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Abstract: Chaotic systems with hyperbolic sine nonlinearity have attracted the attention of researchers
in the last two years. This paper introduces a new approach for generating a class of simple chaotic
systems with hyperbolic sine. With nth-order ordinary differential equations (ODEs), any desirable
order of chaotic systems with hyperbolic sine nonlinearity can be easily constructed. Fourth-order,
fifth-order, and tenth-order chaotic systems are taken as examples to verify the theory. To achieve
simplicity of the electrical circuit, two back-to-back diodes represent hyperbolic sine nonlinearity
without any multiplier or subcircuits. Thus, these systems can achieve both physical simplicity and
analytic complexity at the same time.
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1. Introduction

Chaos is commonly associated with entropy [1]. For example, positive entropy is one of the
most important ways to understand chaos [2]. It has been shown that positive entropy implies
Li-Yorke chaos [3]. In the past three decades, a variety of chaotic systems have been proposed [4–11].
Some of them are generated by discrete chaotic maps such as the Logistics map [12], the tent map [13],
the Hénon map [14], etc. The others are continuous-time chaotic systems [15]. These systems are
in the form of autonomous ordinary differential equations (ODEs) with at least three variables and
one nonlinearity [16]. This is because the Poincaré–Bendixson theorem implies that a two-dimensional
continuous dynamical system cannot give rise to a chaotic system [17]. Today, continuous-time chaotic
systems have many practical applications, to name just a few, they have been widely used in image
encryption [18], secure communication [19], and liquid mixing [20]. These experiments have achieved
good results. For example, Zhang and Chen have implemented a liquid mixer by using Chua’s
circuit. Comparable experiments have shown that the mixing time in the sucrose dissolving processes
can be changed dramatically along with various impeller/tank velocities.The chaotic perturbations
have been verified to be an excellent candidate for improving the mixing efficiency [21]. Therefore,
it is a significant task to design, analyze, and implement new continuous-time chaotic systems.

According to the research, a nonlinear term is very important for generating chaos. It can be
a piecewise nonlinear function [22], a trigonometric function [23], an absolute value function [24],
or a power function [25]. However, few of them can be hyperbolic sine functions [26]. This is because
the graph of y = sinh(x) is upward-sloping, and increases faster as x increases. In 2011, Sprott and
Munmuangsaen proposed an exponential chaotic system, which happens to be an example of the
simplest chaotic system [27]. In the same year, Sprott used common resistors, capacitors, operational
amplifiers, and a diode to successfully implement this system in a circuit [28]. Compared with chaotic
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systems with exponential nonlinearity, the chaotic system with hyperbolic sine nonlinearity has
richer dynamic behavior because it is symmetrical and can exhibit symmetry breaking, and offers the
possibility that attractors will split or merge as some bifurcation parameter is changed. In the last
two years, these systems have attracted the attention of researchers.

Piper and Sprott proposed three kinds of simplicity in 2010, namely: mathematical simplicity,
circuit simplicity, and simplicity from a practical standpoint [29]. From this perspective, many chaotic
systems such as non-autonomous circuits are not “simple” because they achieve physical simplicity at
the expense of analytic complexity, or vice versa [30]. Therefore, finding a simple chaotic system is
a challenging task.

In this work, a class of simple chaotic systems with hyperbolic sine nonlinearity is proposed.
With general nth-order ordinary differential equations (ODEs), any desirable order of hyperbolic sine
chaotic systems could be constructed. Fourth-order, fifth-order, and tenth-order chaotic systems are
taken as examples. To achieve simplicity of an electrical circuit, two back-to-back diodes represent
hyperbolic sine nonlinearity without any multiplier or subcircuits. Thus, these systems could satisfy
all three kinds of simplicities at the same time.

The rest of the paper is organized as follows. The general equations for generating chaos with
hyperbolic sine nonlinearity are given in Section 2. Then, fourth-order, fifth-order, and tenth-order
chaotic systems with hyperbolic sine nonlinearity are discussed in Sections 3–5. Some problems and
future work are discussed in Section 6. Conclusions are drawn in Section 7.

2. General Chaotic System with Hyperbolic Sine

In this section, a general chaotic system with hyperbolic sine will be proposed.
We begin with a jerk system, because it can offer exceptionally simple notation for higher-order

systems. The general jerk equation is described by

...
x + αẍ + β f (ẋ) + x = 0 (1)

where α and β are real parameters, f (ẋ) is a nonlinear function, ẋ = dx
dt is called velocity, ẍ = d2x

dt2 is

called acceleration,
...
x = d3x

dt3 is called jerk. In order to more easily design a high-order chaotic system.
Equation (1) is rewritten by replacing x with x1, the velocity of x with x2, and the acceleration of x
with x3. The general jerk equation can be written by

ẋ1 = x2

ẋ2 = x3

ẋ3 = −αx3 − β f (x2)− x1

(2)

The last equation is called the jerk equation. In this dynamic system, the nonlinearity is β f (x2).
The common forms of f (x2) are quadratic function, absolute value function, and piecewise-linear
function. In recent years, a simple chaotic system with hyperbolic sine nonlinearity has been
proposed [31,32]. The equations are given by

...
x + 0.75ẍ + x + ρsinh(ψẋ) = 0 (3)

where sinh(ψẋ) = eψẋ−e−ψẋ

2 , ρ = 1.2× 10−6 and ψ = 1
0.026 , which have been chosen to facilitate circuit

implementation using diodes.
Based on these equations, a general high-order chaotic system for n > 3 can be constructed,

where n is the order of the system; it is described by
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ẋ1 = x2 − x1

ẋ2 = x3 − x2

· · ·
˙xn−3 = xn−2 − xn−3

˙xn−2 = xn−1

˙xn−1 = xn

ẋn = −xn − f (xn−1)− nxn−2 − nxn−3 − · · · −
1

2n
x1

(4)

In our system, the nonlinear function is f (xn−1),which is defined by f (xn−1) = ρsinh(ψxn−1).
In these systems, the nonlinearity can be conveniently approximated using back-to-back diodes without
any other components or subcircuits.

3. Fourth-Order Case

3.1. Numerical Solution of Fourth-Order Chaotic System with Hyperbolic Sine

According to the Equations in (4), the fourth-order chaotic system with hyperbolic sine is
described by 

ẋ1 = x2 − x1

ẋ2 = x3

ẋ3 = x4

ẋ4 = −x4 − 1.2× 10−6sinh(x3/0.026)− 4x2 − 0.125x1

(5)

The strange attractors are shown in Figure 1. The calculation was performed using a fourth-order
Runge–Kutta integrator with a step size of 0.001. Initial conditions are not critical. In these experiments,
the initial condition is set to be (x1, x2, x3, x4) = (0.1, 0.1, 0.1, 0.1)

Lyapunov exponents characterize the average exponential rate of separation of infinitesimally
close trajectories in state space as time tends to infinity.

Consider the following n-dimensional dynamic system: Ẋ = F(X), where X = (x1, x2, · · · , xn)T ∈ Rn,

F(X) = ( f1(X), f2(X), · · · , fn(x))T , Ẋ =
dX
dt

. The two trajectories in phase space with initial separation
δX0 diverge (provided that the divergence can be treated within the linearized approximation) at a rate
given by |δX(t)| ≈ eλt|δX0|, where λ is the Lyapunov exponent.

The complete procedure to evaluate the Lyapunov exponents is as follows [33]:

1. Start with any initial condition in the basin of attraction.
2. Iterate until the orbit is on the attractor.
3. Set Lyapunov exponent sphere, the initial center of the sphere is X0 = (x10, x20, · · · , xn0)

T ,
which is on the system orbit. Select nearby points which is separated by d0. The coordinate of
these points are

X1 = (x11, x21, · · · , xn1)
T = (x10 + d0, x20, · · · , xn0)

T

X2 = (x12, x22, · · · , xn2)
T = (x10, x20 + d0, · · · , xn0)

T

· · ·
Xn = (x1n, x2n, · · · , xnn)

T = (x10, x20, · · · , xn0 + d0)T

(6)

In this calculation, the value of d0 is set to be 10−8.
4. Advance all orbits one iteration and calculate the new separation. The new points are
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X0′ = (x′10, x′20, · · · , x′n0)
T

X1′ = (x′11, x′21, · · · , x′n1)
T

X2′ = (x′12, x′22, · · · , x′n2)
T

· · ·
Xn′ = (x′1n, x′2n, · · · , x′nn)

T

(7)

The separation is calculated from the sum of the squares of the differences in each variable.
For this n-dimensional system, set

e1 = X1′ − X0′ = (x′11 − x′10, x′21 − x′20, · · · , x′n1 − x′n0)

e2 = X2′ − X0′ = (x′12 − x′10, x′22 − x′20, · · · , x′n2 − x′n0)

· · ·
en = Xn′ − X0′ = (x′1n − x′10, x′2n − x′20, · · · , x′nn − x′n0)

(8)

therefore, the new separation is d1 = ||e1||, d2 = ||e2||, · · · , dn = ||en||
5. Evaluate the logarithm. log|d1/d0|, log|d2/d0|, · · · , log|dn/d0|.
6. Readjust e1, e2, · · · , en by using Gram–Schmidt process.
7. Readjust the orbits so their separation are in the same direction as original one.

X0′′ = (x′10, x′20, · · · , x′n0)
T

X1′′ = (x′10 + e1(1)× d1/d0, x′20 + e1(2)× d1/d0, · · · , x′n0 + e1(n)× d1/d0)T

X2′′ = (x′10 + e2(1)× d2/d0, x′20 + e2(2)× d2/d0, · · · , x′n0 + e2(n)× d2/d0)T

· · ·
Xn′′ = (x′10 + en(1)× dn/d0, x′20 + en(2)× dn/d0, · · · , x′n0 + en(n)× dn/d0)T

(9)

8. Repeat step 4–6 and calculate the average of step 5.

Based on the above algorithm, the Lyapunov exponents are calculated to be
(0.3008, 0,−1.004,−1.2968).

To study the dynamical behavior further, a coefficient 1 is replaced by a control parameter A
which is varied over the range A ∈ [0, 2]. The equations are given by

ẋ1 = x2 − x1

ẋ2 = x3

ẋ3 = x4

ẋ4 = −Ax4 − 1.2× 10−6sinh(x3/0.026)− 4x2 − 0.125x1

(10)

A Lyapunov exponent spectrum is plotted in Figure 2.
In Figure 2, periodic dynamics correspond to the largest Lyapunov exponent (LLE) that is equal

to zero. Chaotic behavior corresponds to the LLE that is greater than zero. For A ∈ [0.61, 1.52], except of
small windows in which the LLE is equal to zero, the largest Lyapunov exponents is positive, thereby
confirming that the system is chaotic. For A < 0.61 and A > 1.52 and some aforementioned small
windows inside the chaotic region, the LLE is equal to zero, the system in these regions exhibits
limit cycle.
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Figure 1. Phase space plots of numerical calculation and circuit implementation results for a fourth-order
hyperbolic sine chaotic system. (a,c) are numerical calculations of the phase space plot of x2–x3 plane
and x3–x4 plane, respectively; (b,d) are circuit implementation results of phase space plot of x2–x3

plane and x3–x4 plane, respectively.
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Figure 2. Lyapunov exponent spectrum of a fourth-order chaotic system.
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3.2. Circuit Implementation of Fourth-Order Chaotic System with Hyperbolic Sine

The scheme and physical board of a fourth-order system are shown in Figure 3.

Figure 3. Circuit scheme and physical board of fourth-order chaotic system with hyperbolic sine. (a) is
the circuit schematic of the fourth-order chaotic system; (b) is the physical board of the fourth-order
chaotic system.

In this circuit, U1, U2, U3 and U5 are configured as integrators. U4 is configured as voltage

follower. The Shockley diode equation is I = IS(e
VD
nVT − 1), where IS is the saturation current or

scale current of the diode, VT is the thermal voltage (kT/q, about 26 mV at normal temperatures),
and n is known as the diode ideality factor (for silicon diodes, n is approximately 1 to 2). Therefore,
the relationship between the I–V characteristic and the two back-to-back diodes is I = ILED1− ILED2 =

IS(e
VD
nVT − 1)− Is(e

−VD
nVT − 1) = IS(e

VD
nVT − e

−VD
nVT ) = 2ISsinh( VD

nVT
). Thus, by applying the Kirchhoff’s
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laws into the circuit of Figure 3, its mathematical model, given by the system of four differential
equations, is obtained as:

C4
dVC4

dt
+

VC4

R8
+

VC3

R7
= 0

C3
dVC3

dt
+

VC2

R3
= 0

C2
dVC2

dt
+

VC1

R2
= 0

C1
dVC1

dt
+

VC1

R1
+

R5

R4
2Issinh(

VC2

nVT
) +

VC3

R6
+

VC4

R9
= 0

(11)

where VC1 , VC2 , VC3 and VC4 are voltages across the four capacitors C1, C2, C3 and C4, respectively.

It can be rescaled by using dimensionless variables and parameters given by: x1 =
VC4
nVT

, x2 =
VC3
nVT

,

x3 =
VC2
nVT

, x4 =
VC1
nVT

, which is Equation (10)
In this circuit, all resistors are set to be 10 kΩ with 10% tolerance, except R6 = 2.4 kΩ and

R9 = 82 kΩ. All capacitors are set to be 0.01 µF with 10% tolerance. The operational amplifiers are
TL084, and diodes are light emitting diodes.

The circuit offers excellent agreement with the numerical solution of the phase space plot, as shown
in Figure 1.

4. Fifth-Order Case

4.1. Numerical Solution of Fifth-Order Chaotic System with Hyperbolic Sine

According to the Equations in (4), the fifth-order chaotic system with hyperbolic sine is
described by 

ẋ1 = x2 − x1

ẋ2 = x3 − x2

ẋ3 = x4

ẋ4 = x5

ẋ5 = −x5 − 1.2× 10−6sinh(x4/0.026)− 5x3 − 5x2 − 0.1x1

(12)

The strange attractors are shown in Figure 4. The calculation was performed using a fourth-order
Runge–Kutta integrator with a step size of 0.001. In these experiments, it is set to be (x1, x2, x3, x4, x5) =

(0.1, 0.1, 0.1, 0.1, 0.1)
Based on the algorithm in Section 3. The Lyapunov exponents are calculated to be

(0.4591, 0,−1.0186,−1.0877,−1.3528).
To study the dynamical behavior further, a coefficient 1 is replaced by a control parameter A

which is varied over the range A ∈ [0, 2]. The equations are given by

ẋ1 = x2 − x1

ẋ2 = x3 − x2

ẋ3 = x4

ẋ4 = x5

ẋ5 = −Ax5 − 1.2× 10−6sinh(x4/0.026)− 5x3 − 5x2 −0.1x1

(13)

The Lyapunov exponent spectrum is shown in Figure 5.
From Figure 5, For A ∈ [0.46, 1.60], except of small windows in which the LLE is equal to zero,

the largest Lyapunov exponents is positive, thereby confirming that the system is chaotic. For A < 0.46
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and A > 1.60 and some aforementioned small windows inside the chaotic region, the LLE is equal
to zero, the system in these regions exhibits limit cycle.

Figure 4. Phase space plots of numerical calculation and circuit implementation results for a fifth-order
hyperbolic sine chaotic system. (a,c) are numerical calculations of the phase space plot of x1–x5 plane
and x2–x3 plane, respectively; (b,d) are circuit implementation results of the phase space plot of a x1–x5

plane and x2–x3 plane, respectively.
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Figure 5. Lyapunov exponent spectrum of a fifth-order chaotic system.
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4.2. Circuit Implementation of Fifth-Order Chaotic System with Hyperbolic Sine

The corresponding circuit of a fifth-order chaotic system with hyperbolic sine is shown in Figure 6.
With the analysis of Section 3, the mathematical model of this circuit is obtained as:

C5
dVC5

dt
+

VC5

R11
+

VC4

R10
= 0

C4
dVC4

dt
+

VC4

R8
+

VC3

R6
= 0

C3
dVC3

dt
+

VC2

R3
= 0

C2
dVC2

dt
+

VC1

R2
= 0

C1
dVC1

dt
+

VC1

R1
+

R5

R4
2Issinh(

VC2

nVT
) +

VC3

R7
+

VC4

R9
+

VC5

R12
= 0

(14)

In this circuit, all capacitors are taken as 0.01 µF with 10% tolerance. All resistors are taken as
10 KΩ with 10% tolerance, except R7 = 2 KΩ, R9 = 100 KΩ, and R11 = 100 KΩ. The operational
amplifiers are TL084 and the diodes are light emitting diodes.

The phase space plot of the circuit is shown in Figure 4.

Figure 6. Circuit scheme and physical board of a fifth-order chaotic system with hyperbolic sine.
(a) is the circuit schematic of the fifth-order chaotic system; (b) is the physical board of a fifth-order
chaotic system.
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5. Tenth-Order Case

According to the Equations in (4), the tenth-order chaotic system with hyperbolic sine is
described by 

ẋ1 = x2 − x1

ẋ2 = x3 − x2

ẋ3 = x4 − x3

ẋ4 = x5 − x4

ẋ5 = x6 − x5

ẋ6 = x7 − x6

ẋ7 = x8 − x7

ẋ8 = x9

ẋ9 = x10

˙x10 = − x10 − 1.2× 10−6sinh(x9/0.026)− 10x8 − 10x7 − 10x6

− 10x5 − 10x4 − 10x3 − 10x2 − 0.05x1

(15)

Some phase space plots of the strange attractors are shown in Figure 7. The calculation was
performed using a fourth-order Runge–Kutta integrator with a step size of 0.001. Initial conditions
are not critical. In these experiments, they are set to be (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) =

(0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1)

Figure 7. Some phase space plots of tenth-order hyperbolic sine chaotic system. (a) is the phase space
plot of x1–x5 plane; (b) is the phase space plot of x2–x8 plane; (c) is the phase space plot of x4–x9 plane;
(d) is the phase space plot of x4–x10 plane.

Based on the algorithm in Section 3. The Lyapunov exponents are calculated to be
(0.5306, 0,−0.3990,−0.4735,−0.8917,−0.9969,−1.1466,−1.3829,−1.5461,−1.6939).
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To study the dynamical behavior further, a coefficient 1 is replaced by a control parameter A
which is varied over the range A ∈ [0, 2]. The equations are given by

ẋ1 = x2 − x1

ẋ2 = x3 − x2

ẋ3 = x4 − x3

ẋ4 = x5 − x4

ẋ5 = x6 − x5

ẋ6 = x7 − x6

ẋ7 = x8 − x7

ẋ8 = x9

ẋ9 = x10

˙x10 = − Ax10 − 1.2× 10−6sinh(x9/0.026)− 10x8 − 10x7

− 10x6 − 10x5 − 10x4 − 10x3 − 10x2 − 0.05x1

(16)

The Lyapunov exponent spectrum is shown in Figure 8.
From Figure 8, For A ∈ [0.15, 1.86], except of small windows in which the LLE is equal to zero,

the largest Lyapunov exponents is positive, thereby confirming that the system is chaotic. For A < 0.15
and A > 1.86 and some aforementioned small windows inside the chaotic region, the LLE is equal
to zero, the system in these regions exhibits limit cycle.
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Figure 8. Lyapunov exponent spectrum of a tenth-order chaotic system.

6. Problems and Future Work

In this work, there are two things which is worth to study in future.
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1. The equations for numerical calculation and its corresponding circuit is not exactly the same.
We ran many experiments. From the dynamic behavior aspect, the equations and the circuit
should belong to one chaotic system because the phase space plot look like the same. However,
if the designed circuit is strictly consistent with the corresponding equations, the system cannot
exhibit chaos, or vice versa.

2. The Lyapunov exponent will exhibit a mutation in limit cycle range. For example, in Figure 5,
when A ∈ [1.690, 1.715], the second Lyapunov exponent (SLE), third Lyapunov exponent (TLE)
and fourth Lyapunov exponent (FLE) will not follow the previous trend. The TLE and FLE have
a upward movement while the SLE has a downward movement. In this range, the SLE and TLE
are equal, while the FLE is equal to the previous value of TLE.

7. Conclusions

This paper proposed a simple class of chaotic systems with hyperbolic sine nonlinearity. A novel
nth-order ordinary differential equation has been proposed for a generation of various chaotic
systems. Any desirable order of hyperbolic sine chaotic systems can be constructed via the proposed
method. In this paper, fourth-order, fifth-order, and tenth-order chaotic systems are taken as examples.
The dynamic mechanism of these systems has been investigated by analyzing the Lyapunov exponents
spectrum. Two back-to-back diodes are used to approximate hyperbolic sine nonlinearity without any
multiplier or subcircuits. Thus, the physical circuits are very easy to construct, making it possible for
them to achieve both physical simplicity and analytic complexity at the same time.
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