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Abstract: In this paper, the dynamics of local finite-time Lyapunov exponents of a 4D hyperchaotic
system of integer or fractional order with a discontinuous right-hand side and as an initial
value problem, are investigated graphically. It is shown that a discontinuous system of integer
or fractional order cannot be numerically integrated using methods for continuous differential
equations. A possible approach for discontinuous systems is presented. To integrate the initial
value problem of fractional order or integer order, the discontinuous system is continuously
approximated via Filippov’s regularization and Cellina’s Theorem. The Lyapunov exponents
of the approximated system of integer or fractional order are represented as a function of two
variables: as a function of two parameters, or as a function of the fractional order and one parameter,
respectively. The obtained three-dimensional representation leads to comprehensive conclusions
regarding the nature, differences and sign of the Lyapunov exponents in both integer order and
fractional order cases.

Keywords: fractional-order system; Caputo’s derivative; discontinuous initial value problem;
continuous approximation; Lyapunov exponent

1. Introduction

Systems with discontinuous right-hand side modeled as Initial Value Problems (IVPs) are mostly
ideal, since switch-type functions like sgn are used, where the hysteresis or delay of the real switching
operation is not considered, or the regularization represents a good approach for numerical integration
of the underlying problems. Discontinuous functions can be found in two-dimensional mechanical
systems such as systems with dry friction, oscillating systems combined with dry and viscous damping,
forced vibrations, systems with stick and slip modes, brake processes with locking phases, control
synthesis for uncertain systems, elastoplasticity, and also in game theory, optimization, control theory,
calculus of variations, biological and physiological systems, electrical (chaotic) circuits, complex
networks, power electronics, etc. (for examples, see [1–3] and references therein).

There are two main strategies to approach numerically discontinuous systems of integer order
(IO): one strategy is to simply ignore the discontinuities (time stepping methods) and to rely on
a local error estimator such that the error remains acceptably small, while the other strategy is to
use a scalar event function h : Rn → R, which defines the discontinuity Σ = {x ∈ Rn|h(x) = 0},
to determine the intersection point as the new starting point for continuing the numerical solution
(event-driven methods).

For numerical integration of discontinuous ordinary differential equations (ODEs) of IO,
there exist dedicated numerical methods (see e.g., [4–6], or the survey [7]). However, note that
a numerical method for discontinuous systems may become either inaccurate or inefficient, or both,
in the discontinuity region. Moreover, the local truncation error analysis, which forms the basis of
most step-size control techniques, fails if there is not sufficient local smoothness.
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Note also that the numerical methods to solve a continuous ODE are faced with difficulties
when the equation presents discontinuities on the right-hand side. Consider, for example, the Matlab
integrator ode45. Jan Simon (from Matlab-related website [8,9]) pointed out that using this integrator
or other routines for continuous systems, one can sometimes reach a final value, but this final value
cannot be considered as a real “result” from the viewpoint of a scientist working in the field of
numerical computations. For such systems, the numerical integration in the neighborhood of the
discontinuity, using numerical methods for continuous systems, is a kind of measurement process
based on an extremely large number of smaller and smaller steps, which cause round-off errors and
local discretization errors. Also, the step-size control of the routine ode45 can lead to unexpected
effects and the solver might integrate right over a discontinuity without noticing this. In these
cases, the results have poor accuracies, which are highly doubtful especially in the neighborhoods
of discontinuities. Thus, Matlab ode45 might reduce the step size to such a tiny value that the
integration could take extremely long computational time to run while the accumulated rounding
errors dominate the solutions. Similarly, in Mathematica, NDSolve cannot deal with discontinuities
without special treatments.

Although fractional-order (FO) systems modeled with discontinuous functions have not
been rigorously proved and analyzed, they could have better physical meaning for real systems.
While the crossing of the solutions of continuous systems of FO on switching surfaces can be
locally analyzed and then the whole dynamics can be composed by locally defined flow maps,
for discontinuous systems of FO, however, this is not possible. In fact, for discontinuous systems of
FO, transversally crossing or sliding solutions have not yet been analyzed. Moreover, the existing
theory of Lyapunov Exponents (LEs) for classical dynamical systems remains to be generalized to
discontinuous systems of IO, and then of FO.

On the other side, although there are numerical methods for FDEs (see, for example, [10,11]
or [12] and references therein) and also for differential equations of IO with discontinuous
right-hand sides, there are no numerical methods for FDEs with discontinuous right-hand sides.
Consequently, continuously or smoothly modeling the underlying systems of IO, or FO, represents a
possible challenge.

In [13,14], Benettin et al. proposed a Gram–Schmidt orthogonalization procedure to compute
finite-time LEs for continuous systems of IO, as described in [15]. However, the algorithm is designed
for continuous systems of IO only. Therefore, in this paper the LEs are numerically determined,
after the considered IVP of IO or FO is continuously approximated. For the FO case, in [16] a Matlab
code is presented to calculate the LEs of continuous systems of FO.

As generally accepted, a hyperchaotic system has two positive LEs, one null exponent along the
flow and one negative exponent. However, this is not always the case; there exist 4D systems with
more positive exponents [17–19] or even without zero exponents (see e.g., [20] and references therein).
Therefore, representing graphically three-dimensionally the LEs, as a function of two parameters, or of
one parameter and the fractional order, reveals that not only the numbers of positive, zero and negative
exponents but also their dynamics, and allows an easier understanding and interpretation compared
to the standard representation as a function of FO or parameter.

On the other side, determination of LEs of discontinuous systems of IO or FO requires the
numerical integration of the underlying IVP, which cannot be realized with the classical methods for
continuous differential equations of IO or FO, respectively.

LEs measure the average rate of divergence or convergence of orbits starting from nearby initial
points. Therefore, they can be used to analyze the stability of limits sets and to check the sensitive
dependence on initial conditions, that is, the presence of potential chaotic attractors.

In numerical experiments, one can only consider finite-time numerically computed values of
LEs, which can differ significantly (e.g., if the considered trajectory belongs to a transient chaotic set).
Therefore, the numerically computed LEs are considered as local finite-time LEs.
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The existence of local finite-time LEs of a discontinuous hyperchaotic system of IO or FO,
will be exemplified graphically on the system described by the following commensurate FO
differential equations:

dq

dtq x1 = a(x2 − x1),
dq

dtq x2 = x1x3 − x1x4,
dq

dtq x3 = b− x1x2,
dq

dtq x4 = c sgn(x3)− kx4,

(1)

where 0 < q ≤ 1, and parameters a, b, c and k are real. Given the variations of each parameter generates
rich dynamics, they can be considered as bifurcation parameters [21,22].

If q = 1, dq

dtq stands for the usual derivative of IO: dq

dtq x = d
dt x := ẋ, while for q ∈ (0, 1),

dq

dtq represents Caputo’s derivative with starting point 0, denoted, Dq
∗, dq

dtq x = Dq
∗ [23–25]. The advantage

of using Caputo’s derivative is it allows the use of initial conditions in the standard form, x(0) = x0,
as for the IO case.

The IO variant of this system yielded from a 3D Sprott system of IO [21] is presented in [22].
Being a discontinuous system, it cannot be numerically integrated with the common routines

designed for continuous ODEs of IO or FO (see e.g., [19]). To allow the study of numerical LEs,
a possible continuous regularization of the right-hand side to overcome the discontinuity problem is
presented in this paper.

The paper is organized as follows. Section 2 presents the approach of discontinuous differential
equations of IO or FO; Section 3 deals with the three-dimensional graphical representation of LEs.
Finally, the Conclusion section ends the paper.

2. Numerical Integration of the IVP (1)

System (1) belongs to the class of systems with discontinuous right-hand side modeled by the
following FO IVP of commensurate order q:

dq

dtq x(t) = f (x(t)), x(0) = x0, t ∈ I = [0, ∞), (2)

where f : Rn → Rn is a function in the following form:

f (x(t)) = g(x(t)) + A(x(t))s(x(t)), (3)

and g : Rn → Rn is a continuous function, s : Rn → Rn, s(x) = (s1(x1), s2(x2), ..., sn(xn))T

a discontinuous function, with si : R → R, i = 1, 2, ..., n, piece-wise constant functions
(e.g., sgn function) and A a square matrix of functions.

Being an autonomous system, hereafter the time variable t will be suppressed.
For system (1):

g(x) =


a (x2 − x1)

x1x3 − x1x4

b− x1x2

−kx4

 , s(x(t)) =


sgn(x1)

sgn(x2)

sgn(x3)

sgn(x4)

 and A(x) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 c 0

 .

To understand the complexity of the numerical integration of the discontinuous problem (2),
consider for example the simple case q = 1, and the example ẋ = 1 − 2 sgn(x), x(0) = x0 [26].
The equation has no classical (continuously differentiable) solutions. Thus, if x0 6= 0, a solution is
x(t) = 3t + x0, for x < 0 and x(t) = −t + x0, if x > 0. However, as t increases, in the plane (t, x)
these solutions tend to the line x = 0 and tend to remain on this line but never leave it upwards or
downwards. Moreover, once a solution has arrived on the line x = 0 it cannot move along this line,
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because the solution x(t) = 0 does not satisfy the equation in the usual sense: its derivative is ẋ(t) = 0,
while the function on the right-hand side gives 1− 2 sgn(0) = 1.

On the other side, the IVP of FO, Dq
∗x = 2− 3 sgn(x), x(0) = x0 [16], has no classical solutions

starting from any point x0 (see [27] for solutions to FDEs). Thus, for x = x0 = 0, there is no solution
since Dq

∗0 = 0 6= 2− 3 sgn(0). For x0 > 0, even there exists a solution, it exists only on the interval
[0, T′) with T′ = (Γ(1 + q)x0)

1/q, where Γ is the Gamma function. In this case, the solution is
x(t) = x0 − tq/Γ(1 + q), which cannot be extended to any interval larger than [0, T′). If x0 < 0,
there also exists some T′′ = (Γ(1 + q)x0/5)1/q, and the solution x(t) = x0 + 5tq/Γ(1 + q) exists but
only on [0, T′′). Also, although these solutions tend to the line x = 0, they cannot be extended along
this line.

Thus, a discontinuous IVP (of IO or FO) might have no classical solutions (see [26,28] for the
IO case).

In other words, using dedicated numerical methods for continuous IO or FO differential equations,
such as Matlab integrators or the Adams-Bashforth-Moulton (ABM) method for FO differential
equations respectively, might only give apparently correct results (see [29] for a correct numerically
integration approach to this kind of discontinuous problems).

A simple way to deal with discontinuities, which can be easily implemented computationally,
is to approximate the discontinuous functions s by continuous functions.

The possibility to approximate the right-hand side of (2) is ensured by the following theorem.

Theorem 1 ([19]). If g is continuous, then system (2)–(3) with q ≤ 1 can be continuously approximated by the
following IVP:

dq

dtq x = f̃ (x), x(0) = x0, t ∈ I,

where f̃ is a continuous approximation of f . Furthermore, if g is smooth, then f̃ is smooth.

The proof is based on the Fillipov regularization [26], which allows to transform the discontinuous
problem into a set-valued IVP (see e.g., [28]). Next, based on Cellina’s Theorem ([28] (Theorem 1, p. 84),
or [30] (Theorem 9.2.1, pp. 358–359)), the set-valued problem admits a continuous approximation
f̃ (see the proof in [19]). The approximation given by Cellina’s Theorem is smooth and, if g is also
smooth, f̃ is smooth.

Consider, for simplicity, the case of sgn function (Figure 1a). The approximation can be realized
either within an ε-band centered on the branches of the sgn function, i.e., global approximation defined
along the entire branches (light-green ε-band in Figure 1b), or only on a small enough ε-neighborhood
of the discontinuity, i.e., local approximation, defined on a small enough ε-neighborhoods of x = 0
(Figure 1c).

One of the best candidates for the local approximation is the following sigmoid-like function [19]:

s̃gn(x) =
2

1 + e−
x
δ

− 1 ≈ sgn(x), x ∈ R, (4)

where δ is a parameter which controls the slope of the function and, implicitly, the ε-neighborhood size
(see Figure 1b for δ = 10−7).

As global approximation of the sgn function, the cubic polynomials represent a possible choice:

s̃gnε(x) = − 1
2ε3 x3 +

3
2ε

x ≈ sgn(x), x ∈ [−ε, ε], (5)

which is smoothed at the “gluing” points ±ε [19].

Remark 1. While the global approximation (4) is less computer time consuming and can be simply implemented
(by replacing the sgn function), the local approximation (5) requires relatively longer computer time and also the
interception of the ε-neighborhood crossing, when sgn must be replaced. On the other side, as shown in [19],
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the local approximation offers a better approximation (see Figure 1d, where one can see that, compared to the
local approximation, the global approximation only tends to reach (asymptotically) the horizontal branches of
the sgn function). Also, while ε in the local approximation (5) represents the size of the ε-approximation, the
relation between ε size and δ in the global approximation is rater complicated and difficult to find.

Figure 1. (a) Graph of sgn function; (b) Graph of the global approximation of sgn: 2
1+e−

x
δ
− 1 for

δ = 10−7, included in an ε-neighborhood; (c) Graph of the local approximation of sgn: − 1
2ε3 x3 + 3

2ε x
for ε = 10−6, defined in the ε-neighborhood of the discontinuity x = 0; (d) Superimposed graphs of
local and global approximation. The magnified rectangle reveals that the global approximation reaches
only asymptotically the branches of sgn.

In this paper, the local approximation is adopted with ε = 1× 10−6.
Once the system (2) is approximated, the underlying equations (of IO or FO) can be numerically

integrated with some standard method for continuous differential equations, e.g., Matlab ode45,
or the predictor-corrector multi-step Adams-Bashforth-Moulton (ABM) method for FO [10].

3. Graphical Analysis of Lyapuynov Exponents of System (1)

Assume that g in (2) is smooth. Then, f̃ is also smooth (Theorem 1) and, for the IO case,
the existence of LEs is ensured. The existence of the variational equations, which determine the
LEs, is given by the following theorem.
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Theorem 2 ([16,19]). The system (1), with q < 1, has well-defined LEs.

Sketch of the proof: Under continuity assumption on g, and after the continuous (smooth)
approximation of f , there exists a flow φ : I × Rn → Rn satisfying Dq

∗φ(t, x0) = f̃ (φ(t, x0)),
φ(0, x0) = x0, for t ∈ I. Then, [31] (Theorem 2) applies.

To determine the spectrum of LEs for q ∈ (0, 1], the Benettin algorithm is utilized (see the Matlab
code for LEs of continuous systems of FO in [32]).

If the system is of IO, suppose it depends on at least two parameters.
Usually, the underlying LEs are determined graphically as one-variable function of one parameter,

or of the FO, the graphs being curves. However, the graphical interpretation of LEs can be dramatically
improved if the LEs are considered as functions of two variables: two parameters or one parameter
and the FO. In these cases, the results are three-dimensional surfaces.

In order to determine numerically the LEs of the system (1) and representing the underlying LEs
surfaces, in this paper the locally approximation (5) is utilized and the approximated system becomes
a smooth system:

dq

dtq x11 = a(x2 − x1),
dq

dtq x2 = x1x3 − x1x4,
dq

dtq x3 = b− x1x2,

dq

dtq x4 =

{
c sgn(x3)− kx4, if x3 /∈ (−ε, ε, )
cs̃gnε(x3)− kx4, if x3 ∈ [−ε, ε] .

(6)

As known, the LEs exponents are time-averaged along some typical trajectory in the phase space.
Also, the computation over a relative longer time interval allows a more complete visualization of
a chaotic attractor, with damage to the results accuracy. In this paper, the integration time interval
is I = [0, 250]. In order to avoid the interplay between different attractors (the system presents
multistability, i.e., coexistence of attractors [17]), to remain focusing on the same attractor, same initial
condition (0.1, 0.1, 0.1, 0.1) is used. However, somewhat different initial conditions, chosen in the
neighborhood of this point, give slightly similar results.

A “zero” LE is considered here as a real number with at least two first zero decimals,
i.e., determined with errors less than 1× 10−3 [20,33,34].

Let the LEs ordered as follows: λ1 ≥ λ2 ≥ λ3 ≥ λ4. The graphical representation of these LEs
will be given in the space (p1, p2, λ), where p1,2 are either two parameters (in this paper, a, b, c or k) or
one parameter and the FO q, and λ representing the values of LEs. Therefore, a zero LE represents
graphically a point (p1, p2, 0), i.e., a point lying on the plane λ = 0, while a positive or negative LE is
represented by a point (p1, p2, λ) with λ > 0 or λ < 0, respectively.

3.1. The Integer Case

Consider the IO case, i.e., the approximated system (6) with dq

dtq x = ẋ, and let a = 1, c = 9 and b
and k be variable parameters (other possible combinations can be treated similarly). The numerical
integration is realized with the Matlab ode45 routine and the obtained LEs are considered as functions
of b and k, λi(b, k), i = 1, 2, 3, 4, for (b, k) belonging to the lattice [2, 12]× [2, 12]. The results are plotted
for clarity, in separated figures (Figure 2a–d).

The exponent λ4 being negative, hereafter for clarity only λi, i = 1, 2, 3 are considered.
As can be seen, for all b and k, there exist at least one positive LE, λ1 > 0, and at least two negative

λ3,4 < 0. Therefore, the only exponent for which function of b and k can be zero or change sign,
is λ2. For a better understanding, consider Figure 3a. To obtain an usual representation of LEs,
e.g., as function of the parameter b for a fixed value of k (e.g., k = 6), one can consider a vertical
section (perpendicular to the plane (b, k) and parallel with axis b), through k = 6 (Figure 3a,b).
Similarly, one can obtain the LEs for fixed b and k ∈ [2, 12]. For example, LEs obtained numerically
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as function on k for b = 9.55 are represented in Figure 3c (see the graphical section in Figure 3a,
with b = 9.55).

From the section with k = 6 and b ∈ [2, 12] (Figure 3b), one can see that, for b ∈ [2, b1] ∪ [b3, b4],
the system admits two positive LEs, while for the other values of b the system has only a single positive
LE. Regarding the zero LEs, even this section reveals that there exist few isolated values of b, for which
the system admits zero LE (b1, b2, b3 and b4) if one crosses the surface of λ2 with the plane λ = 0 and
it can be seen that the system actually has infinitely many values (points) (b, k) ∈ [2, 12]× [2, 12] for
which λ2 = 0. These points are situated on continuous “zero curves” (red plot) in Figure 3d (dark gray
represents the points where λ2 > 0, while light gray represents the points with λ2 < 0). For example,
for the point M(4.333, 6.667), the LEs plotted as function of time (Figure 3e) show that λ3 = −3× 10−3.

Figure 2. Graphs of LEs of system (6) of IO , represented as surfaces depending on the parameters b
and k. The horizontal plane, λ = 0, reveals the zero LEs. (a) Surface representing the evolution of λ1;
(b) Surface representing the evolution of λ2; (c) Surface representing the evolution of λ3; (d) Surface
representing the evolution of λ4.
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Figure 3. (a) First three overplotted LE surfaces of system (6) of IO; (b) First three LEs obtained by
graphical section of the surfaces of LEs with the vertical plane k = 6 (see also Figure 3a). Values b1 − b4

correspond to the zero LE (λ2 = 0); (c) The first three LEs as function of k, obtained numerically for
b = 9.55 (see, for comparison, the vertical section b = 9.55 in Figure 3a); (d) Zero LE curves (red plot)
obtained by sectioning the surface λ2(b, k) withe plane λ = 0, containing the values (b, k) for which
λ2 = 0; (e) The first three LEs corresponding to (b, k) = (4.333, 6.667) (point M in Figure 3d), revealing
that λ2 = 0(−3× 10−3).

This property seems to be a general characteristic of discontinuous systems and is different from
the case of continuous systems of FO, where the zero LEs are situated on surfaces, not curves [19].

3.2. The Fractional-Order Case

Consider system (6) of FO, with a = 1, b = 1, c = 9, and k and q ∈ (0, 1) variables
(similarly, one can obtain the other possible combinations). LEs are obtained with the Matlab code
presented in [16].

Let us consider the most interesting case of q values close to 1, which generate rich dynamics
(as known, for lower values of q, chaos vanishes generally). Following the same procedure as for
IO, the obtained LE surfaces for q ∈ (0.7, 1) and k ∈ [2, 10], are plotted separately in Figure 4a–d.
As expected, similarly to the integer case, a single LE, λ2, is potentially zero.
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Figure 4. Graphs of LEs of the approximated system (6) of FO, represented as surfaces depending on
the parameters q and k. The horizontal plane λ = 0 reveals the zero LEs. (a) Surface representing the
evolution of λ1; (b) Surface representing the evolution of λ2; (c) Surface representing the evolution
of λ3; (d) Surface representing the evolution of λ4.

Again, for clarity, only consider the first three LEs.
For q = 0.9 (see the vertical section with the plane q = 0.9 in Figure 5a), the numerically

determined LEs spectrum is plotted in Figure 5b (compare with the vertical section through q = 0.9 in
Figure 5a). The figure reveals that there are values of parameter k for which λ2 is either zero, positive
or negative.

Apparently for k = 4.1, there is no zero LE (the surface of λ2 does not cross the plane λ = 0
for k = 4.1, Figure 5a) and LEs have the signs (+,−,−,−). However, by a careful analysis, if one
considers the vertical section with the plane k = 4.1 (Figure 5c), the dynamics of LEs as function of q
reveals that, for q close to 1 (q > 0.95), there exists zero LE (see the zoom in Figure 5d, where the detail
shows that there exists zero λ2 determined with errors smaller than 1× 10−3, λ2 = 2× 10−4) (note
that, in the zoomed image, the calculated values of LE are represented by circles, while in between the
circles are obtained by linear interpolation).

Similarly, one can determine the zero curves formed by points (q, k) in the plane λ = 0 for which
there exist zero LEs (λ2) (Figure 5e).

It is interesting to see that there are regions (surfaces) in the plane (q, k) where there does not
exist zero LEs. Thus, for example for the point M(0.9, 4.1) (Figure 5e), the LEs are different from zero
(see Figure 5f for the first three LEs). Moreover, in this case, when the signs of LEs are (+,−,−,−),
it persists for all q ∈ (0.7, 1) if k is smaller and close to k = 4 (see line segment PQ).
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Figure 5. (a) Graph of the surface of the second LE of system (6) of FO; (b) First three LEs obtained
numerically for q = 0.9 (compare with the graphical vertical section q = 0.9 in Figure 5a); (c) The first
three LEs obtained numerically for k = 4.1 as function of q (see also the vertical section k = 4.1 in
Figure 5a); (d) The magnified image of the first two LEs revealing the fact that there exists zero LE (λ2)
only for q > 0.95; (e) Zero curves (red plot) obtained by sectioning the surface λ2(b, k) withe plane
λ = 0, containing the values (q, k) for which λ2 = 0; (f) LEs corresponding to q = 0.9 and k = 4.1
(point M in Figure 5e). For these values of (q, k), there are no zero LEs.

4. Conclusions

In this paper we proposed the three-dimensional representation of the local finite-time LEs
spectrum of a discontinuous dynamical system of IO or FO.

The example of a hyperchaotic discontinuous 4D system of IO or FO depending on several
parameters is considered.

To be numerically integrated, the system is continuously and smoothly approximated. In this way,
the system can be correctly integrated by using the standard numerical integrators for IO or FO.

The evolution of the LEs is represented as a two-dimensional function of two variables: one of the
parameters and the FO, is more suggestive and comprehensive compared to the classical representation
of LEs as function of a parameter or of the FO. In this way, the considered hyperchaotic system is
found to have always one positive LE or, depending on parameters or the order, two positive LEs.
Therefore, for all considered parameter values of b and k, or FO q and k, the system is at least chaotic
(one positive LE, λ1 > 0) or even hyperchaotic (two positive LEs, λ1,2 > 0).
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Also, in the plane λ = 0, there exist continuous zero curves of points (b, k) (in the case of IO
system), or (q, k) (in the case of FO system), for which there exist zero LEs. Thus, the following
signs of LEs are possible: (+,−,−,−), (+, 0,−,−) or (+,+,−,−). Therefore, for the case of
hyperchaotic systems, the standard characterization as systems with two positive LEs seems not
being an adequate definition.

Another useful utilization of the three-dimensional representation of LEs is that it reveals
a possible general property: discontinuous systems have zero LEs for parameters (p1, p2) (in the case
of IO systems with two parameters) or (p, q) (in the case of systems of FO with a single parameter)
situated along continuous curves, not on surfaces, unlike the case of continuous systems of IO or FO
(see [19]).

The possibility to choose graphically the parameters or the FO, such that the considered system
has a larger number of positive LEs, can be useful for secure communication where generating
fractional-order hyperchaotic systems with a desired number of positive LEs is an open and
important problem.

Another advantage of this kind of representation is in using only one-dimensional representation
(as function on a single parameter or on the FO), it is impossible to conclude about the existence of
zero LEs, or the number of positive LEs, while the three-dimensional representation allows suggestive
visualization of the dynamics of the LEs.

Conflicts of Interest: The author declares no conflict of interest.
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