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Statistical relationships among the variables of a complex system reveal a lot about its physical
behavior. Therefore, identification of the relevant variables and characterization of their interactions
are crucial for a better understanding of a complex system. Correlation-based techniques have been
widely utilized to elucidate the linear statistical dependencies in many science and engineering
applications. However, for the analysis of nonlinear dependencies, information-theoretic quantities,
such as Mutual Information (MI) and the Transfer Entropy (TE), have been proven to be superior.
MI quantifies the amount of information obtained about one random variable, through the other
random variable, and it is symmetric. As an asymmetrical measure, TE quantifies the amount of
directed (time-asymmetric) transfer of information between random processes and therefore is related
to the measures of causality.

In the literature, the Granger causality has been addressed in many fields, such as biomedicine,
atmospheric sciences, fluid dynamics, finance, and neuroscience. Despite its success in the
identification of couplings between the interacting variables, the use of structural models restricts its
performance. Unlike Granger causality, TE is a quantity that is directly estimated from data and it
does not suffer from such constraints. In the specific case of Gaussian distributed random variables,
equivalence between TE and Granger causality has been proven.

The estimation of TE from data is a numerically challenging problem. Generally, this estimation
depends on accurate representations of the probability distributions of the relevant variables.
Histogram and kernel estimates are two common ways of estimating probability distributions from
data. TE can be expressed in terms of other information-theoretic quantities, such as Shannon entropy
and MI, which are functions of the probability distributions of the variables. Therefore, it is prone
to errors due to the approximations of probability distributions. Moreover, many TE estimation
techniques suffer from the bias effects arising from the algebraic sums of other information-theoretic
quantities. Thus, bias correction has been an active research area for better estimation performance.
Methods such as Symbolic TE and the Kraskov-Stögbauer-Grassberger (KSG) algorithm are among
the other techniques used to estimate TE from data. The efficient estimation of TE is still an active
research area.

Most of these techniques have been proposed to solve specific problems in diverse applications.
Hence, a method proposed for the solution of one application might not be the best for another. This
Special Issue has been organized to collect distinctive approaches in one publication, as a reference
tool for the theory and applications of TE.

The contributions are categorized into two sections: the methods and the applications.

1. Methods and Theory

The first section begins with the presentation of a recipe to estimate the information flow in
dynamical systems [1]. In their work, Gencaga et al. propose a Bayesian approach to estimate TE and
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apply a set of methods together as an accuracy cross-check to provide a reliable mathematical tool for
any given dataset. The work of Zhu et al. [2] proposes a k-Nearest Neighbor approach to estimate TE
and demonstrates its effectiveness as an extension of the KSG MI estimator.

The methodological section continues with the analytical derivations of the TE expressions for a
class of non-Gaussian distributions. Here, Jafari-Mamaghani and Tyrcha [3] provide the expressions of
TE in the cases of multivariate exponential, logistic, Pareto (Type I-IV), and Burr distributions. Next,
Nichols et al. elaborate on the linearized TE for continuous and coupled second-order systems and
they derive an analytical expression for time-delayed transfer entropy (TDTE) [4]. They conclude
with an alternative interpretation of TE, which can be viewed as a measure of the ability of a given
system component to predict the dynamics of another. Coupling between random processes is also
explored by Hahs and Pethel [5], where the TE is computed over multiple time lags for multivariate
Gaussian autoregressive processes. In two examples, they demonstrate the change in TE as a response
of variations in the correlation and coupling coefficient parameters. The case of coupling dynamics
with time-varying dependencies is investigated by Gómez-Herrero et al. [6] if access to an ensemble of
independent repetitions of time series is available. They estimate combinations of entropies and detect
time-varying information flow between dynamical systems using the ensemble members.

The relation between Granger causality and directed information theory is discussed next in the
review paper of Amblard and Michel [7], in which they focus on conditional independence and causal
influences between stochastic processes. In addition to the link between directed information and
hypothesis testing, instantaneous dependencies are emphasized to be different than dependencies on
past values.

The next two papers demonstrate two new interpretations of TE. First, motivated by the relativistic
effects on the observation of information dynamics, Lizier and Mahoney bring a new explanation of a
local framework for information dynamics [8]. Second, Prokopenko et al. present a thermodynamic
interpretation of TE near equilibrium and emphasize the nuance between TE and causality [9].
The methodological section ends with the comparisons of Papana et al. where they study direct
causality measures in multivariate time series by simulations. The authors compare measures such as
the conditional Granger causality index, partial Granger causality index, partial directed coherence,
partial TE, partial symbolic TE, and partial MI on mixed embedding. Simulations include stochastic
and chaotic dynamical systems with different embedding dimensions and time series lengths [10].

2. Applications

In this section, we present six contributions on the applications of TE. In the first paper, Faes
et al. introduce a tool for reliably estimating information transfer in physiological time series using
compensated TE [11]. This tool provides a set of solutions to the problems arising from the high
dimensionality and small sample size, which are frequently encountered in entropy estimations of
cardiovascular and neurological time series. Next, Materassi et al. elucidate a different normalized TE
and use it to detect the verse of energy flux transfer in a synthetic model of fluid turbulence, namely the
Gledzer-Ohkitana-Yamada shell model [12]. They emphasize the superior performance compared to
those of the traditional methods. Applications continue with a paper on network inference by Ai [13].
The author addresses a TE-based framework to quantify the relationships among topological measures
and provides a general approach to infer a drive-response structure in a complex network. This work
is followed by two financial applications. The first contribution is authored by Li et al., in which a
TE-based method is developed to determine the interbank exposure matrix between banks and the
stability of the Chinese banking system is evaluated by simulating the risk contagion process [14].
In the second application, Sandoval Jr. uses the stocks of the 197 largest companies in the world and
explores their relationships using TE [15]. This Special Issue ends with the presentation of the theory
and applications of the Liang-Kleeman information flow [16]. Here, Liang points out the importance
of information flow as a potential measure of the cause and effect relation between dynamical events
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and presents applications on the Baker transformation, Henon map, truncated Burgers-Hopf system,
and Langevin equation.

This Special Issue demonstrates the importance of information-theoretic quantities in the analysis
of the statistical dependencies between the variables of a complex system. Unlike correlation and MI,
TE is shown to be effective for the detection of directional interactions, which are closely related to cause
and effect relationships. The examples demonstrate the difficulties in estimating information-theoretic
quantities from data and present approaches to overcome these problems.

In this Special Issue, we have collected 16 outstanding papers by the experts in the field.
I would like to express our special thanks to each researcher and anonymous referee for their
invaluable contributions. I would also like to thank the Editor-in-Chief, Prof. Kevin H. Knuth,
for his encouragement during the organization of this Special Issue. My grateful thanks are also
extended to the members of the editorial board and the editorial assistants of the Entropy Journal for
their support. Last, but not least, I would like to thank MDPI Books for giving me the opportunity to
publish this Special Issue.

We are excited to present this Special Issue as a reference for the theory and applications of
transfer entropy and we hope that this publication contributes to novelties in all disciplines of research
and development.
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