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Abstract: Probability interpretation is the cornerstone of standard quantum mechanics. To ensure
the validity of the probability interpretation, wavefunctions have to satisfy the square-integrable
(SI) condition, which gives rise to the well-known phenomenon of energy quantization in confined
quantum systems. On the other hand, nonsquare-integrable (NSI) solutions to the Schrödinger
equation are usually ruled out and have long been believed to be irrelevant to energy quantization.
This paper proposes a quantum-trajectory approach to energy quantization by releasing the SI
condition and considering both SI and NSI solutions to the Schrödinger equation. Contrary to
our common belief, we find that both SI and NSI wavefunctions contribute to energy quantization.
SI wavefunctions help to locate the bifurcation points at which energy has a step jump, while
NSI wavefunctions form the flat parts of the stair-like distribution of the quantized energies. The
consideration of NSI wavefunctions furthermore reveals a new quantum phenomenon regarding the
synchronicity between the energy quantization process and the center-saddle bifurcation process.

Keywords: square integrable; energy quantization; Quantum Hamilton-Jacobi Formalism;
quantum trajectory

1. Introduction

In the statistical formulation of quantum mechanics, a wavefunction ψ has to be square integrable
(SI) to ensure the qualification of ψ∗ψ as a probability density function. SI solutions to the Schrödinger
equation can be used to determine the energy levels in a confined system. Nonsquare-integrable (NSI)
solutions to the Schrödinger equation otherwise are ruled out and their role has been unknown till now.
To investigate the role of NSI wavefunctions, we need a formulation of quantum mechanics, which
does not require the SI condition. Among the nine different formulations of quantum mechanics [1],
there is a formulation known as the quantum Hamilton-Jacobi (H-J) formalism [2,3], which meets our
purpose. The quantum H-J formalism has been developed since the inception of quantum mechanics
along the line of Jordan [4], Dirac [5] and Schwinger [6]. The main advantage of the classical H-J
formalism is to give the frequencies of a periodic motion directly without solving the equations of
motion. Analogous to its classical counterpart, the advantage of quantum H-J formalism is recognized
as a method of finding energy eigenvalues directly without solving the related Schrödinger equation.

Based on the quantum H-J equation, Leacock and Padgett [2,3] proposed an ingenious method
to evaluate energy eigenvalues by contour integral. This approach to energy eigenvalues En is
entirely independent of whether the related wavefunction is SI or not, and allows us to examine the
participation of the NSI wavefunctions in the process of energy quantization. Apart from providing
energy eigenvalues, quantum H-J formalism like its classical counterpart produces quantum Hamilton
dynamics [7], from which complex quantum trajectories can be solved to describe the quantum motion
associated with a given wavefunction. Probability interpretation isolates SI wavefunctions from NSI
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wavefunctions; on the contrary, under the quantum H-J formalism SI and NSI wavefunctions are
indivisible with continuously connected quantum trajectories. Because NSI wavefunctions ψ fail to
serve as probability density functions, we need an alternative operation to replace the expectation
(assemble average) 〈ψ|Ω̂|ψ〉 of a quantum observable Ω. The complex quantum trajectory method
developed from the quantum H-J formalism can provide the time average 〈Ω〉T to substitute for the
usual assemble average 〈ψ|Ω̂|ψ〉.

Based on the time-average operation 〈Ω〉T , which applies to both SI and NSI wavefunctions, we
can derive quantization laws more general than those based on the assemble average 〈ψ|Ω̂|ψ〉, which
applies only to SI wavefunctions. One of the general results shows that as the total energy E of a
confined system increases monotonically, the time-average kinetic energy 〈Ek〉T of a confined particle
exhibits a stair-like distribution in such a way that the step jumps occur as E equal to one of the energy
eigenvalue En and the flat part of the distribution is formed over the interval En ≤ E < En+1. During
the process as E increases continuously from En to the next energy eigenvalue En+1, we note that all
the corresponding wavefunctions are NSI, but they all yield the same value of 〈Ek〉T and form the flat
part of the stair-like energy distribution. In other words, the transition from the eigenstate ψn to the
next eigenstate ψn+1 can be connected smoothly by the NSI wavefunctions ψE with En < E < En+1,
which otherwise have been ruled out in standard quantum mechanics.

Compared to the complex quantum trajectory derived from the quantum H-J formalism, de
Broglie-Bohm (dBB) quantum trajectory [8–10] is real-valued. The equivalence between dBB trajectory
interpretation and probability interpretation of quantum mechanics has been well developed over the
last several decades. Although under the dBB formulation, particles follow continuous trajectories
with well-defined two-time position correlations, a recent paper by Gisin [11] pointed out that
Bohmian mechanics makes the same predictions as standard quantum mechanics: the violation
of Bell inequalities. The studies of dBB formulation of quantum mechanics [12–14] revealed that like
the way that thermal probabilities arise in ordinary statistical mechanics, the quantum probabilities
|ψ(x, t)|2 arise dynamically in a similar way that a simple initial ensemble with a non-equilibrium
distribution P(x, 0) 6= |ψ(x, 0)|2 of particle positions evolves towards the equilibrium distribution
via the relaxation process P(x, t)→ |ψ(x, t)|2 . Meanwhile, the speed of the convergence of P(x, t) to
|ψ(x, t)|2 was found to correlate with the degree of chaos of the involved Bohmian trajectories [15–17],
which in turn was shown to be related to the vortex dynamics generated by nodal points in the
wavefunction ψ(x, t) [18,19]. The degree of chaos produced by many interacting vortices ultimately
depends on the number and spatial distribution of the nodal points in the configuration space [20,21].

Parallel to the development of real-valued dBB trajectories, the study of complex-valued quantum
trajectories has evolved into a quantum trajectory method, which integrates the hydrodynamic
equations on the fly to synthesize the probability density by evolving ensembles of complex quantum
trajectories [22–24]. Due to the additional degree of freedom given by the imaginary part of a complex
trajectory, it is possible to synthesize the quantum probability |ψ(x, t)|2 by a single complex-valued
trajectory, instead of an ensemble of real-valued or complex-valued trajectories [25].

To date, the trajectory approaches to quantum mechanics, either using real-valued trajectories
based on dBB formulation or using complex-valued trajectories based on H-J formulation, mainly deal
with SI wavefunctions in order to show their consistency with the probability interpretation. Here
we will go beyond SI wavefunctions to find out what will happen, when statistical interpretation is
not applicable. On one hand we will use complex trajectories to demonstrate the energy quantization
process after releasing the SI condition, and on the other we will apply the quantum Hamilton dynamics
to demonstrate the sequential center-saddle bifurcations as the energy quantization proceeds. The
combined result manifests a new quantum phenomenon regarding the synchronicity between the
energy quantization process and the center-saddle bifurcation process.

NSI wavefunctions not only participate in the quantization and bifurcation process, but also
in the formation of spin degree of freedom. In spite of their distinct statistical properties, SI and
NSI wavefunctions have similar velocity fields with the only difference in their directions of rotation
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on the complex plane. As the third goal of the paper, we will contrast quantum trajectories of SI
wavefunctions with those of NSI wavefunctions to manifest the invisible spin degree of freedom as a
rotational motion on the complex plane.

The remainder of this paper is organized as follows: Section 2 presents quantum H-J formalism
and the related method of determining energy eigenvalues. In Section 3, time average operation for
NSI wavefunctions along a complex quantum trajectory is developed from the quantum H-J formalism
to replace the ensemble average. The proposed time average operation is then used in Section 4
to derive the universal quantization laws regarding the kinetic energy and the quantum potential.
Section 5 demonstrates the participation of NSI wavefunctions in the energy quantization process for a
harmonic oscillator. Section 6 proposes a quantum dynamic description of energy quantization, in
terms of which a new phenomenon regarding the synchronicity between quantization and bifurcation
is revealed. Finally, both SI and NSI solutions to the Schrödinger equation are considered in Section 7
and their relations to spin degree of freedom are explained.

2. Quantum Hamilton-Jacobi Formalism

While the quantum H-J theory is general, here we consider its application to bound states,
which have quantized energy levels and closed quantum trajectories. The quantum H-J approach
to determining energy eigenvalues can be conceived of as an extension of the Wilson-Sommerfeld
quantization rule [26]. In this approach, the quantum energy levels are given exactly by setting the
quantum action variable equal to an integer multiple of Planck constant:

J(E) =
1

2π

∮
c

p(x)dx = n}, n = 0, 1, 2, · · · , (1)

where p(x) is called quantum momentum function (QMF) and the contour c is defined on the complex
plane with the integer n being the number of poles of p(x) enclosed by c. The QMF p(x) is related to
the quantum action function S and the wavefunction ψ as:

p(x) =
∂S
∂x

= −i}∂ ln ψ

∂x
, (2)

with S satisfying the quantum H-J equation:

∂S
∂t

+ H(t, x, p)|p=∂S/∂x =
∂S
∂t

+

[
p2

2m
+ V − i}

2m
∂p
∂x

]
p=∂S/∂x

= 0, (3)

and with ψ satisfying the Schrödinger equation:

i}∂ψ

∂t
= − }2

2m
∂2ψ

∂x2 + Vψ. (4)

It appears that the quantum H-J Equation (3) and the Schrödinger Equation (4) are equivalent
expressions via the relation S = −i} ln ψ.

Leacock and Padgett [2,3] proposed an ingenious method to evaluate J(E) without actually
solving p(x) from the quantum H-J Equation (3). They showed that for a given potential V(x), J(E)
can be computed simply by a suitable deformation of the complex contour c and the change of variables
in Equation (1). Once J(E) is found, the energy eigenvalues En can be determined by solving E in
terms of the integer n via the relation J(E) = n}.

The quantum H-J approach to determining energy eigenvalues has two significant implications.
Firstly, this approach suggests that the energy eigenvalue En stems from the quantization of the action
variable J, rather than from the quantization of the total energy E itself. Precisely speaking, the energy
eigenvalue En is the specific energy E at which the action variable J(E) happens to be an integer
multiple of }, i.e., J(En) = n}. Inspired by this implication, the first goal of this paper is to reveal the
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internal mechanism causing the quantization of the action variable J and find out its relation to the
energy quantization.

Secondly, the quantum H-J approach implies that the SI condition is not required throughout
the process of determining energy eigenvalues, which means that whether wavefunctions are SI or
not is unconcerned upon evaluating eigen energies. Based on this observation, our second goal here
is to expose how SI and NSI wavefunctions cooperate to form the observed energy levels within
a confining potential. For a given wavefunction ψ(t, x) either SI or NSI, the associated quantum
dynamics can be described by the quantum Hamilton equations with the quantum Hamiltonian H
given by Equation (3):

dx
dt

=
∂H
∂p

=
p
m

, x ∈ C, (5a)

dp
dt

= −∂H
∂x

= − ∂

∂x
(V(x) + Q(t, x)), p ∈ C, (5b)

where Q(x) is the complex quantum potential defined by:

Q(t, x) = − i}
2m

∂p
∂x
|
p=∂S/∂x

= − i}
2m

∂2S
∂x2 = − }2

2m
∂2 ln ψ(t, x)

∂x2 . (6)

Quantum potential Q(t, x) is intrinsic to the quantum state ψ(t, x) and is independent of the
externally applied potential V(x). The quantum Hamilton Equations (5) are distinct from the classical
ones in two aspects: the complex nature and the state-dependent nature. The complex nature is a
consequence of the fact that the canonical variables (x, p) solved from Equation (5) are, in general,
complex variables. The state-dependent nature means that Equation (5) governs the quantum motion
specifically in the quantum state described by ψ. The Hamilton Equations (5), which is usually
regarded as the complex-extension of Bohmian mechanics, can be derived independently by the
optimal stochastic control theory [27].

For a given wavefunction ψ(t, x), the complex contour c traced by x(t) can be solved from
Equation (5a), along which the contour integral in Equation (1) then can be evaluated. The second
Hamilton Equation (5b) is an alternative expression of the Schrödinger Equation (4) as can be shown
by substituting p(t, x) from Equation (2) and Q(t, x) from Equation (6).

3. Time Average along a Complex Quantum Trajectory

The necessity of considering time average along a complex quantum trajectory comes from the
fact that the action variable J introduced in Equation (1) is equal to the time-average kinetic energy,
as will be shown below. For a particle confined by a time-independent potential V(x), we have
wavefunction ψ(t, x) = e−iEt/}ψE(x) and quantum action function S(t, x) = −Et− i} ln ψE(x), with
which the quantum H-J Equation (3) can be recast into the following form:

H(x, p) =
p2

2m
+ V(x) + Q(x) = −∂S

∂t
= E. (7)

This is the energy conservation law in the quantum H-J formalism, indicating that the conserved
total energy E comprises three terms: the kinetic energy Ek = p2/2m, the applied potential V(x), and
the quantum potential Q(x). When expressed in terms of the wavefunction ψE(x), Equation (7) and
Equation (4) become the time-independent Schrödinger equation:

}2

2m
d2ψE

dx2 + (E−V(x))ψE = 0. (8)

The energy conservation law (7) is valid for any solution ψE(x) to the Schrödinger Equation (8),
either SI or NSI. The Schrodinger Equation (8) has a continuum of solutions, unless it is supplemented
with appropriate boundary conditions. Without loss of generality, we consider V(x) in the form of a
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potential well with the property V(x)→ ∞ , as x → ±∞ . Due to the presence of the infinite potential,
the probability of finding the particle at infinity is zero, i.e.,

ψE(x)→ 0, as x → ±∞. (9)

This boundary condition gets rid of most of the solutions to Equation (8) and selects out only a
discrete set of ψE and E. Consequently, it is the boundary conditions in standard quantum mechanics
that actually enforce the quantization. The boundary condition (9) originates from the fundamental
requirement that wavefunctions must be SI, i.e.,

∫ +∞

−∞
ψ∗E(x)ψE(x)dx < ∞, (10)

which allows the normalization of the total probability to unity. If the SI condition (10) or the boundary
condition (9) is released, the total energy E will be still conserved, but no longer quantized, because
the participation of NSI wavefunctions ψE(x) in Equation (7) will result in an arbitrary total energy E
other than En. However, even if the total energy E is allowed to be varied continuously, there exist
intrinsic quantization laws from which the energy eigenvalue En can be recovered. In other words,
probability interpretation with the accompanying SI condition is not the only way to arrive at the
quantization. This issue was first addressed by Leacock and Padgett [2,3] and demonstrated in detail
by Bhalla [28,29].

Although NSI wavefunctions ψ fail to serve as probability density functions in the assemble
average 〈Ω(x, p)〉ψ = 〈ψ|Ω(x̂, p̂)|ψ〉, complex quantum trajectories for NSI wavefunction still exist,
along which time average of Ω(x, p) can be defined to substitute for the assemble average 〈Ω(x, p)〉ψ.
The complex quantum trajectory describing the particle’s motion in a confined system can be
solved from Equations (5a) and (2), which together with ψ(t, x) = e−iEt/}ψE(x) gives the governing
equation as:

dx
dt

= − i}
m

ψ′E(x)
ψE(x)

, (11)

where ψE(x) is a general solution to Equation (8) with given energy E. The resulting complex trajectory
x(t) serves as a physical realization of the complex contour c appearing in Equation (1), and allows the
contour integral to be evaluated along the particle’s path of motion.

By treating the quantum Hamiltonian H(x, p) defined in Equation (7) as a Lyapunov function, the
energy conservation law dH/dt = 0 implies that the autonomous nonlinear system (11) is Lyapunov
stable (neutrally stable) with equilibrium points in the form of centers, irrespective of whether ψE is SI
or not. The trajectory solved from Equation (11) coincides with the Lyapunov contour lines defined by
H(x, p) = E = constant, which are concentric curves surrounding equilibrium points.

The time average of Ω(x, p) along the particle’s trajectory x(t) is defined as:

〈Ω(x, p)〉T =
1
T

∫ T

0
Ω(x(t), p(t))dt, (12)

where T is the period of oscillation of x(t). The quantum action variable J defined in Equation (1)
is a ready example of taking time average along a complex contour. Letting c be a closed trajectory
solved from Equation (11), we can rewrite the contour integral (1) in terms of the time-average kinetic
energy as:

J =
1

2π

∮
c

p(x)dx =
1

2πm

∫ T

0
p2dt =

2
ω
〈Ek〉T , (13)

where ω = 2π/T is the angular frequency of the periodic motion. Therefore, the Wilson-Sommerfeld
quantization law J = n} is simply an alternative expression of the energy quantization law 〈Ek〉T =

n(}ω/2).
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In general, the time average of an arbitrary function Ω(x, p) can be expressed in terms of a contour
integral by using Equations (11) and (12):

〈Ω(x, p)〉T = i
mω

2π}

∮
c

Ω(x)
ψE(x)
ψ′E(x)

dx, (14)

where c is the closed contour traced by x(t) on the complex plane, and the symbol “prime” denotes
the differentiation with respect to x. Since QMF p(x) can be expressed as a function of x, we simply
write Ω(x, p) as Ω(x) in the integrand. According to the residue theorem, the value of 〈Ω(x, p)〉T is
determined only by the poles of the integrand enclosed by the contour c and is independent of the
actual form of c. We will see below that the discrete change of the number of poles in the integrant
leads to the quantization of 〈Ω(x, p)〉T .

4. General Quantization Laws without SI Condition

Let ψE(x) be a general solution to the Schrödinger Equation (8) with a given energy E. We can treat
the time average 〈Ω(x, p)〉T as a function of the total energy E by noting that 〈Ω(x, p)〉T is computed
by Equation (14) with wavefunction ψE(x), which in turn depends on the energy E. The time average
〈Ω(x, p)〉T is said to be quantized, if its value manifests a stair-like distribution as the total energy
E increases monotonically. We will derive several energy quantization laws originating from such a
stair-like behavior of 〈Ω(x, p)〉T , which are universal for all confined quantum systems. The energy
quantization defined here denotes the discrete change of the considered energy, which is different
from the definition in standard quantum mechanics, where energy quantization denotes the discrete
energies satisfying the SI condition (10).

Firstly, we consider the quantization of the time-average kinetic energy. By substituting Ω(x, p) =
p2/2m into Equation (14), we obtain:

〈Ek〉T =
1
T

∫ T

0

1
2m

p2dt =
}ω

4πi

∮
c

ψ′E(x)
ψE(x)

dx. (15)

To evaluate the above contour integral, we recall a formula from the residue theorem:

∮
c

Ω′(x)
Ω(x)

dx = 2πi
(

Z f − Pf

)
, (16)

where Z f and Pf are, respectively, the numbers of zero and pole of Ω(x) enclosed by the contour c.
Using this formula in Equation (15) yields:

〈Ek〉T =
}ω

2
(
Zψ − Pψ

)
=

}ω

2
nψ, (17)

where the integer nψ = Zψ − Pψ is the difference between the numbers of zero and pole of ψE(x).
It appears that the time average of the particle’s kinetic energy in a confined potential is an integer
multiple of }ω/2. This is an universal quantization law independent of the confining potential V(x).
Using Equation (17) in Equation (13), we recover the Wilson-Sommerfeld quantization law J = nψ}.

The other quantized energy is the quantum potential Q. The evaluation of Equation (14) with
Ω(x, p) = Q(x) gives:

〈Q〉T =
1
T

∫ T

0
Qdt =

}
2miT

∫ T

0

dp
dx

dt =
}ω

4πi

∮
c

p′(x)
p(x)

dx. (18)

Applying Formula (16) once again, we arrive at the second energy quantization law:

〈Q〉T =
}ω

2
(
Zp − Pp

)
=

}ω

2
np, (19)
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where integer np = Zp − Pp is the difference between the numbers of zero and pole of p(x). Like the
quantization of 〈Ek〉T , Equation (19) reveals that the value of 〈Q〉T is an integer multiple of }ω/2,
irrespective of the confining potential V(x).

The Kinetic energy Ek and the quantum potential energy Q, individually, are quantized quantities,
and their combination leads to another quantization law. This can be verified from the combination of
Equations (15) and (18):

〈Ek + Q〉T =
}ω

4πi

∮
c

[
ψ′E(x)
ψE(x)

+
p′(x)
p(x)

]
dx, (20)

where in the integrand can be simplified further as:

ψ′E(x)
ψE(x)

+
p′(x)
p(x)

=
d

dx
ln[p(x)ψE(x)] =

d
dx

ln ψ′E(x).

With the above simplification and the Formula (16), Equation (20) yields a new quantization law:

〈Ek + Q〉T =
}ω

4πi

∮
c

ψ
′′
E(x)

ψ′E(x)
dx =

}ω

2
nψ′ , (21)

where integer nψ′ = Zψ′ − Pψ′ is the difference between the numbers of zero and pole of ψ′E(x).
The three integers, nψ, np and nψ′ , are solely determined by the wavefunction ψE, which in turn

is solved from Equation (8) with a prescribed energy E. As E increases, the three integers can only
change discretely in response to the continuous change of E. Let E0 < · · · < En−1 < En < · · · be
the sequence of specific energies at which the integer nψ′ experiences a step jump, n− 1→ n . With
increasing E, the value of 〈Ek + Q〉T then assumes a stair-like distribution described by:

〈Ek + Q〉T =
}ω

2
n, En−1 < E ≤ En, n = 1, 2, · · · . (22)

The values of 〈Ek〉T and 〈Q〉T have a similar distribution. It is noted that the wavefunction ψE(x)
solved from Equation (8) with an energy E in the interval En−1 < E ≤ En is generally NSI. Our next
task is to clarify the roles of these NSI wavefunctions in the quantization process of 〈Ek〉T and 〈Q〉T .

5. Energy Quantization beyond SI Wavefunctions

To elucidate how SI and NSI wavefunctions cooperate to form the observed quantization levels,
we consider the typical quantum motion under a quadratic confining potential V(x) = x2/2. The
related Schrödinger equation in dimensionless form is:

d2ψE

dx2 +
(

2E− x2
)

ψE = 0, (23)

where the total energy E is allowed to be any positive real number. A general solution to the
Schrödinger Equation (23), which takes into account NSI wavefunctions, can be expressed in terms of
the Whittaker function W(k, m, z) as:

ψE(x) =
C1√

x
W
(

E
2

,
1
4

, x2
)

(24a)

= C1e−x2/2
[

F
(

1
4
− E

2
,

1
2

, x2
)

/Γ
(

3
4
− E

2

)
− 2xF

(
3
4
− E

2
,

3
2

, x2
)

/Γ
(

1
4
− E

2

) ]
, (24b)

where F(α, β, z) is the hypergeometric function, and Γ(α) is the Gamma function. Detailed
discussions on the above-mentioned special functions can be found in standard textbooks of physical
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mathematics [30]. For a given energy E, the obtained solution ψE(x) is generally NSI, except for the
energy eigenvalues En = n + 1/2, n = 0, 1, 2, · · · , at which Equation (24b) becomes:

ψn(x) = C1e−x2/2
[

F
(
−n

2
,

1
2

, x2
)

/Γ
(

1
2
− n

2

)
− 2xF

(
1
2
− n

2
,

3
2

, x2
)

/Γ
(
−n

2

)]
. (25)

Depending on whether n is even or odd, simplification of ψn(x) is given respectively by:

• n = 2m:

ψm(x) = C1e−x2/2F
(
−m, 1/2, x2

)
/Γ(1/2−m) = C1e−x2/2H2m(x). (26a)

• n = 2m + 1:

ψm(x) = C1e−x2/2F
(
−m, 3/2, x2

)
/Γ(−1/2−m) = C1e−x2/2H2m+1(x). (26b)

where we note 1/Γ(−m) = 0 in Equation (25) for negative integer −m. Combining the above two
equations yields the eigenfunctions ψn(x) = C1e−x2/2Hn(x) for the quantum harmonic oscillator.
The eigenfunctions ψn(x) are the only solutions to the Schrödinger Equation (23), satisfying the
boundary condition (9) and the SI condition (10).

All the existing discussions on energy quantization in the harmonic oscillator focus on the SI
eigenfunctions and their linear combinations. Here we are interested in the energy quantization related
to the NSI wavefunctions described by Equation (24) with E 6= n + 1/2. According to Equations (17)
and (21), the quantization of 〈Ek〉T and 〈Ek + Q〉T is determined by the numbers of zero and pole of
ψE(x) and ψ′E(x). Examining the expression for ψE(x) given by Equation (24b), we find that ψE(x)
and ψ′E(x) do not have any pole over the entire complex plane, because the hypergeometric function
F(α, β, z) and its derivative are analytic functions for any z ∈ C. Accordingly, we have Pψ = Pψ′ = 0,
and:

nψ = Zψ − Pψ = Zψ, nψ′ = Zψ′ − Pψ′ = Zψ′ , np = Zp − Pp = Zψ′ − Zψ. (27)

Hence the three quantum numbers, nψ, np and nψ′ , can be determined by the two independent
integers: Zψ and Zψ′ , the numbers of zero of ψE(x) and ψ′E(x), respectively. Regarding the computation
of Zψ, we can find the zero of ψE by solving the roots of the Whittaker function according to
Equation (24a):

W
(

E
2

,
1
4

, x2
)
= 0, x ∈ C, E ∈ R+. (28)

For a given energy E, the resulting root is denoted by xs(E), and Zψ is the number of xs(E)
satisfying Equation (28). The blue line in Figure 1 illustrates the variation of Zψ with respect to the
energy E. Similarly, Zψ′ can be found by solving the roots of ψ′E(x) = 0:

(
2E + 1− 2x2

)
·W
(

E
2

,
1
4

, x2
)
+ 4·W

(
E
2
+ 1,

1
4

, x2
)
= 0, x ∈ C, E ∈ R+. (29)
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The resulting root is denoted by xeq(E) and the number of xeq(E) satisfying Equation (29) for a
given energy E gives the value of Zψ′ . The red line in Figure 1 illustrates the variation of Zψ′ with
respect to the energy E.

As can be seen from Figure 1, when the total energy E increases monotonically, Zψ′ and Zψ exhibit
a stair-like distribution in the form of:

Zψ′ = nψ′ = n + 1, Zψ = nψ = n, n− 1
2
< E ≤ n +

1
2

, n = 1, 2, · · · . (30)

and Zψ′ = 1, Zψ = 0, as 0 < E ≤ 1/2. Based on the above distributions of Zψ′ and Zψ, the quantization
laws derived in Equations (17), (19) and (21) now become:

〈Ek〉T =
nψ

2
=

n
2

, 〈Ek + Q〉T =
nψ′
2

=
n + 1

2
, 〈Q〉T =

1
2
(
nψ′ − nψ

)
=

1
2

, (31)

when the total energy E falls in the interval n− 1/2 < E ≤ n + 1/2. All the energies in Equation (31)
have been expressed in terms of the multiples of }ω. Consequently, as we increase the total energy
E monotonically, 〈Ek〉T and 〈Ek + Q〉T increase in a stair-like manner with the step levels given by
Equation (31), as shown in Figure 2. Up to this stage, the two components Ek and Q in the energy
conservation law (7) have been found to be quantized, while the third component, i.e., the externally
applied potential V(x), is not a quantized quantity, which otherwise changes continuously with E via
the relation:

〈V(x)〉T = E− Ek + QT = E− n + 1
2

. (32)
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Figure 2. The step changes of 〈Ek〉T and 〈Ek + Q〉T occur at the SI wavefunctions ψE with E = n + 1/2,
as the total energy E changes continuously in a harmonic oscillator. The flat parts of 〈Ek〉T and
〈Ek + Q〉T are constituted by the NSI ψE with E 6= n + 1/2.

The most noticeable point is that the step change of 〈Ek〉T and 〈Ek + Q〉T occurs at the specific
energies En = n + 1/2, which coincide with the energy eigenvalues of the harmonic oscillator. In
other words, the role of the SI condition amounts to determining the discrete energy En at which the
numbers of zero of ψE(x) and ψ′E(x) exhibit a step jump, while the role of the NSI wavefunctions
ψE(x) with E 6= En is to form the flat parts of the stair-like distribution as shown in Figures 1 and 2,
where the numbers of zero of ψE(x) and ψ′E(x), or equivalently the time-average energies 〈Ek〉T and
〈Ek + Q〉T , keep unchanged.

6. Quantum Bifurcation beyond SI Wavefunctions

As the total energy E increases, the wavefunction ψE(x) transits repeatedly from NSI states to
a SI state, once E coincides with an energy eigenvalue En. In this section, we will show that the
encounter with an energy eigenvalue not only causes a step jump of 〈Ek〉T and 〈Ek + Q〉T , but also
causes a nonlinear phenomenon - quantum bifurcation, where the number of equilibrium points of the
quantum dynamics experiences an instantaneous change.

With ψE(x) given by Equation (24a), the quantum dynamics (11) assumes the following
dimensionless form:

dx
dt

= −i
ψ′E(x)
ψE(x)

=
i

2x

(
2E + 1− 2x2

)
+

2i
x

W
(
E/2 + 1, 1/4, x2)

W(E/2, 1/4, x2)
, (33)

where the total energy E is treated as a free parameter, whose critical values for the occurrence of
bifurcation are to be identified. The quantum trajectories x(t) solved from Equation (33) provide
us with a quantitative comparison between SI and NSI wavefunctions, which otherwise cannot be
compared under the probability interpretation of ψE(x).

As can be seen from Equation (33), the equilibrium point xeq of the quantum dynamics is equal to
the zero of ψ′E(x), while the singular point xs is just the zero of ψE(x). Hence the step changes of Zψ

and Zψ′ shown in Figure 1 also imply the step changes of the numbers of the equilibrium points xeq and
the singular points xs, respectively. In other words, we can say that the following two processes occur
synchronously as E increases monotonically: one process is the quantization of 〈Ek〉T and 〈Ek + Q〉T
regarding the step changes of Zψ and Zψ′ as discussed previously, and the other is the bifurcation of
the quantum dynamics (33) regarding the step changes of the equilibrium points and singular points,
as to be discussed below.

(1) SI wavefunctions:
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Firstly, we consider the special cases that the total energy E happens to be one of the eigen energies:
E0 = 1/2, E1 = 3/2, and E2 = 5/2. The related eigenfunctions and the eigen-dynamics derived from
Equation (33) are given by:

ψ0(x) = e−x2/2 :
dx
dt

= ix, (34a)

ψ1(x) = 2xe−x2/2 :
dx
dt

= i
x2 − 1

x
, (34b)

ψ2(x) = 2
(

2x2 − 1
)

e−x2/2 :
dx
dt

= i
x
(
x2 − 5/2

)
x2 − 1/2

. (34c)

These three equations describe the velocity fields and their solutions give the eigen-trajectories
for the first three SI states of the harmonic oscillator. It can be shown that the equilibrium points of
Equation (34) are centers, while their singular points are saddles. For instance,

.
x = ix in Equation (34a)

has an equilibrium point at the origin with solution given by x(t) = ceit, whose trajectories on the
complex plane are concentric circles around the equilibrium point, showing that x = 0 is a center. To
show singular points in Equation (34) are saddles, we consider the following complex-valued system
with a singular point at the origin:

.
x = f (x) =

g(x)
x

, x ∈ C, (35)

where g(x) is analytic at x = 0. In a neighborhood of the origin, Equation (35) can be approximated by
.
x = λ/x, where λ = g(0) is the residue of f (x) evaluated at x = 0. The substitution of x = xR + ixI
and λ = α + iβ into

.
x = λ/x leads to the equivalent real-valued nonlinear system:

xR
.
xR − xI

.
xI = α, xR

.
xI + xI

.
xR = β. (36)

Its solution is a set of hyperbolas expressed by x2
R − 2(α/β)xRxI − x2

I = C, showing that the
singular point x = 0 in Equation (35) are saddles. The centers and saddles of Equation (34) generated
by the SI wavefunctions ψE(x) with E0 = 1/2, E1 = 3/2, and E2 = 5/2 are illustrated in Figure 3,
which displays the distribution and movement of the centers and saddles of the quantum dynamics
(33) on the horizontal x axis, as the total energy E changes continuously along the vertical axis. Detailed
discussions on the quantum trajectories of the SI wavefunctions ψn(x) for a harmonic oscillator were
reported in the literature [31,32]. Here our concern is the quantum trajectories of the NSI wavefunctions
ψE(x) with E 6= n + 1/2. Quantum trajectories in the first three quantization intervals of E will be
examined below, from which a global picture of center-saddle bifurcation can be drawn.

(2) NSI wavefunctions ψE(x) with 0 < E ≤ 1/2:

The wavefunction ψE(x) in this range of energy is NSI, except for E = 1/2. It seems to be a
reasonable conjecture that NSI wavefunctions naturally give rise to unbound quantum trajectories;
however, this is not the case. Figure 4 illustrates the quantum trajectories solved from Equation (33)
for the NSI wavefunctions ψE(x) with E = 0.1, E = 0.49, and E = 0.51. In spite of being generated
by NSI wavefunctions, the resulting quantum trajectories are bound with slight deviations from the
eigen-trajectories of E = 1/2, which are concentric circles around the equilibrium point at the origin,
as described by Equation (34a). It appears that SI eigenfunctions are not isolated from the neighboring
NSI wavefunctions, because their quantum trajectories can be deformed continuously into each other.



Entropy 2018, 20, 327 12 of 22
Entropy 2018, 20, x 11 of 21 

 

 

Figure 3. The distribution and movement of the centers and saddles over the horizontal 𝑥 axis, as the 
total energy 𝐸 changes continuously along the vertical axis. 

2) NSI wavefunctions 𝜓 (𝑥) with 0 < 𝐸 ≤ 1/2: 

The wavefunction 𝜓 (𝑥) in this range of energy is NSI, except for 𝐸 = 1/2. It seems to be a 
reasonable conjecture that NSI wavefunctions naturally give rise to unbound quantum trajectories; 
however, this is not the case. Figure 4 illustrates the quantum trajectories solved from Equation (33) 
for the NSI wavefunctions 𝜓 (𝑥) with 𝐸 = 0.1, 𝐸 = 0.49, and 𝐸 = 0.51. In spite of being generated 
by NSI wavefunctions, the resulting quantum trajectories are bound with slight deviations from the 
eigen-trajectories of 𝐸 = 1/2, which are concentric circles around the equilibrium point at the origin, 
as described by Equation (34a). It appears that SI eigenfunctions are not isolated from the neighboring 
NSI wavefunctions, because their quantum trajectories can be deformed continuously into each other. 

3) NSI wavefunctions 𝜓 (𝑥) with 1/2 < 𝐸 ≤ 3/2: 

According to Figure 1, the number of equilibrium points 𝑍  of the quantum dynamics (33), 
jumps from one to two as 𝐸 across the energy eigenvalue 𝐸 = 1/2. This bifurcation phenomenon is 
illustrated in Figure 5. There is only one equilibrium point at the origin in the energy interval 0 <

𝐸 ≤ 0.5, while beyond the bifurcation point 𝐸 = 1/2, two equilibrium points come out from the 
origin. Particular attention is paid to the quantum trajectories of 𝐸 = 0.51 depicted in Figure 4d. At 
first glance, it looks like that the quantum trajectories of 𝐸 = 0.51 have a single equilibrium point at 
the origin. However, the enlargement of Figure 4d near the origin as illustrated in Figure 5a indicates 
that the single equilibrium point at the origin for 𝐸 = 1/2 splits into two equilibrium points as 𝐸 
increases to 0.51. When 𝐸 increases to 3/2, the two equilibrium points (two centers) move further to 
𝑥 = ±1, as described by the quantum dynamics (34b) and illustrated in Figure 5d. 

Coincident with the splitting of the equilibrium point at the bifurcation point 𝐸 = 1/2, a singular 
point emerges from the origin in the form of a saddle point. The resulting saddle point pattern in the 
vicinity of the origin is clearly manifested in Figure 5. It turns out that at the bifurcation energy 𝐸 =

1/2, two kinds of bifurcation occur simultaneously: one bifurcation regards the change of the number 
of equilibrium points from a single center at the origin into a pair of centers moving apart along the 
positive and negative real axis as 𝐸 increases from 1/2 to 3/2, and the other bifurcation regards the 
change from a center into a saddle at the origin. 

Figure 3. The distribution and movement of the centers and saddles over the horizontal x axis, as the
total energy E changes continuously along the vertical axis.Entropy 2018, 20, x 12 of 21 

 

 

Figure 4. The wavefunctions corresponding to 𝐸 = 0.1, 𝐸 = 0.49, and 𝐸 = 0.51 are NSI, but their 
quantum trajectories are bound and closely connected to the eigen trajectories of 𝐸 = 0.5, which are 
concentric circles around the equilibrium point at the origin. 

Figure 4. The wavefunctions corresponding to E = 0.1, E = 0.49, and E = 0.51 are NSI, but their
quantum trajectories are bound and closely connected to the eigen trajectories of E = 0.5, which are
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(3) NSI wavefunctions ψE(x) with 1/2 < E ≤ 3/2:

According to Figure 1, the number of equilibrium points Zψ′ of the quantum dynamics (33), jumps
from one to two as E across the energy eigenvalue E = 1/2. This bifurcation phenomenon is illustrated
in Figure 5. There is only one equilibrium point at the origin in the energy interval 0 < E ≤ 0.5, while
beyond the bifurcation point E = 1/2, two equilibrium points come out from the origin. Particular
attention is paid to the quantum trajectories of E = 0.51 depicted in Figure 4d. At first glance, it
looks like that the quantum trajectories of E = 0.51 have a single equilibrium point at the origin.
However, the enlargement of Figure 4d near the origin as illustrated in Figure 5a indicates that the
single equilibrium point at the origin for E = 1/2 splits into two equilibrium points as E increases to
0.51. When E increases to 3/2, the two equilibrium points (two centers) move further to xeq = ±1, as
described by the quantum dynamics (34b) and illustrated in Figure 5d.
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(c) E=1.0 (NSI wavefunction) (d) E=1.5 (SI wavefunction) 

 Im(𝑥)  Im(𝑥) 

 Im(𝑥)  Im(𝑥) 

 Re(𝑥)  Re(𝑥) 

 Re(𝑥)  Re(𝑥) 

Figure 5. Velocity fields and quantum trajectories in the energy interval 0.5 < E ≤ 1.5 show the
quantum bifurcation that the number of equilibrium points jumps from one to two as energy across
E = 0.5. Part (a) is the enlargement of Figure 4d near the origin to illustrate the split of the single
equilibrium point at the origin into a pair of equilibrium points as E increases from 0.5 to 0.51. In this
energy interval, there are two equilibrium points and one singular point at the origin, corresponding to
the energy levels Zψ′ = 2 and Zψ = 1 as shown in Figure 1.

Coincident with the splitting of the equilibrium point at the bifurcation point E = 1/2, a singular
point emerges from the origin in the form of a saddle point. The resulting saddle point pattern in
the vicinity of the origin is clearly manifested in Figure 5. It turns out that at the bifurcation energy
E = 1/2, two kinds of bifurcation occur simultaneously: one bifurcation regards the change of the
number of equilibrium points from a single center at the origin into a pair of centers moving apart
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along the positive and negative real axis as E increases from 1/2 to 3/2, and the other bifurcation
regards the change from a center into a saddle at the origin.

(4) NSI wavefunctions ψE(x) with 3/2 < E ≤ 5/2:

At the energy eigenvalue E = 3/2, the value of Zψ′ experiences the second step jump, and a new
bifurcation is expected to form here. This prediction is confirmed in Figure 6a, where the enlargement
of the velocity field near the origin shows that the saddle-point singularity at the origin for E = 3/2
now transforms into a center for E = 1.51. As E increases further to E = 1.6 and E = 2, flow circulation
around the origin as a center becomes more apparent. Counting the new equilibrium point emerging
from the origin and the already existing pair of centers, the number of equilibrium points increases
from two to three as E across E = 3/2, and remains three in the interval 3/2 < E ≤ 5/2. Coincident
with the emergence of a new center from the origin at E = 3/2, the singular saddle point previously
residing at the origin now splits into a pair of saddles with their separation increasing with E. The two
saddles move to xs = ±

√
1/2 when E increases to 5/2, as described by Equation (34c) and illustrated

in Figure 6d.
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Figure 6. Velocity fields and quantum trajectories in the energy interval 1.5 < E ≤ 2.5 show the
quantum bifurcation that the number of equilibrium points jumps from two to three as energy across
E = 1.5. Part (a,b) are the enlargements of the velocity field near the origin to illustrate the emergence
of a new equilibrium point (a center). In this energy interval, there are three equilibrium points and
two singular points, corresponding to the energy levels Zψ′ = 3 and Zψ = 2 as shown in Figure 1. Part
(d) plots the eigen trajectories for E = 2.5 to show the three equilibrium points at xeq = 0, ±

√
5/2 and

two singular points at xs = ±
√

1/2.
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(5) Center-Saddle Bifurcation

When we proceed further, the bifurcations of the equilibrium centers xeq and the singular saddles
xs of the quantum dynamics (33) occur alternatively as E increases. To gain a global picture of
the bifurcation pattern, we solve the equilibrium points xeq(E) and the singular points xs(E) from
Equations (29) and (28), respectively, and then plot them as functions of E. The resulting plots
generate two sequences of pitchfork bifurcation diagram as shown in Figures 7 and 8 for xeq(E) and
xs(E), respectively. It can be seen that the bifurcations of xeq(E) and xs(E) occur alternatively at
the critical energies En = n + 1/2 in such a way that the branches of xeq(E) bifurcate sequentially
at E = 0 + (1/2), 2 + (1/2), 4 + (1/2), · · · , while the branches of xs(E) bifurcate sequentially at
E = 1 + (1/2), 3 + (1/2), 5 + (1/2), · · · .
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Figure 7. A sequence of pitchfork bifurcation curves shows the variation of equilibrium points xeq(E)
with respect to the total energy E. The number of xeq(E) at each E, denoted by the blue dots, is equal
to the energy level Zψ′ as plotted in Figure 1. The branches of the xeq(E) curves start sequentially at
E = 0, 3/2, 7/2, · · · , and bifurcate sequentially at E = 1/2, 5/2, 9/2, · · · . Except for the bifurcation
points (the blue dots), the entire sequential bifurcation diagram is formed by the NSI wavefunctions
ψE(x) with E 6= n + 1/2.

Furthermore, it is worth noting that except for the bifurcation points (the blue dots in Figure 7
and the red dots in Figure 8), the sequential bifurcation diagram is constructed entirely by the NSI
wavefunctions ψE(x) with E 6= n + 1/2. Without the participation of the NSI wavefunctions, adjacent
eigenfunctions lose their interconnection and a continuous description of the bifurcation sequence
becomes impossible. The other perspective of center-saddle bifurcation can be gained from Figure 3,
where we can see that centers and saddles appear alternatively at the origin as the total energy E
increases monotonically along the vertical axis.
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Figure 8. A sequence of pitchfork bifurcation curves shows the variation of singular points xs(E)
with respect to the total energy E. The number of xs(E) at each E, denoted by the red dots, is equal
to the energy level Zψ as plotted in Figure 1. The branches of the xs(E) curves start sequentially at
E = 1/2, 5/2, 9/2, · · · , and bifurcate sequentially at E = 3/2, 7/2, 11/2, · · · . Except for the bifurcation
points (the red dots), the entire sequential bifurcation diagram is formed by the NSI wavefunctions
ψE(x) with E 6= n + 1/2.

(6) Synchronicity between quantization and bifurcation

We recall that the number of xeq(E) at each E is just the number of zero of ψ′E(x), which gives
the quantization level of 〈Ek + Q〉T . This relation indicates that the bifurcation of the equilibrium
center point xeq(E) and the quantization of 〈Ek + Q〉T occur synchronously. Similarly, because the
number of xs(E) at each E is the number of zero of ψE(x), which gives the quantization level of 〈Ek〉T ,
the bifurcation of the singular saddle point xs(E) is thus synchronous with the quantization of 〈Ek〉T .
Table 1 lists the numbers of saddles and centers, and the energy levels of 〈Ek + Q〉T and 〈Ek〉T for the
first several energy intervals. As can be seen, the numbers of saddles and centers change synchronously
with the change of 〈Ek + Q〉T and 〈Ek〉T . It is noted that as energy E varies continuously during the
quantization and bifurcation processes, the instantaneous changes of energy levels and equilibrium
points are triggered by the SI condition E = n + 1/2.

Table 1. The step changes of 〈Ek〉T and 〈Ek + Q〉T are synchronous with the changes of saddles
and centers.

Quantized Items 0 < E < 1
2 E = 1

2
1
2 < E < 3

2 E = 3
2

3
2 < E < 5

2 E = 5
2

5
2 < E < 7

2

Wavefunctions NSI SI NSI SI NSI SI NSI
Zeros of ψE(x) 0 0 1 1 2 2 3

Number of saddles 0 0 1 1 2 2 3
Levels of 〈Ek〉T 0 0 1/2 1/2 1 1 3/2
Zeros of ψ′E(x) 1 1 2 2 3 3 4

Number of centers 1 1 2 2 3 3 4
Levels of 〈Ek + Q〉T 1/2 1/2 1 1 3/2 3/2 2
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7. Spin Degree of Freedom beyond SI Wavefunctions

The role of the Schrödinger equation has long been considered as describing spinless particles
only, because the Schrödinger charge current for the s-states of a hydrogen-like atom vanishes and
produces no intrinsic angular momentum. However, based on the observation that in the absence of a
magnetic field, the Pauli equation reduces to the Schrödinger equation, it was pointed out [33] that the
Schrödinger equation must be regarded as describing an electron in an eigenstate of spin and not, as
universally supposed, an electron without spin. According to the dBB trajectory approach [34,35], spin
is interpreted as a dynamical property of electron motion and is attributed to a circulating movement
of a point, i.e., to a pure orbital motion, but not to an extended spinning object. To be consistent
with the Dirac theory and with the condition of Lorentz invariance, Holland [34] proposed that the
Schrödinger charge current must be supplemented by a spin magnetization current, which is generated
by a circulating flow of energy in the wave field of the electron [36,37].

The NSI solutions to the Schrödinger equation considered in the present paper might give an
alternative explanation for the origin of particle’s spin motion. The Schrödinger Equation (8) with given
energy E actually has two independent solutions. It is surprising to find that the quantum trajectories
generated by the two independent solutions are indistinguishable, except for their directions of rotation.
Inspecting the quantum trajectories shown in Figures 4–6, it appears that all the trajectories, either
generated by SI or NSI wavefunctions, rotate counterclockwise (CCW). In fact, all the trajectories
produced by the general wavefunctions given by Equation (24) rotate in the same direction, because
Equation (24) only gives one of the independent solutions. A complete general solution to the
Schrödinger Equation (23) comprises two independent parts:

ψE(x) = ψCCW(x) + ψCW(x) =
C1√

x
W
(

E
2

,
1
4

, x2
)
+

C2√
x

W
(
−E

2
,

1
4

,−x2
)

, (37)

where ψCCW(x) is the solution considered previously and ψCW(x) is the other independent solution,
whose quantum trajectories rotate clockwise (CW). The wavefunction ψCW(x) represents the second
half of solutions to the Schrödinger Equation (23), which is NSI for any energy E and we usually take
the neglect of it as granted.

The consideration of the wavefunctions ψCW(x) helps to identify the additional degree of freedom
independent of the particle’s orbital motion. To highlight the difference between ψCCW(x) and ψCW(x),
their velocity fields computed by Equation (11) with E = 1/2 are illustrated in Figures 9a,b, respectively.
The velocity field of ψCCW(x) is identical to Figure 4c, which shows circular flows surrounding the
origin counterclockwise. By contrast, the velocity field of ψCW(x) depicted in Figure 9b appears to be
clockwise circulation around the origin. The quantum trajectories generated by ψCW(x) are almost
indistinguishable from those generated by ψCCW(x), and the only difference between them is the
directions of rotation. In addition to the orbital motion, the new degree of freedom manifested in the
combination of ψCCW(x) and ψCW(x) is the dual directions of rotation, which is otherwise invisible
along a single trajectory generated by either ψCCW(x) or ψCW(x). Due to their same spatial motion
with dual directions, ψCCW(x) and ψCW(x) can be reasonably recognized as the same spatial solution
to the Schrödinger equation but with opposing directions of spin.
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Figure 9. The dual-rotation solutions to the Schrödinger equation with E = 1/2: (a) quantum trajectory
of the wavefunction ψCCW(x); (b) quantum trajectory of the wavefunction ψCW(x); (c) comparison
between |ψCCW | and |ψCW |, and (d) comparison between total potential VT(ψCCW) and VT(ψCW).

The reason underlying the opposite rotation of ψCCW(x) and ψCW(x) can be explained by using
the asymptotic expansion property for the Whittaker function:

W(±k, m,±z) = e∓z/2(±z)±k
[
1 +O

(
z−1
)]

. (38)

With this property, the asymptotic expansions of ψCCW(x) and ψCW(x) take the following forms:

ψCCW(x) =
C1√

x
W
(

E
2

,
1
4

, x2
)
≈ C1e−x2/2xE−1/2, (39a)

ψCW(x) =
C2√

x
W
(
−E

2
,

1
4

,−x2
)
≈ C2ex2/2x−E−1/2. (39b)

The asymptotic quantum dynamics of ψCCW(x) and ψCW(x) then can be derived as:

dx
dt

= −i
d

dx
ln ψCCW(x) = ix− i

E− 1/2
x

≈ ix, |x| � 0, (40a)

dx
dt

= −i
d

dx
ln ψCW(x) = −ix + i

E + 1/2
x

≈ −ix, |x| � 0. (40b)

Irrespective to the energy E, both of the asymptotic quantum dynamics converge to the
ground-state quantum dynamics (34a) with the only difference in their rotation direction. This
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similarity in the velocity field of ψCCW(x) and ψCW(x) has been ignored in the literature. Probability
interpretation is only concerned with the square-integrable condition of ψCCW(x) and ψCW(x), as
shown in Figure 9c, which obviously fails to explain the similarity in the quantum dynamics of
ψCCW(x) and ψCW(x).

The factor dominating the similarity in the quantum dynamics of ψCCW(x) and ψCW(x) can be
explained by Equation (5b):

dp
dt

= − ∂

∂x
VT . (41)

The total potential VT = V + Q, comprising the applied potential V and the quantum potential Q,
dominates the time evolution of the QMF p. For the case of a harmonic oscillator, VT turns out to be (in
dimensionless form):

VT(ψ) =
1
2

x2 − 1
2

d2

dx2 ln ψ(x). (42)

The evaluations of VT(ψ) at ψ = ψCCW and ψ = ψCW for E = 1/2 are plotted in Figure 9d.
Despite of the adverse nature between SI wavefunction ψCCW(x) and NSI wavefunction ψCW(x), their
total potentials exhibit a high degree of resemblance, which explains the observed similarity in the
velocity fields of Figure 9a,b. The comparisons regarding the magnitudes of ψ and the total potential
VT(ψ) for E = 3/2 and E = 5/2 are shown in Figure 10, where we observe that except for the region
neighboring the origin, VT(ψCCW) is close to VT(ψCW) and they become identical as |x| → ∞ . This
asymptotic identity leads to the dual velocity fields derived in Equation (40).Entropy 2018, 20, x 19 of 21 
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Schrödinger equation is a second-order differential equation with respect to its spatial coordinates,
and its complete solution should be composed of two independent solutions. The common belief that
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Schrödinger equation is unable to describe spin motion seems to stem from our disregard of one of the
independent solution. While probability interpretation of wavefunctions excludes the NSI solution
ψCW(x) from the general solution ψE(x), the spin degree of freedom is removed at the same time.
Under the framework of quantum H-J formalism, we have seen that by incorporating ψCW(x) with
ψCCW(x) to form a general wavefunction as expressed by Equation (37), both spatial and spin motion
can be described by the Schrödinger equation, and even for one-dimensional quantum motion, the
spin degree of freedom can be manifested as the dual rotations on the complex x plane.

8. Conclusions

Standard approach to energy quantization in confined quantum systems is to seek for the
allowable energies En for which the time-independent Schrödinger equation has square-integrable
solutions. The obtained energy eigenvalue En is recognized as the quantization level of the system’s
total energy. In this paper we have given a renewed interpretation for En and considered NSI solutions
ψE(x) to the Schrödinger equation by releasing the SI requirement. The release of this requirement
leads to several new findings as summarized in the following points:

• Universal quantization laws: The total energy E = Ek + Q(x) + V(x) derived from the
time-independent Schrödinger equation is shown to be conserved, but not quantized. Regardless
of the confining potential V(x), quantization always occurs in the kinetic energy 〈Ek〉T and the
quantum potential 〈Q〉T , whose values can only change by an integer multiple of }ω/2.

• Renewed meaning of the energy eigenvalues: The energy eigenvalues En derived conventionally
from the SI condition are shown to be the special energies at which the quantization levels of
〈Ek〉T and 〈Ek + Q〉T experience a step jump.

• The origin of energy quantization: Energy quantization in a confined system originates from
the discrete change of the numbers of zero of ψE(x) and ψ′E(x), whose values determine the
quantization levels of 〈Ek〉T and 〈Ek + Q〉T .

• Concurrence of Quantization and bifurcation: Bifurcations of equilibrium center points and
singular saddle points of the quantum dynamics are shown to be synchronous, respectively, with
the quantization process of 〈Ek〉T and 〈Ek + Q〉T , as the total energy E increases monotonically.

• Undivided SI and NSI wavefunctions: probability interpretation isolates SI wavefunctions from
NSI wavefunctions; however, under the quantum H-J formalism, SI and NSI wavefunctions are
indivisible with continuously connected velocity field and quantum trajectories.

• The role of NSI wavefunctions in energy quantization: Both SI and NSI wavefunctions contribute
to the energy quantization. SI wavefunctions help to locate the bifurcation points at which 〈Ek〉T
and 〈Ek + Q〉T have a step jump, while NSI wavefunctions form the flat parts of the stair-like
distribution of the quantized energies.

• The role of NSI wavefunctions in spin: The second-order Schrödinger equation generally contains
two independent solutions with opposite rotation on the complex plane. The inclusion of both
solutions allows the Schrödinger equation to describe the spatial motion as well as the spin motion.

At the present stage of this research, we can only say that if the SI requirement is released
tentatively, above information can be gained from NSI wavefunctions. We need further experimental
results to support the existence of NSI wavefunctions in confined quantum systems. The result of this
paper gives a clue to the design of such an experiment. Based on the SI condition, what we consider to
be quantized is the particle’s total energy. On the other hand, if the SI condition is released, what to be
quantized is the particle’s time-average kinetic energy. Experiments on particle’s motion in confining
potentials can be performed to verify which prediction is correct.
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