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Abstract: This paper proposes a method for the beta pricing model under the consideration of
non-Gaussian returns by means of a generalization of the mean-variance model and the use of
principal curves to define a divergence model for the optimization of the pricing model. We rely on
the q-exponential model so consider the properties of the divergences which are used to describe
the statistical model and fully characterize the behavior of the assets. We derive the minimum
divergence portfolio, which generalizes the Markowitz’s (mean-divergence) approach and relying on
the information geometrical aspects of the distributions the Capital Asset Pricing Model (CAPM) is
then derived under the geometrical characterization of the distributions which model the data, all by
the consideration of principal curves approach. We discuss the possibility of integration of our model
into an adaptive procedure that can be used for the search of optimum points on finance applications.

Keywords: principal curves; information geometry; deformed exponential; finance application

1. Introduction

In their seminal paper [1], Hastie and Stuetzle proposed a notion of principal curves as an
elegant and geometric non-linear generalization of factor models as the principal component analysis.
A principal curve has the property of self-consistence in the sense that it passes through the middle of
the data set representing a sample of some random variable. More precisely, any point of the curve
coincides with the expected value of the data projected on it. This is a direct consequence of the fact
that a principal curve f is critical for the variance of the Euclidean distance between the data and any
locally defined perturbation of f. In particular, a straight line is a principal curve if and only if its
direction is an eigenvector of the covariance matrix of z, where z stands for the a vector containing the
observed data.

The original idea by Hastie and Stuetzle has been developed into relevant improvements,
applications and extensions. We point out however that the criticality of a principal curve is usually
defined in terms of the Euclidean distance. Hence, although f itself could represent non-Euclidean
features of the model, some underlying least-squares approach is still in force. Our main contribution
here is to rephrase the notion of principal curves (and, more generally, of principal p-submanifolds) in
terms of a general statistical divergence which replaces the Euclidean divergence, that is, the variance
used in the original definition.

Considering statistical divergences as Kullback–Leibler or Bregman divergence allows us to deal
with random variables with probabilities given by exponential and deformed exponential distributions.
In the context of exponential and φ-exponential statistical families, straight lines are replaced by affine
geodesics and the Hessian of the cumulant function plays the role of a generalized covariance.

As highlighted by Naudts, deformed exponentials play a central role in the foundations of the
Generalized Thermostatistics formulated by Tsallis [2,3] and collaborators. This new approach to
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Thermodynamics has been evolved along the last two decades in a wide range of applications to
complex systems, particularly in Finance [4–7]. Indeed, Naudts’ work established deep and fruitful
connections between Statistical Physics and Information Geometry [8–11]. For instance, both Rényi’s
and Tsallis’ entropies are described by Naudts in terms of statistical divergences in the family of
q-exponential distributions that includes q-Gaussian distributions, defined in details by Plastino and
Vignat [11–15]. The analytic and geometric features of deformed exponentials suggest that they are well
suited to model non-normally distributed returns of contingent claims. In this direction, for instance,
a non-Gaussian option pricing theory has been successfully proposed in terms of diffusion processes
associated to q-Gaussian distributions [4,7,16–18]. Other related developments are summarized
in [6,19].

In [20,21], the authors elaborated some preliminary results towards a theory of portfolio
optimization in the context of deformed exponentials. One of the cornerstones of the modern Finance
Theory, the classical Markowitz’s mean-variance model of portfolio selection, relies on the assumptions
that the returns of assets are normally distributed and that the investor preferences are described by
constant risk-aversion utility function. Some works have dealt with other variations of the portfolio
optimization problem. For instance, Zagrodny [22] proposed a convex programming solution to
portfolio selection by considering the Hilbert space and a reinsurance approach. In the multi-objective
model, Sawik [23] used the expected return as the performance metric and expected worst-case return
to measure the risk and providing good interpretation about the consideration of the variance of
the risks.

The traditional criticism to the normality assumption in Markowitz’s theory raises the need of
alternative models for dealing with non-Gaussian distributions. This question has been addressed
since then under different methods. In [24,25], Nock et al. extended the Markowitz’s model to
the wider family of exponential distributions, replacing the mean-variance by a mean-divergence
model. Bregman divergences replace the variance as risk measures for non-Gaussian distributions,
eventually encompassing information from higher order momenta. On the other hand, since statistical
divergences define geometric notions on the statistical manifold of exponential distributions, their
method has a geometric interpretation in terms of a steepest descent by the natural gradient of the risk
premium [26–28].

In [20], the authors proposed a model of portfolio selection of financial assets that explores the
non-additivity and non-normality aspects of Tsallis’ Thermostatistics. More precisely, they have
extended the mean-divergence model in [24,25] to deformed exponentials families.

In the sequel, the authors formulated [21] a generalization of beta pricing models adapted to
a mean-divergence portfolio selection [29–31]. In particular, it is presented an extension of Capital Asset
Pricing Model (CAPM) flexible enough to be applied for financial returns with deformed exponential
distributions. The method relies on a geometric approach to the classical mean-variance analysis
developed by LeRoy and Werner [32] and Luenberger [33] (see also [34]). The main results in [20,21]
are summarized in Section 3.

This paper is structured as follows. In Section 2, we define the generalized notion of principal
curve and principal submanifold in the geometric context of a given statistical divergence. The earlier
contributions for portfolio selection and asset pricing in the case of financial returns distributed
according deformed exponential probability densities are schematically resumed in Section 3.
In Section 4, we apply the generalized notion of principal submanifolds and the correspondent
version of the principal component analysis to obtain an explicit expression of optimal principal
portfolios is provided in Section 5.

2. Statistical Divergences and Principal Curves

Let M be a space of random variables z = z(s) whose probability distributions are given by
densities lying in a n-dimensional statistical manifold
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S = {p(s, ϑ) : ϑ ∈ U ⊂ Rn},

where ϑ = (ϑ1, . . . , ϑn) are statistical parameters ranging in some open subset U of the n-dimensional
Euclidean space Rn. Let D be a given statistical divergence in S. Given a curve f : Λ ⊂ R → M,
a projection of z on the trace of f is a point f(λ∗), for some λ∗ ∈ Λ, such that

D(z|f(λ∗)) = inf
λ∈Λ

D(z|f(λ)). (1)

In the following, we suppose that such a projection exists and it is unique for any curve f : Λ→M

we are going to consider. Under this assumption, we denote

πf(z) = f(λ∗). (2)

In this notation, we propose the following variational notion of principal curve relative to D:

Definition 1. A curve f : Λ→M is a principal curve in (M, D) if

D(z|πf(z)) = inf
s∈(−ε,ε)

D(z|πfs(z)) (3)

for all one-parameter family of curves fs : Λ→M, s ∈ (−ε, ε), such that f0 = f.

Recall that a statistical divergence D determines a dually flat structure in M for which affine
geodesics are parameterized as straight lines of the form

f(λ) = a + λu, λ ∈ Λ,

where a and u are constant vectors. By definition, the projection of the random variable z on a principal
curve f minimizes the divergence among the projections on curves close to f. Projections satisfy
a Pythagorean theorem, one of the fundamental results in Information Geometry that can be stated
as follows.

Theorem 1 (Theorem 1.2 and Theorem 1.3, [26]). Given o, z, w ∈M such that that the dual affine geodesic
connecting z and w is orthogonal to the affine geodesic connecting w and o, the following generalized Pythagorean
relation holds

D(z|o) = D(w|o) + D(z|w). (4)

Similarly, if the affine geodesic connecting z and w is orthogonal to the dual affine geodesic connecting w and o,
we have the dual relation

D∗(z|o) = D∗(w|o) + D∗(z|w), (5)

where D∗ is the dual divergence. The dual divergence is defined with respect to the dual connection as defined
in [26].

In view of this proposition, it is natural to draw our attention to one-parameter families of affine
geodesics in M.

Theorem 2. An affine geodesic in (M, D) is a principal curve with respect to one-parameter families of affine
geodesics if and only if its direction is an eigenvector of the Fisher metric G = ∇2D associated to D.
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Proof. Denote by ∇D and ∇2D, respectively, the differential and Hessian of D with respect to the
second variable. Hence, we have for a fixed s ∈ (−ε, ε) that

0 =
d

dλ
D(z|f(s, λ)) =

d
dλ

D(z|f(s, λ)) =

〈
∇D(z|f(s, λ)),

∂f
∂λ

〉
where the derivative is computed at the critical value λ = λ∗(s) and for a fixed value of s, fs is a
geodesic parameterized by λ which we can write fs(λ) = f(s, λ).

Denote
c(s) = f(s, λ∗(s)), s ∈ (−ε, ε).

Note that
c′(s) =

∂f
∂s

(s, λ∗(s)) +
∂f
∂λ

(s, λ∗(s))
dλ∗
ds

.

Hence, we obtain

d
ds

〈
∇D(z|c(s)), ∂f

∂λ
(s, λ∗(s))

〉
=

〈
∇D(z|c(s)), d

ds
∂f
∂λ

(s, λ∗(s))
〉

+c′(s)>∇2D(z|c(s)) ∂f
∂λ

(s, λ∗(s)) =
〈
∇D(z|c(s)), d

ds
∂f
∂λ

(s, λ∗(s))
〉

+

(
∂f
∂s

(s, λ∗(s)) +
∂f
∂λ

(s, λ∗(s))
dλ∗
ds

)>
∇2D(z|c(s)) ∂f

∂λ
(s, λ∗(s)).

We may write
f(s, λ) = f(λ) + sv(λ) + O(s2),

where
v(λ) =

∂f
∂s

(0, λ)

is the variational field that corresponds to f. Thus, we have

∂f
∂λ

(s, λ∗(s)) = f′(λ∗(s)) + sv′(λ∗(s)) + O(s2)

and
d
ds

∣∣∣∣
s=0

∂f
∂λ

(s, λ∗(s)) = f′′(λ∗)
dλ∗
ds

∣∣∣∣
s=0

+ v′(λ∗(s)).

If f = f(0, ·) is a critical curve, we have

0 =
d
ds

∣∣∣∣
s=0

〈
∇D(z|c(s)), ∂f

∂λ
(s, λ∗(s))

〉
=

〈
∇D(z|f(λ∗)),

d
ds

∂f
∂λ

(0, λ∗)

〉
+

(
v(λ∗) +

dλ∗
ds

∣∣∣∣
s=0

f′(λ∗)
)>
∇2D(z|f(λ∗))f′(λ∗).

We conclude that (
v(λ∗) +

dλ∗
ds

∣∣∣∣
s=0

f′(λ∗)
)>
∇2D(z|f(λ∗))f′(λ∗)

+

〈
∇D(z|f(λ∗)), f′′(λ∗)

dλ∗
ds

∣∣∣∣
s=0

+ v′(λ∗(s))
〉

= 0.
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Setting f′′(λ) = 0 and v′(λ) = 0, one gets(
v(λ∗) +

dλ∗
ds

∣∣∣∣
s=0

f′(λ∗)
)>
∇2D(z|f(λ∗))f′(λ∗) = 0.

Since v(λ∗) can be arbitrarily chosen in such a way that v(λ∗) and f′(λ∗) are linearly independent,
we conclude there exists µ ∈ R such that

∇2D(z|f(λ∗))f′(λ∗) = µf′(λ∗). (6)

This means that f′(λ∗) is an an eigenvector of the Fisher information metric at the point f(λ∗)

Gf(λ∗) = ∇
2D(z|f(λ∗)) (7)

associated to the divergence D. This finishes the proof.

A result concerning principal submanifolds similar to Theorem 2 follows easily as a scholia
of its proof: we may consider the projection of the random variable z onto a p-dimensional affine
submanifold in M parameterized by a smooth map f : Λ ⊂ Rp → M whose differential has rank p.
The submanifold f(Λ) is principal with respect to families of affine submanifolds if and only if it is
spanned by p geodesics whose velocities are linearly independent and are eigenvectors of the Hessian
matrix G = ∇2D at the projection point.

A fundamental example of divergence is the Euclidean L2-norm

Deuc(z|w) =
1
2
|z− w|2, z, w ∈M

on which is based both the least-squares method and the principal component analysis. In their
seminal work [1], Hastie and Stuetzle proved that a Euclidean straight line is a principal curve with
respect to their definition if and only if its direction is an eigenvector of the covariance matrix of the
random variable z.

Now, we obtain an extension of this result by Hastie and Stuetzle valid in the context of non-Euclidean
statistical divergences. In our setting, the role of the covariance matrix is played by its non-Euclidean and
non-Gaussian counterpart, namely the Hessian matrix∇2K, where K is the cumulant generating function.

Corollary 1. Let K be a convex function in S and D be the Bregman divergence in M determined by K. Then an
affine geodesic is a principal curve with respect to one-parameter families of affine geodesics in M if and only if
its direction is an eigenvector of the Hessian of K.

Proof. This follows directly from Theorem 2 once we have observed that the Fisher metric in this case
coincides with the Hessian of K. This is however a well-known fact that may be deduced easily from
the definition of the Bregman divergence itself as

D(z|w) = K(z)− K(w)− 〈∇K(w), z− w〉. (8)

For details, we refer the reader to [26].

In the sequel, we are going to consider more general examples, not necessarily quadratic.
For instance, we may fix the Kullback–Leibler divergence

DKL(z(·, ϑ)|w(·, ϑ′)) =
∫

p(s, ϑ) log
(

p(s, ϑ)

p(s, ϑ′)

)
ds

or, more generally, the relative φ-entropy associated to φ-exponential distributions.
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3. The Space of Financial Assets

From now on, M stands for the linear span of financial assets traded in a securities market.
More precisely, every point in M corresponds to the payoff z of a contingent claim at a fixed time,
say t = 1, a random variable

z = z(s),

where s are the states of the world with probability distribution specified by some density p(s; ϑ).
Recall that ϑ is the distribution parameter of a family of probability distributions in a n-dimensional
statistical manifold S.

In the following, we will consider the statistical manifold of φ-exponential probability densities

p(s, ϑ) = expφ(〈T(s), ϑ〉 − K(s, ϑ)) p0(ϑ), ϑ ∈ Rn,

where T is a sufficient statistics of the random variable z(s) and K is the moment generating function.
Here, p0 is a fixed reference density and expφ is the φ-exponential defined as the inverse function of
the φ-logarithm [8,9]

logφ(t) =
∫ t

1

1
φ(s)

ds,

where φ : (0,+∞) → (0,+∞) is a strictly positive, nondecreasing and continuous real function.
A particular case of this deformed exponential is given by the q-exponential function

expq(t) = (1 + (1− q)t)
1

1−q

with q > 0, which corresponds to set φ(t) = tq, Hence, the q-logarithm is defined by

logq(t) =
∫ t

1

1
s

ds =
1

1− q
(t1−q − 1).

The moment generating function K defines a Bregman divergence given by

D(z|w) = K(z)− K(w)− 〈∇K(z), z− w〉.

where the probability distributions of z(s) and w(s) are, respectively, given by the densities p(s, ϑ)

and p(s, ϑ′).

3.1. Deformed Exponentials and Portfolio Selection

Setting φ(t) = t, one gets the family of exponential distributions, in particular multivariate
Gaussian distributions. For this family, Nock et al. [24,25] represented the key concepts of Portfolio
Selection theory in terms of the moment generating function and the associated Bregman divergence.
More precisely, they proved that, for constant absolute risk aversion (CARA) utility functions,
the certainty equivalent and risk premium of risky assets are, respectively, given by

C =
1
a
(
K(z(·, ϑ))− K(w(·, ϑ′))

)
and

Π =
1
a

D[z(·, ϑ))|w(·, ϑ′)],

where a > 0 is a risk-aversion parameter. Hence, they extended the classical mean-variance portfolio
selection to a general mean-divergence model for which an optimal allocation α is a solution of the
minimization problem

min
α

(
〈∇K(ϑ − aα), α〉+ 1

a
Dφ(ϑ|(ϑ − aα)

)
.
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In the particular case of Gaussian distributed returns, they easily recover the classical Markowitz’s
optimal portfolio allocation vector

α =
Σ−11

1>Σ−11
,

where Σ is the variance-covariance matrix of the returns on the assets.
In [20], the authors extended this approach to φ-exponential distributions, in particular to

q-exponential distributions. They proved that the optimal portfolio for their extended mean-divergence
model is given in terms of the cumulant function by

α =
∇2K(ϑ)−11

1>∇2K(ϑ)−11
· (9)

Note that the Hessian of the (convex) function K is positive-definite and plays the role of the
variance-covariance matrix in the Gaussian case. In the particular case of q-Gaussian distributions [14],
the optimal allocation portfolio is given by

α =
Σ−1

q 1

1>Σ−1
q 1

(10)

where
Σq = γqC1−q

q,n |Σ|
1−q

2 Σ (11)

with
γq =

1
2
(
(n + 4)− (n + 2)q

)
(12)

and

Cq,n =


Γ( 1

q−1−
n
2 )
√

π

Γ( 1
q−1 )

( 1
q−1
) n

2
(
(n + 4)− (n + 2)q

)) n
2 , for 1 < q < n+4

n+2 ,

Γ( 2−q
1−q )
√

π

Γ( 2−q
q−1+

n
2 )

( 1
1−q
) n

2
(
(n + 4)− (n + 2)q

)) n
2 , for q < 1.

(13)

Here, |Σ| is the determinant of Σ. We refer the reader to [14] for further details in q-multivariate
Gaussian distributions. It is evident that one re-obtains the Markowitz’s portfolio for q = 1 in
Equation (10).

In view of Equation (9), the authors have elaborated in [20] a steepest descent algorithm by the
natural (Riemannian) gradient of the risk premium. Some empirical support to the proposed method
is provided by comparing the cumulated returns and the evolution of the divergence for optimal
portfolios according to the mean-divergence model and the classical one by Markowitz. The numerical
evaluations in [20] show the proposal is able to yield better tracking of deep changes in the stock
market, such as the ones present in crisis scenarios, and yet produce a higher return than the classical
mean-variance strategy.

3.2. Mean-Divergence Efficient Frontier

In Markowitz’s model, the optimal portfolio allocation lies in the mean-variance efficient frontier
that bounds the feasible set of allowed returns and risks of traded risky portfolios. In [32,33], LeRoy,
Werner and Luenberger have developed a geometric approach to the mean-variance analysis in terms
of the geometry of orthogonal projections onto a mean-variance efficient frontier. From this approach,
they easily deduce an elegant geometric interpretation of the celebrated Capital Asset Pricing Method
(CAPM) as well as other factor pricing models.

In [21], the authors have extended the geometric pricing method to general divergence geometries
in M instead of the Hilbert space L2-norm.
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Since K is a strictly convex function, its Hessian is positive-definite and then defines a Riemannian
metric in M, that is, for each z ∈M, we define an inner product in the tangent space TzM by

Gz = ∇2K(z). (14)

This metric can be expanded in local coordinates around a fixed reference point o ∈M as

Gz ∼ ∇2K(o) + o(|z|2), (15)

where quadratic terms are determined in terms of the Riemann curvature of the Riemannian manifold
(M, g), see [35].

Denote by ke the expectation kernel, that is, an asset in M that yields the expected payoffs of the
assets in M. More precisely,

Gz(ke, z) = E[z]

for any z ∈M. We define the pricing kernel kq as an asset in M that gives the price of any contingent
claim z ∈M as the expected discounted payoff

g(kq, z) = E[mz] = Q(z),

where m is a stochastic discount factor. Here, Q : M→ R is the price functional, that is, the present
value of the expected returns of the asset, discounted at rate m. The existence of this functional is
one of the consequences of the Fundamental Theorem of Finance Theory whose key assumption is
that there are no arbitrage portfolios in M. For a comprehensive treatment of those fundamentals on
Finance, we refer the reader to [32,36].

Denote by E the subspace in M spanned by ke and kq. The projection zE of z ∈ M onto E is
defined by

D(zE|z) = min
w∈E

D(w|z).

It follows from the generalized Pythagorean Theorem for divergences (Theorem 1) that, fixing a
reference point o ∈M, one has

D(z|o) = D(zE|o) + D(z|zE), z ∈M′. (16)

If the case of the divergence given by the Euclidean L2-norm in M

Deuc(z|w) =
1
2
|z− w|2

Equation (16) reduces to the Euclidean decomposition

E
[
|z|2
]
= E[z]2 + var[z], (17)

where
var[z] = E

[
(z−E[z])2

]
is the variance, the classical risk measure in Portfolio Theory [36,37].

Motivated by the analogy between Equations (16) and (17), the authors proposed in [21]
the projection

Π(z) = D(z|zE)

as a novel risk measure for assets z ∈ M. Since it depends on the whole information about the
probability densities p(s, ϑ), this measure encodes higher moments of z instead of only the variance.
Moreover, one easily verifies that Π is the variance in the case of normally distributed returns



Entropy 2018, 20, 333 9 of 14

and Euclidean divergence. Hence, we have defined a risk measure that embodies non-normality
and non-Euclidean features of the returns of financial assets and the estimation of their statistical
parameters, respectively.

The main result in [21] is that the two reference assets ke and kq determine the efficient frontier for
portfolios of assets in M with respect to the risk measure Π. Indeed, we have the following theorem.

Theorem 3 (Theorem 2 in [21]). Let E = span{ke, kq} the subspace in M spanned by the expectation and
pricing kernels. Given z ∈M, we have

E[z] = E[zE]

and
Π(zE) ≤ Π(z)

where zE is the projection of z onto E.

Since the efficient frontier is spanned by two assets, this last result can be regarded
as a non-Gaussian and non-Euclidean version of the two-fund spanning theorem in Finance.
Generalizing the mean-variance case, we can prove in the case of φ-exponentials that the efficient
mean-divergence frontier for portfolio selection is spanned by two portfolios

α1 =
(∇2K)−11

1>(∇2K)−11
and αµ =

(∇2K)−1µ

1>(∇2K)−1µ
,

where µ is the desired expected return of the portfolio.

4. Generalized Beta Pricing Models and CAPM

Denote by Re and Rq the returns of ke and kq, respectively. In [21], the authors have proved that
the minimum divergence portfolio in M is given by

z = Re + (1− β)(Rq − Re)

where

β = − g(Rq − Re, Re)

g(Rq − Re, Rq − Re)
.

A similar expression holds replacing the basic assets ke and kq by two efficient assets kλ and kν in
E such that

G(rλ, rν) = 0. (18)

These zero-covariance pair of assets is given by

rλ = Re + λ(Rq − Re)

and
rν = Re + ν(Rq − Re)

where ν is given by

ν = − G(Re, Re) + λG(Rq − Re, Re)

G(Rq − Re, Re) + λG(Rq − Re, Rq − Re)
. (19)

Note that ν is well-defined if and only if kλ is not the minimum divergence portfolio in E.
We have obtained in [21] a generalized beta pricing equation involving kλ and kν

E[z] = E[rν] + β(E[rλ]−E[rν]) (20)
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for assets in z ∈M, where the generalized beta coefficient is given by

β =
G(r, rλ)

G(rλ, rλ)
· (21)

If there exists a risk-free asset 1 with return Rf in M, we fix rν = 1 reducing Equation (20) to

E[z] = Rf + β(E[rλ]− Rf). (22)

As in the classical CAPM, we can take rλ as the market return rm since it is possible to prove
under some assumptions that rm is in the mean-divergence efficient frontier. More precisely, this is the
case when every agent in the market has consumption preferences given by a time-separable utility
function of the form

u(c0, c1) = u0(c0) + u1(E[c1],G|c1(c1, c1)) (23)

where u1 is strictly decreasing with respect to the second variable. Here, c0 is the agent’s consumption
plan at time t = 0 and c1 = c1(s) is a random variable in M that describes the consumption plan of the
agent at time t = 1.

Under this assumption, we obtained in [21] a generalized CAPM equation

E[r]− Rf = β̃(E[rm]− Rf), (24)

where rm is the return of the market portfolio and

β̃ =
G(r, rm)
G(rm, rm)

(25)

is the generalized beta market. This coefficient measures the generalized covariance between the risk of
the asset or portfolio and the market risk. Note that both Equations (20) and (24) define a generalized
security market line [32,38].

The Fisher information metric G plays the role here of the covariance matrix. In the particular case
when the returns of traded assets are distributed according to a q-Gaussian distribution, it holds that

Gz = ∇2K(z) = Σq

for every z ∈M, where the q-variance matrix Σq is defined in Section 3.1.

5. Generalized Principal Components Analysis (PCA) and Applications to Finance

The results we have quoted in Sections 3.2 and 4 indicate that the Hessian information matrix

G = ∇2D (26)

plays a central role in the extension of portfolio selection and asset pricing models in the case of
non-Gaussian returns. Even under the assumption of normality of the asset returns, G can provide a more
accurate risk measure since it is sensitive to higher moments of the underlying probability distributions.

A portfolio composed by N risky assets z1, . . . , zN in M is determined by an allocation vector
α = (α1, . . . , αN) ∈ RN

αD, (27)

where D is the vector of payoffs (z1, . . . , zN)
>. We assume that the payoffs have probability

distributions given by densities p(s, ϑi) ∈ S, i = 1, . . . , N. The expected return of this portfolio is
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µ = αE[D] =
N

∑
i=1

αiE[zi]

whereas its generalized covariance is given by

π = G(αD, αD) =
N

∑
i,j=1

αiG(zi, zj)αj.

The matrix
Gij := G(zi, zj) (28)

is referred to as the generalized covariance matrix of the assets z1, . . . , zn. Thus, we consider the
optimization problem

min
α

π (29)

subject to the constraint
αα> = 1. (30)

Setting the Lagrangian
L = π − λ1(αα> − 1),

one easily verifies that the first order necessary condition for the optimal portfolio F(1) is

N

∑
j=1

GijF
(1)
j = λ1F(1)

i , (31)

that is, F(1) is an eigenvector of the generalized covariance matrix G relative to the eigenvalue
λ1. Supposing the G has N distinct eigenvalues and iterating this same optimization procedure
in subspaces orthogonal to the span of the already given eigenvectors, one obtains the principal
directions F(1), . . . , F(N) correspondent to the eigenvalues

λ1 ≥ . . . ≥ λN ≥ 0.

We then define a matrix R by

zj =
N

∑
i=1

RijF(i)

in such a way that an arbitrary portfolio’s payoffs may be rewritten as

αD =
N

∑
j=1

( N

∑
i=1

αjRij

)
F(i) =:

N

∑
i=1

βiF(i).

Next, we restrict ourselves to the projections of portfolios onto the (totally geodesic) affine
subspace spanned by the first p < N principal directions F(1), . . . , F(p), taken as the most significant
ones because they represent the largest p diagonal elements in the generalized covariance matrix in
diagonal form, that is,

Gdiag = R−1GR.

Hence, we obtain a multi-factor linear model of the form

αD =
p

∑
i=1

βiF(i) + ε, (32)
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where

ε =
N

∑
i=p+1

βiF(i)

satisfies

G

(
ε,

p

∑
i=1

βiF(i)
)
= 0.

The expected return of the p-principal portfolio

p

∑
i=1

βiF(i)

is
p

∑
i=1

βiE[F(1)]

and its generalized variance is given by
p

∑
i=1

λiβ
2
i .

We claim that the p-principal portfolio with expected return µ∗ and minimum generalized variance
is determined by the weights

βi =

( p

∑
j=1

E[F(j)]√
λj

)−1E[F(i)]

λi
. (33)

To prove this claim, we denote

β̃i =
√

λiβi, Ri =
1√
λi
E[F(i)]

and then we set the Lagrangian
1
2

p

∑
i=1

β̃2
i − ν

( p

∑
i=1

β̃iRi − µ∗

)
with a constraint given by

p

∑
i=1

1√
λi

β̃i = 1.

The first order condition is
β̃i = νRi,

for all i = 1, . . . , p. Taking traces and using the constraint condition, one gets

ν
p

∑
i=1

Ri√
λi

= 1.

We conclude that

βi =

( p

∑
j=1

Rj√
λj

)−1 Ri√
λi

(34)

as claimed. In sum, we have proven the following theorem.
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Theorem 4. The p-principal portfolio with minimum generalized variance is given by

βi =

( p

∑
j=1

E[F(j)]√
λj

)−1E[F(i)]

λi
, (35)

where E[F(i)] and λi, i = 1, . . . , p, are, respectively, the expected return and the generalized variance of the
first p eigenvectors F(1), . . . , F(p) of the generalized covariance matrix G = ∇2D. This portfolio coincides
with the projection of the random variable z = αD over the principal p-dimensional submanifold spanned by
the eigenvectors.
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