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Abstract: Quantum teleportation has significant meaning in quantum information. In particular,
entangled states can also be used for perfectly teleporting the quantum state with some probability.
This is more practical and efficient in practice. In this paper, we propose schemes to use non-symmetric
quantum channel combinations for probabilistic teleportation of an arbitrary two-qubit quantum
state from sender to receiver. The non-symmetric quantum channel is composed of a two-qubit
partially entangled state and a three-qubit partially entangled state, where partially entangled
Greenberger–Horne–Zeilinger (GHZ) state and W state are considered, respectively. All schemes are
presented in detail and the unitary operations required are given in concise formulas. Methods are
provided for reducing classical communication cost and combining operations to simplify the
manipulation. Moreover, our schemes are flexible and applicable in different situations.

Keywords: quantum teleportation; entanglement; quantum channel; quantum communication

1. Introduction

Quantum teleportation, firstly proposed by Bennett et al. [1], is a feasible technique for moving
quantum states via pre-established quantum channel amongst distant network nodes with the help of
classical information. It is at the heart of many quantum information protocols and also represents
a fundamental ingredient to the development of many quantum technologies, including quantum
network [2,3], quantum secure communication [4,5], measurement-based quantum computing [6,7],
and quantum repeater [8–10], etc. Due to its potential applications in the realm of quantum
communication [11], a growing amount of theoretical and experimental progress [12–16] has been
made in this domain.

As the transmission channel of teleportation, quantum entanglement [17] is fragile resource.
The requirement of a maximally entangled quantum channel connecting nodes is very difficult to
achieve or maintain in practice since the inevitable presence of noise reduces the entanglement of
the quantum state shared between them. In practical implementations of the teleportation protocol,
one can either adopt entanglement purification and distillation techniques to purify the states or use
the partially entangled state to teleport quantum state perfectly with some probability. Probabilistic
teleportation was introduced by Li et al. [18], following which several resources have used different
types of entanglement. These are obtainable in [19–24].

Agrawal et al. [19] utilized a partially entangled state as a shared resource to teleport an unknown
two-qubit state. Dai et al. [20,21] presented two protocols for probabilistically teleporting an arbitrary
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two-qubit state via two partially entangled W states and by the combination of a partially entangled
GHZ state and an entangled W state, respectively. Probabilistic teleportation of an arbitrary two-qubit
entangled state can also be obtained via a dimensional four-qubit partially entangled cluster state
by Xia et al. [22]. Liu et al. [23] proposed a teleportation protocol of an unknown two-qubit state
probabilistically with partial information. Recently, Choudhury et al. [24] proposed protocol for
probabilistic teleportation using POVM and projective measurement. Here, we focus on probabilistic
teleportation schemes for an arbitrary two-qubit quantum state.

The existing works mostly use a symmetric quantum channel, i.e., two entangled states of two
qubits or two entangled states of three qubits, to teleport two-qubit quantum state. However, the
entangled states shared among quantum nodes in network would not be guaranteed to be of the same
type. Different types of entanglements would be utilized as quantum channels. In this paper, we study
the probabilistic teleportation using non-symmetric quantum channel for transmitting arbitrary two-qubit
quantum state. The non-symmetric quantum channel consists of a two-qubit entangled state and a
three-qubit entangled state. Schemes using different quantum channel combinations are proposed that
could be seen as supplementary to the protocol family of teleporting two-qubit state. Methods are
provided for reducing the classical communication cost and combining the separate unitary operations
to simplify the whole process. Furthermore, in many existing protocols, the intermediate states and
the unitary operations applied are shown in the form of complex tables. One of the unique features in
this paper is that all unitary operations applied by the receiver and intermediate states in the process
are summarized in concise formulas. With these formulas, the operations and intermediate states can
be obtained through calculation rather than searching through complex tables.

The rest of this paper is organized as follows: Section 2 provides system model and quantum
channels we considered in this paper. Section 3 discusses the probabilistic teleportation schemes using
partially entangled GHZ state and two-qubit partially entangled state as quantum channel and the
method for reducing classical communication cost. Another scheme is presented in Section 4 using
another non-symmetric quantum channel combination (i.e., partially entangled W state and two-qubit
partially entangled state). A method is given to combine unitary operations into one under the same
basis as well. In Sections 5 and 6, we present a discussion and conclude the whole paper.

2. System Model

In this paper, we consider two nodes, conveniently called Alice and Bob, who share entangled
states as quantum channel. Through the channel, Alice wants to transmit arbitrary two-qubit state to
Bob as described below

|χ〉 = a0|00〉+ a1|01〉+ a2|10〉+ a3|11〉, (1)

where ai(i = 0, 1, 2, 3) is the amplitude of respective basis state satisfying the normalized condition
∑3

i=0 |ai|2 = 1. The quantum channel shared between two nodes consists of a two-qubit partially
entangled state and three-qubit partially entangled state. GHZ state and W state are fundamental
entangled states of three qubits, and widely used in protocols for transmitting quantum states.
They represent diverse types of but can cover all three-qubit entangled states. Without losing generality,
both GHZ state and W state are studied as part of quantum channel combination but separately in
different schemes. The two-qubit partially entangled state and three-qubit partially entangled states
are described as

|ψ〉 = c |00〉+ d |11〉 , where |c|2 + |d|2 = 1 and |c| ≥ |d| ,

|GHZ〉 = m |000〉+ n |111〉 , where |m|2 + |n|2 = 1 and |m| ≥ |n| , (2)

|W〉 = x |001〉+ y |010〉+ z |100〉 , where |x|2 + |y|2 + |z|2 = 1 and |x| ≥ |y| ≥ |z| .
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The system can be summarized into one general model as shown in Figure 1 where a two-qubit
partially entangled state and a three-qubit partially entangled state are shared between Alice and Bob
as a non-symmetric quantum channel. The classical communication channel is equipped.

1

2 6 7

Alice Bob

5

3

4

Classical Communication

Channel

Figure 1. System model for teleporting arbitrary two-qubit state from Alice to Bob via non-symmetric
quantum channel. For the convenience of description, we assume particles 1 and 2 are in the possession
of Alice. Particle 3 from three-qubit partially entangled state is with Alice while Bob has particles 4 and
5. Particles 6 and 7 of two-qubit partially entangled state belong to Alice and Bob, respectively.

In the following paper, the three-qubit partially entangled W state is firstly considered as quantum
channel together with two-qubit partially entangled state. We refer to this scheme as scheme A and the
channel combination as non-symmetric quantum channel combination A. In addition, a special case
for teleporting two-qubit entangled state is discussed using the same quantum channel combination
as scheme A. Then, the three-qubit partially entangled GHZ state is used to replace former partially
entangled W state. Similarly, we refer to it as scheme B and the non-symmetric quantum channel
combination B. In the following, we present these schemes in detail and give methods for improvement.

3. Schemes Using Non-Symmetric Quantum Channel Combination A

In this section, the scheme to transmit an arbitrary two-qubit state is presented when using
defined non-symmetric quantum channel combination A. As a special case of scheme A, teleportation
of two-qubit entangled state is discussed accompanied with a method for reducing the classical
communication cost in that case.

3.1. Teleporting Arbitrary Two-Qubit Quantum State

The non-symmetric quantum channel utilized for probabilistic teleportation of arbitrary two-qubit
state is composed of a two-qubit partially entangled state and three-qubit partially entangled W state.
Taking the states described in Equation (2), the initial system state can be written as∣∣Φsys

〉
= |χ〉12 ⊗ |W〉345 ⊗ |ψ〉67 . (3)

To realize teleportation, the detailed process is elaborated as follows:
Step 1: Alice firstly performs two Bell-state measurements on particles (1, 3) and particles (2, 6),

respectively. The system state may collapse into one of the 16 possible states, which can be expressed
as
〈

βij
∣∣
26〈βkl |13 Φsys

〉
in general, where

∣∣βij
〉

and |βkl〉 represent corresponding Bell states in the form∣∣βij
〉
= (|0, j〉+ (−1)i |1, 1− j〉)/

√
2, (4)
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where i, j = 0, 1. Bell-state measurement results are expressed as classical bit strings mpmq(
∣∣βij
〉
) ≡ ij,

where mpmq denote the measurement results of particle p and q, respectively. Then, Alice sends these
measurement results to Bob through classical communication channel immediately. According to the
measurement results m1m3m2m6, the 16 possible states can be divided into four groups as follows,
where mi indicates the negation of the measurement outcome mi.

A. When m1m3m2m6 is 0000, 0010, 1000 or 1010, i.e., m3 m6=1, the system state is expressed as

1
2
(a0xc|010〉+ a0yc|100〉+ (−1)m1 a2zc|000〉+ (−1)m2 a1xd|011〉
+ (−1)m2 a1yd|101〉+ (−1)m1⊕m2 a3zd|001〉)457.

(5)

B. When m1m3m2m6 is 0001, 0011, 1001 or 1011, i.e., m3 m6=1, the system state is expressed as

1
2
(a0xd|011〉+ a0yd|101〉+ (−1)m1 a1xc|010〉+ (−1)m1 a1yc|100〉
+ (−1)m2 a2zd|001〉+ (−1)m1⊕m2 a3zc|000〉)457.

(6)

C. When m1m3m2m6 is 0100, 0110, 1100 or 1110, i.e., m3 m6=1, the system state is expressed as

1
2
(a0zc|000〉+ (−1)m2 a1zd|001〉+ (−1)m1 a2xc|010〉+ (−1)m1 a2yc|100〉
+ (−1)m1⊕m2 a3xd|011〉+ (−1)m1⊕m2 a3yd|101〉)457.

(7)

D. When m1m3m2m6 is 0101, 0111, 1101 or 1111, i.e., m3 m6=1, the system state is expressed as

1
2
(a0zd|001〉+ (−1)m1 a2xd|011〉+ (−1)m1 a2yd|101〉+ (−1)m2 a1zc|000〉
+ (−1)m1⊕m2 a3xc|010〉+ (−1)m1⊕m2 a3yc|100〉)457.

(8)

Step 2: After receiving the classical information from Alice, Bob performs projective measurement
on particle 4. If the result is |0〉4 (denoted by m4=0), the original state can not be reconstructed and the
teleportation fails. Otherwise, Bob continues to apply following operations to recover the teleported
quantum state.

Step 3: Then, for retrieving the correspondence between coefficients ai and basis states, Bob needs
to apply unitary operation U57 on particles (5, 7). The specific unitary operation required is determined
by the measurement result according to the formula

U57 = (Zm1 Xm3)5 ⊗ (Zm2 Xm6)7, (9)

where X =
[

0
1

1
0

]
and Z=

[
1
0

0
−1

]
are Pauli matrices. After unitary operation U57, the specific system

state is determined by m3m6 and changes into

∣∣∣Φ′sys

〉
=


a0xc |00〉+ a1xd |01〉+ a2zc |10〉+ a3zd |11〉 when m3 m6 = 1,
a0xd |00〉+ a1xc |01〉+ a2zd |10〉+ a3zc |11〉 when m3 m6 = 1,
a0zc |00〉+ a1zd |01〉+ a2xc |10〉+ a3xd |11〉 when m3 m6 = 1,
a0zd |00〉+ a1zc |01〉+ a2xd |10〉+ a3xc |11〉 when m3 m6 = 1.

(10)

Step 4: Bob introduces an auxiliary particle A with its initial state |0〉A and applies a
collective unitary operation on particles (5, 7, A). To reconstruct the original state under the basis
{
∣∣βij
〉

57 |0〉A ,
∣∣βij
〉

57 |1〉A} (where
∣∣βij
〉

57 stands for the computational basis of an four-dimensional
Hilbert space), the unitary operation should take the form

U57A =

(
C1 C2

C2 −C1

)
. (11)

The Ci(i = 1, 2) are 4× 4 matrices in the form



Entropy 2018, 20, 238 5 of 13

{
C1 = diag(c1, c2, c3, c4),
C2 = diag(

√
1− c1

2,
√

1− c22,
√

1− c32,
√

1− c4
2),

(12)

where ci (i=1, 2, 3, 4 and |ci|≤1) and their corresponding Ci all depend on the specific system state.
The specific form of ci is summarized into the following expressions:

C1 =


diag( zd

xc , z
x , d

c , 1) when m3 m6 = 1,
diag( z

x , zd
xc , 1, d

c ) when m3 m6 = 1,
diag( d

c , 1, zd
xc , z

x ) when m3 m6 = 1,
diag(1, d

c , z
x , zd

xc ) when m3 m6 = 1.

(13)

Step 5: Finally, Bob performs projective measurement on particle A. The result |1〉A (denoted by
mA =1) indicates the failure of this teleportation; on the contrary, if the result is mA =0, the two-qubit
state has been reconstructed on particles 5 and 7, yielding a successful teleportation.

The success probability of scheme A is 4|zd|2. When|x| = |y| = |z| = 1/
√

3 and |c| = |d| = 1/
√

2,
i.e., the quantum channel consists of two maximally entangled states, the success probability would
reach its maximum 2/3. The whole scheme is shown in Figure 2 and an example is given for illustrating
the whole process better.

1

2 6 7

Alice Bob
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5

7

U57
U57A

53

4

Classical Communication

Channel

Measurement Result

BM

BM

Measurement Result

Figure 2. Probabilistic teleportation scheme utilizing partially entangled two-qubit state and W state as
quantum channel. Bell-state measurements, projective measurements and local unitary operations are
applied, together with the classical information, for original state recovery.

Example 1. Assume the Bell-state measurement results m1m3m2m6 = 0000. According to Equation (5), the
system state after Alice’s two Bell-state measurements should be

〈β00|26〈β00|13 Φsys
〉
=

1
2
(a0xc|010〉+ a0yc|100〉+ a2zc|000〉+ a1xd|011〉+ yd|101〉+ a3zd|001〉)457 .

Bob then measures particle 4. If the result is m4=1, the teleportation fails. Otherwise, he continues to apply
unitary operation U57 = X5 ⊗ I7 on particles (5, 7) according to Equation (9). After that, Bob introduces an
auxiliary particle A with its initial state |0〉A and the system state changes into∣∣∣Φ′′sys

〉
=

1
2
(a0xc|000〉+ a1xd|010〉+ a2zc|100〉+ a3zd|110〉)57A .

Choosing C1=diag( zd
xc , z

x , d
c , 1), corresponding eight-dimensional unitary operation U57A is made up as below

according to Equations (11) and (12).
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U57A =



zd
xc

0 0 0

√
1−

(
zd
xc

)2
0 0 0

0
z
x

0 0 0
√

1−
( z

x
)2 0 0

0 0
d
c

0 0 0

√
1−

(
d
c

)2
0

0 0 0 1 0 0 0 0√
1−

(
zd
xc

)2
0 0 0 − zd

xc
0 0 0

0
√

1−
( z

x
)2 0 0 0 − z

x
0 0

0 0

√
1−

(
d
c

)2
0 0 0 − d

c
0

0 0 0 0 0 0 0 −1



.

After the operation, Bob obtains the system state∣∣∣Φ f inal

〉
= U57A

∣∣∣Φ′′sys

〉
=

zd
2

(a0|00〉57 + a1|01〉57 + a2|10〉57 + a3|11〉57) |0〉A

+
(√

x2c2 − z2d2a0|00〉57 + d
√

x2 − z2a1|01〉57 + z
√

c2 − d2a2|10〉57

)
|1〉A.

Then, undertaking measurements on particle A by Bob, the result mA =0 indicates that the original state has
been recovered at Bob (on particles 5 and 7) successfully while mA =1 means failure of teleportation. Using a
two-qubit partially entangled state and a three-qubit partially entangled W state as quantum channel, we could
teleport arbitrary two-qubit state probabilistically.

3.2. Teleporting Two-Qubit Entangled State

In this subsection, we apply scheme A on teleportation of two-qubit entangled state. In addition,
we introduce a new method of processing classical information that will help to reduce the classical
communication cost needed in this case. Without losing generality, the two-qubit entangled state
to be teleported is assumed in the general form |γ〉 = α |00〉 + β |11〉 , where |α|2 + |β|2 = 1 and
|α| ≥ |β| > 0. This form is widely used in related works and any entangled two-qubit state can be
brought to this form via local unitary operations. Alice still performs Bell-state measurements on
particles (1, 3) and particles (2, 6), respectively. The system state would collapse into one of the 16
possible states, which are classified according to measurement results as follows:

∣∣∣Φ′sys

〉
=


1
2 (αxc|010〉+αyc|100〉+(−1)m1⊕m2 βzd|001〉)457 when m3 m6 = 1,
1
2 (αxd|011〉+αyd|101〉+(−1)m1⊕m2 βzc|000〉)457 when m3 m6 = 1,
1
2 (αzc|000〉+(−1)m1⊕m2 βxd|011〉+(−1)m1⊕m2 βyd|101〉)457 when m3 m6 = 1,
1
2 (αzd|001〉+(−1)m1⊕m2 βxc|010〉+(−1)m1⊕m2 βyc|100〉)457 when m3 m6 = 1.

(14)

The projective measurement on particle 4 is also performed by Bob after receiving the classical
information from Alice. When measurement result of particle 4 is m4 = 0, Bob continues to apply
unitary operation U57 on particles (5, 7) as

U57 = (Xm3)5 ⊗ (Zm1⊕m2 Xm6)7. (15)

An auxiliary particle A is introduced with its initial state |0〉A, and then the collective unitary operation
U57A is constructed by Bob. The U57A takes the same form with Equations (11)–(13) because the unitary
operation is only related with the quantum channel characters. Measurement on particle A is still
required so that Bob can judge whether this teleportation succeeds or not. The total success probability
of teleportation is 4|zd|2.
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Comparing these two schemes, the main difference is the formulation of U57, which is closely
related with the Bell-state measurement results sent from Alice. The original four cbits information
m1m3m2m6 is sent to Bob directly through classical communication channel. However, after observing
Equation (15), we get the conclusion that whether the Z operation on particle 7 is required or not is
determined by the XOR result between m1 and m2. Thus, we use mx = m1 ⊕m2 to denote the XOR
result and the Equation (15) can be rewritten as

U57 = (Xm3)5 ⊗ (Zmx Xm6)7. (16)

Through this combination, only the XOR result mx instead of the respective measurement results of
particles 1 and 2 needs to be sent to Bob together with m3m6. These 3 cbits information rather than
4 cbits are enough for Bob to determine U57 so that the classical communication cost is reduced by
25%, which is one of the advantages of this scheme.

Remark 1. Actually, if setting the parameter a1 = a2 =0 in Equation (1), we can also get the case discussed
above. Scheme A for teleporting arbitrary two-qubit state is a more general one where the scheme for teleporting
two-qubit entangled state can be seen as a special case. The method presented for reducing the classical
communication cost is only valid in this case. If the two-qubit entangled state is given in other forms,
the expression of U57 would change accordingly. However, for avoiding re-derivation, Alice could use the
result-mapping method proposed in [25] to obtain the operation U57 correctly.

4. Scheme Using Non-Symmetric Quantum Channel Combination B

In the schemes above, the maximal success probability of teleportation could only reach 2/3
even if the quantum channel is composed of corresponding maximally entangled states. Analyzing
the schemes, the measurement on particle 4 is the main source of the non-fully recoverable system
state. In this section, the three-qubit partially entangled GHZ state is utilized in quantum channel
combination B and the corresponding scheme using such quantum channel to complete arbitrary
two-qubit state teleportation is presented. The initial system state is expressed as∣∣Φsys

〉
= |χ〉12 ⊗ |GHZ〉345 ⊗ |ψ〉67 , (17)

where |GHZ〉345 is partially entangled GHZ state with the form as Equation (2). Similar to aforementioned
schemes, Alice performs two Bell-state measurements on particles (1, 3) and particles (2, 6), respectively.
The system state collapses and can be divided into four groups as follows:

A. When m1m3m2m6 is 0000, 0010, 1000 or 1010, i.e., m3 m6=1, the system state is expressed as

1
2

(
a0mc|000〉+ (−1)m2 a1md|001〉+ (−1)m1 a2nc|110〉+ (−1)m1⊕m2 a3nd|111〉

)
457

. (18)

B. When m1m3m2m6 is 0001, 0011, 1001 or 1011, i.e., m3 m6=1, the system state is expressed as

1
2

(
a0md|001〉+ (−1)m2 a1mc|000〉+ (−1)m1 a2nd|111〉+ (−1)m1⊕m2 a3nc|110〉

)
457

. (19)

C. When m1m3m2m6 is 0100, 0110, 1100 or 1110, i.e., m3 m6=1, the system state is expressed as

1
2

(
a0nc|110〉+ (−1)m2 a1nd|111〉+ (−1)m1 a2mc|000〉+ (−1)m1⊕m2 a3md|001〉

)
457

. (20)

D. When m1m3m2m6 is 0101, 0111, 1101 or 1111, i.e., m3 m6=1, the system state is expressed as

1
2

(
a0nd|111〉+ (−1)m2 a1nc|110〉+ (−1)m1 a2md|001〉+ (−1)m1⊕m2 a3mc|000〉

)
457

. (21)
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The main difference of this scheme is that Bob needs to send particle 4 through additional
Hadamard gate (H= 1√

2

[
1
1

1
−1

]
) before measurement as shown in Figure 3. Afterwards, Bob performs

projective measurement on particle 4. The unitary operation U57 performed on particles (5, 7) to retrieve
the correspondence would be determined by the measurement result m4 together with m1m3m2m6

through the following formula:

U57 = (−1)m3m4(Zm1⊕m4 Xm3)5 ⊗ (Zm2 Xm6)7. (22)

The system state changes into

∣∣∣Φ′sys

〉
=



1
2
√

2
(a0mc |00〉+ a1md |01〉+ a2nc |10〉+ a3nd |11〉)57 when m3 m6 = 1,

1
2
√

2
(a0md |00〉+ a1mc |01〉+ a2nd |10〉+ a3nc |11〉)57 when m3 m6 = 1,

1
2
√

2
(a0nc |00〉+ a1nd |01〉+ a2mc |10〉+ a3md |11〉)57 when m3 m6 = 1,

1
2
√

2
(a0nd |00〉+ a1nc |01〉+ a2md |10〉+ a3mc |11〉)57 when m3 m6 = 1.

(23)

1
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Figure 3. Probabilistic teleportation scheme utilizing partially entangled two-qubit state and GHZ state
as quantum channel. Extra H operation is applied before operation U57 to avoid failure of teleportation.

Then, Bob introduces an auxiliary particle A and performs a collective unitary operation
U57A on particles (5, 7, A) to correct the distortion on system state and recover the original state.
The transformation matrix of U57A should be constructed in accordance with Equations (11) and (12).
The exact form of C1 is also determined by m3m6 and expressed as

C1 =


diag( nd

mc , n
m , d

c , 1) when m3 m6 = 1,
diag( n

m , nd
mc , 1, d

c ) when m3 m6 = 1,
diag( d

c , 1, nd
mc , n

m ) when m3 m6 = 1,
diag(1, d

c , n
m , nd

mc ) when m3 m6 = 1.

(24)

After operation U57A, projective measurement is performed on particle A. Similarly, only the
result mA =0 indicates successful teleportation. The total success probability is 4|nd|2. If |m| = |n| =
|c| = |d| = 1/

√
2, i.e., the quantum channel is composed of two maximally entangled states, the

success probability would reach its maximum of 1. With the help of partially entangled GHZ state and
additional H operation, scheme B could increase the maximal success probability by avoiding failure
occurring after measurement on particle 4.
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In the above schemes, Bob applies two separate unitary operations under different bases. U57 is
constructed under computational basis while U57A is made under the basis of {

∣∣βij
〉

57 |0〉A ,
∣∣βij
〉

57 |1〉A}.
These two unitary operations can not be combined directly through tensor product or matrix
multiplication. For combining them into one operation under unified basis, we introduce the
transformation matrix T between these two bases. With this matrix, U57 and U57A could be combined
into one complete unitary operation under computational basis. The detailed method is shown in the
following part and the basis transformation matrix T is given as

T =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


. (25)

Based on the existing unitary operation U57A in Equation (22), the new unitary operation Û57A
under computational basis can be obtained through Û57A = T−1U57AT, where the matrix T is
equivalent to transition matrix actually. Hence, Bob could introduce the auxiliary particle |0〉A after
obtaining the measurement result of particle 4 but before performing unitary operation. With the
newly constructed unitary operation matrix Û57A, the two unitary operations can be combined into
one operation U′ under computational basis easily in the form of

U′ = Û57A(U57 ⊗ IA), (26)

where IA is a two-dimensional identity matrix. We illustrate this method by taking m1m3m2m6m4 =

01110 as an example. According to Equation (21), after measurement on particle 4 and introducing
auxiliary particle |0〉A, the system state should be∣∣∣Φ′′sys

〉
=

1
2
√

2
(−a3mc|000〉+ a2md|010〉 − a1nc|100〉+ a0nd|110〉)57A , (27)

which can be expressed with vector under computational basis as∣∣∣Φ′′sys

〉
=

1
2
√

2
[−a3mc, 0, a2md, 0,−a1nc, 0, a0nd, 0]T .

Then, perform the combined unitary operation U′

U′ = Û57A(U57 ⊗ IA) = T−1

(
C1 C2

C2 −C1

)
T (X5 ⊗ (ZX)7 ⊗ IA) , (28)

where C1 = diag(1, d
c , n

m , nd
mc ) accordingly so that the final system state is

∣∣∣Φ f inal

〉
=U′

∣∣∣Φ′′sys

〉
=

1
2
√

2
[a0nd, 0, a1nd, a1n

√
c2 − d2, a2nd, a2d

√
m2 − n2, a3nd, a3

√
c2m2 − d2n2]T

=
dn

2
√

2
(a0|00〉+ a1|01〉+ a2|10〉+ a3|11〉)57 |0〉A

+
1

2
√

2

(
a1n
√

c2 − d2|01〉+ a2d
√

m2 − n2|10〉+ a3

√
c2m2 − d2n2|11〉

)
57
|1〉A .

(29)
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Similarly, we need measurement on auxiliary particle A. The measurement result mA = 0 indicates
successful teleportation. On the contrary, mA =1 suggests failure.

Remark 2. Obviously, only one unitary operation is performed instead of the previous two separate operations,
which would simplify the quantum manipulation. Less operation may lead to reduction in the possibility of
making an error in practice. This method can also be applied in our previous presented schemes compatibly, and
the whole teleportation process may benefit from simplified operation. In addition, when the quantum channel is
composed of maximally entangled states, the success probability may reach its maximum. In that situation, the
system state after operation U57 had already been recovered to its original state successfully. There is no need to
introduce auxiliary particle and apply operation U57A any more.

5. Discussion

We present schemes utilizing two different non-symmetric quantum channel combinations to
teleport arbitrary two-qubit state probabilistically in this paper. One scheme consists of two-qubit
partially entangled state and three-qubit partially entangled W state, and the other one consists of
two-qubit partially entangled state and three-qubit partially entangled GHZ state. We still refer to
these two schemes as scheme A and scheme B in the following discussion and conclusion.

(1) The belonging of particle 4

In the paper, we assume that particle 4 from the three-qubit partially entangled state is held by
Bob. However, the belonging of the particle should be flexible. There are still two different situations in
addition to what we have considered. We will analyze them case by case to show that our schemes are
also applicable in the situations where Bob does not have particle 4. (a) When Alice has particle 4, Bob
only has particles 5 and 7. In this situation, Alice should perform the measurement on particle 4 after
the Bell-state measurements in scheme A or after H operation in scheme B, and then send Bob the result.
If Alice gets the result m4=1 in scheme A, she should stop the whole teleportation process and restart
another one immediately. Otherwise, if the result is m4=0, Alice should send measurement results to
Bob, and then Bob continues to apply the corresponding operation for recovering the original state.
(b) When particle 4 belongs to a third party Charles, the system changes to a controlled teleportation
model where the measurement on particle 4 should be performed by Charles. As a trusted third party,
Charles can control the whole teleportation because Bob cannot recover the original state and complete
the teleportation without Charles’ cooperation (measurement and its result). In a real application, the
reasonable allocation of particle 4 should be determined according to specific condition and purpose.
Our presented schemes can work well in all three of these three situations with few modifications.

(2) Another understanding of our schemes

In both schemes, Alice needs to perform two Bell-state measurements on particles firstly and
send measurement results to Bob through classical communication channels. Then, Bob performs the
measurement on particle 4. If a partially entangled GHZ state is utilized, an extra H operation should
be applied before Bob’s measurement. After that, an auxiliary particle is introduced for reconstructing
original state by applying specific unitary operation(s) according to their measurement results.

If analyzed from another point of view, the measurement on particle 4 of three-qubit partially
entangled W state in scheme A and operations (H operation and measurement) on particle 4 of
three-qubit partially entangled GHZ state can be seen as the process of preparing a two-qubit entangled
state for the teleportation protocol. The remainder of the teleportation can then be analyzed using
previously explored techniques [26]. We will refer to this as Scheme R for the discussion below.

This intuitive understanding of the protocol may help us to explain why maximum success
probability of scheme A using W state can not reach 1. This is primarily because a two-qubit partially
entangled state can only be obtained with some probability from the remainder of the two-qubit system
of the W state after measurement. The probability is exactly 2/3, which limits the maximum of success
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probability of the whole teleportation. The result of measurement on particle 4 indicates whether the
two-qubit entangled channel is prepared successfully. In contrast, we can obtain a two-qubit partially
entangled state with certainty from the operations on particle 4 of the partially entangled GHZ state so
that the maximum success probability of scheme B can reach 1.

Comparing scheme R with our schemes, the main difference is the order of performing measurement
on particle 4 while other manipulations are similar [26]. In scheme R, when Alice intends to teleport
the two-qubit state, she needs to notify Bob to perform measurement on particle 4 to initiate the whole
teleportation process. Then, Bob sends back information to Alice with notification that the channel is
ready so that Alice can perform the Bell measurement and follow-up steps using the prepared two
two-qubit entangled states as the channel. Obviously, there are two additional classical communication
processes compared with our schemes. Extra classical communication cost for protocol control and
more transmission delay will be introduced especially in the system model discussed in this paper.

However, if Alice holds particle 4 of the three-qubit partially entangled state, the additional
communication processes of scheme R are unnecessary. Alice does not need to ask Bob to perform
the measurement: instead she could do the preparation herself and be aware of whether the channel
is ready. In addition, Alice could terminate the follow-up steps and restart another teleportation if
she failed to get the two-qubit partially entangled state from the W state (when the result is 1), which
would increase the whole success probability.

Based on the above analysis, our schemes proposed in paper may avoid introducing extra cost for
the whole teleportation process. They are still meaningful and can be applied in specific scenes when
necessary. This provides one feasible choice of teleportation scheme for two-qubit state transmitting.

6. Conclusions

In future quantum networks, the quantum states to be teleported and the entangled states shared
among nodes are diverse. We studied probabilistic teleportation of two-qubit quantum states using
partially entangled states as a channel in this paper. Two schemes were presented using non-symmetric
quantum channels, which is different from the existing work. The quantum channel consists of a
two-qubit partially entangled state and a three-qubit partially entangled state. Both GHZ state and
W state were considered as representatives of three-qubit entangled states to give more complete
solutions. The composite quantum channel we discussed may exist in real applications. To some
extent, our schemes are supplementary to the protocol family of two-qubit state teleportation.

In addition, we illustrated the whole teleportation process in detail and the unitary operations
required were given in concise formulas rather than tables. The required operation can be worked out
through calculation instead of searching through complex tables, which is helpful in fast automatic
control and processing. A method for reducing the classical communication cost in the special case of
teleporting two-qubit entangled state was provided. By sending only 3 cbits compressed Bell-state
measurement outcome to the receiver instead of 4 cbits, as in other related works, the cost could be
reduced by 25%. Finally, the transformation matrix T was provided for converting unitary operation
under different bases used. With matrix T, the former two separate unitary operations under different
bases can be combined into one under unified computational basis. Less operation is associated
with simpler manipulation and reduced possibility of error in theory. Furthermore, our schemes are
applicable in other situations where there is some flexibility regarding where the particle belongs, as
we discussed.

Schemes using partially entangled states to realize probabilistic teleportation are crucial for the
practical application of quantum communication and networks. We hope our work may stimulate
more investigations into proposals for quantum communication and networks. In future work, we plan
to study the teleportation in the presence of unavoidable noises and test the efficiency of the protocol.
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