 2017; pp. 289–296.

20. Yuan, Y.; Han, Q. A Software Behavior Trustworthiness Measurement Method based on Data Mining. Int. J.
Comput. Intell. Syst. 2011, 4, 817–825. [CrossRef]

21. Yuan, Y.; Han, Q. A Data Mining Based Measurement Method for Software Trustworthiness. Chin. J. Electron.
2012, 21, 293–296. [CrossRef]

22. Rong, J. A Trustworthiness Evaluation Method for Software Architectures Based on the Principle of Maximum
Entropy (POME) and the Grey Decision-Making Method (GDMM). Entropy 2014, 16, 4818–4838.

23. Hong, M.; Jian, L. A Software Architecture Centric Engineering Approach for Internetware; Springer: Singapore,
2016; pp. 702–730.

© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.ins.2015.03.055
http://www.ncbi.nlm.nih.gov/pubmed/18422006
http://dx.doi.org/10.1109/TSE.2007.70739
http://dx.doi.org/10.3390/e19080418
http://dx.doi.org/10.1109/JSYST.2009.2017397
http://dx.doi.org/10.1080/18756891.2011.9727833
http://dx.doi.org/10.1080/18756891.2011.9727833
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	Measurement Algorithm for the Workflow Management System Trustworthiness 
	Formal Representation of the Workflow Management System Trustworthiness 
	Measurement Algorithm for the Trustworthy Workflow Management System Based on Calculus 
	Basic Software Behaviour Trustworthiness Metric for Components 

	Conclusions 
	References

