
entropy

Article

Thermoelectricity and Thermodiffusion in Magnetic
Nanofluids: Entropic Analysis

Thomas J. Salez 1 ID , Sawako Nakamae 1,* ID , Régine Perzynski 2 ID , Guillaume Mériguet 2 ID ,
Andrejs Cebers 3 ID and Michel Roger 1

1 Service de Physique de l’État Condensé, CEA, CNRS, Université Paris-Saclay, 91191 Gif sur Yvette CEDEX,
France; thomas.salez@cea.fr (T.J.S.); michel.roger@cea.fr (M.R.)

2 Laboratoire Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université,
CNRS, 4 Place Jussieu, F-75005 Paris, France; regine.perzynski@upmc.fr (R.P.);
guillaume.meriguet@upmc.fr (G.M.)

3 MMML Lab, Faculty of Physics and Mathematics, University of Latvia, Zellu-8, LV-1002 Riga, Latvia;
aceb@tesla.sal.lv

* Correspondence: sawako.nakamae@cea.fr; Tel.: +33-16908-7538

Received: 17 March 2018; Accepted: 16 May 2018; Published: 24 May 2018
����������
�������

Abstract: An analytical model describing the thermoelectric potential production in magnetic
nanofluids (dispersions of magnetic and charged colloidal particles in liquid media) is presented.
The two major entropy sources, the thermogalvanic and thermodiffusion processes are considered.
The thermodiffusion term is described in terms of three physical parameters; the diffusion coefficient,
the Eastman entropy of transfer and the electrophoretic charge number of colloidal particles, which all
depend on the particle concentration and the applied magnetic field strength and direction. The results
are combined with well-known formulation of thermoelectric potential in thermogalvanic cells and
compared to the recent observation of Seebeck coefficient enhancement/diminution in magnetic
nanofluids in polar media.

Keywords: thermoelectricity; thermodiffusion; nanofluids; colloids; seebeck coefficient;
thermogalvanic cells

1. Introduction

The existence of thermoelectric effects in liquid electrolytes is long known [1]. However, their use
as a potential source of renewable energy was considered unlikely, due to their low ionic conductivity
compared to the solid semiconductor counterparts. Such a view is quickly changing since the
discovery of high thermogalvanic Seebeck We note that strictly speaking, the term “Seebeck effect”
describes a thermoelectric energy conversion phenomenon observed in the solid-state materials.
However, the term is now commonly extended to refer to the “temperature coefficient” [1] in
thermogalvanic (temperature dependent redox reaction) cells containing liquids [2]. To be in-line
with this trend, here we loosely employ the term "Seebeck" to delineate the thermoelectric potential
generation across two electrodes in thermogalvanic cells, due to both the oxidoreduction reactions
and the internal thermoelectric field (see next section for more precision)) effect (in the order of
1 to 10 mV/K) in complex liquids. (See for example: ionic liquids ([3–7]), aqueous ([8–11]) and
mixed-electrolytes ([12,13]), and gelled electrolytes ([14,15])).

More recently, an enhanced Seebeck coefficient was reported in another type of complex fluid;
namely, charged colloidal solution known as ionic nanofluids (but not ionic liquids) [16], which is
believed to be related to the thermodiffusion (Soret effect) of dispersed colloidal particles. Indeed,
thermodiffusive behavior (Soret coefficient) of charged colloidal particles are know to depend strongly
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on the size, the shape, the surface charge of charged colloidal particles as well as on the surrounding
ionic environment and the resulting internal thermoelectric field (for example, see [17–21]).

In solid materials, thermoelectric potential can be calculated from the out-of-equilibrium
thermodynamics where the energy and mass flux are expressed in terms of Onsager coefficients
Lij (see for example, [22]). Unlike in solids where there is usually only one type of charge carriers
(electrons or holes), there are at least two if not more charge carriers (ions and colloidal particles) in any
given liquid electrolyte. These carriers are all subject to thermodiffusion and interact among themselves,
complicating considerably the theoretical analysis of such systems [23,24]. In most thermogalvanic
cells, the Seebeck potential due to the thermodiffusion of small ions is much smaller (only a few
percent) than that of the thermogalvanic term and thus ignored (see, for example, [2,25]). In ionic
nanofluids containing large (nanometric) heat and charge carriers, however, such simplification is no
longer valid.

The goal of the present article is therefore to provide analytical model linking the well-known
macroscopic phenomena in liquid electrolytes; i.e., Soret and Seebeck effects, to the physical parameters
(charges, diffusion coefficients, etc.). Our particular attention is given to magnetic ionic nanofluids
where both positive and negative effects were observed depending on the nature of the magnetic
particles and of the base fluids.

In the following sections, we will first define a typical thermocell containing ionic nanofluids and
its operation condition being considered. Two distinct sources of Seebeck potential are then described;
which are, thermogalvanic Seebeck effect and internal Seebeck effect due to the thermodiffusion of
charged species. The magnitude of the latter depends strongly on three key parameters; the Eastman
entropy of transfer (Ŝ), the electrophoretic charge number (ξ) and the diffusion coefficient D whose
values we aim to identify through subsequent entropic analysis.

2. Thermogalvanic Cell

A simple thermogalvanic cell considered here is filled with a solution composed of a liquid
(not an ionic liquid, and considered as a continuous medium), charged (magnetic) particles with
surface charge number of ξ, counterions (for electric neutrality of the solution) and the redox couple
molecules. The two ends of the cell are sealed hermetically with identical and metallic electrodes.
The cell is assumed to be heated from the top so that no convection occurs. An electrical potential, ∆V ,
appears across these electrodes upon application of a temperature gradient, ∆T (see Figure 1) due to
both the thermogalvanic effect of redox reactions and the internal electric field induced by the charged
species in the bulk. The total Seebeck coefficient is defined by:

Se = −∆V
∆T

(1)

with V being the potential at each electrode. (The Seebeck coefficient is defined here and in the rest
of this article as

−→
E = Se

−→∇T, hence the minus sign in Equation (1). This definition is often used for
theoretical works within the solid-state thermoelectric community [22,26] and has been retained here
for an easier comparison with other theoretical works. However, in the thermogalvanic cell community,
it is not uncommon to see the following definition: Se = ∆V

∆T ).
As stated earlier, in most liquid electrolytes containing only small ions, the thermogalvanic

Seebeck coefficient is much larger than the internal one and thus the latter is often ignored. In ionic
nanofluids, and in magnetic nanofluids in particular, the internal term (Seint) has been shown to make
non-negligible contributions to the total Seebeck coefficient (Se) of the liquid.
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Figure 1. Schematic representation of two electric fields in a thermocell. The internal electric field
−→
E int is created in the solution volume by thermodiffusion of ions. The thermogalvanic electric field
−→
E is created between the two electrodes. The hot and cold electrode potentials are Vhot and Vcold :∣∣∣−→E ∣∣∣ = ∣∣∣ Vhot−Vcold

l

∣∣∣, l being the distance between the electrodes.

Thermogalvanic Seebeck Coefficient

The redox half reaction occurring at a metallic electrode and involving a single electron transfer
can be described by:

in solution︷ ︸︸ ︷
∑

j
νj Aj +

inside the conducting electrode︷︸︸︷
e− = 0 (2)

where Aj are chemical species participating in the redox reaction, and νj the corresponding
stoichiometric numbers. Here we suppose that both reducing and oxidizing species are charged,
and no other species (counterions and charged particles) take part in the redox reaction (νk = 0). In a
simplest case, i.e., νOx = 1 and νRed = −1, the reaction is written as:

Oxn− + e− = Red(n+1)− (3)

Oxn− + e− − Red(n+1)− = 0 (4)

An oxidant (resp. reductant) in the solution can take (resp. give) an electron to the electrode to
become a reductant (resp. oxidant). The most common example of such a reversible redox couple in
thermogalvanic cell is that of Fe(CN)3−

6 /Fe(CN)4−
6 in aqueous media [2,8,27–29].

The (electro)chemical potential (µ̃j) equivalent of Equation (2) at the local thermodynamic
equilibrium near the electrode is:

∑
j

νjµ̃j + µ̃e− = 0 (5)

with
µ̃j = µj + zjeV i (6)

and
µ̃e− = µe− − eV electrode (7)
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where V i the internal potential of the solution near the electrode and V electrode the potential inside
the conducting electrode. Then the potential difference between two electrodes held at different
temperatures can be written as:

e∆V electrode = ∑
j

νj

(
∆µj + zje∆V i

)
+ ∆µe− (8)

= ∑
j

νj∆µj + ∆V i · e ·∑
j

(
νjzj
)
+ ∆µe− (9)

= ∆∆rG + ∆V i · e ·∑
j

(
νjzj
)
+ ∆µe− (10)

where ∆rG = ∑j νjµj is the Gibbs free energy of the redox half reaction. The conservation of
charge imposed by Equation (2): i.e., ∑j λjzj = 1 and the definition of internal electric potential;
i.e., ∆V i = −Seint · ∆T simplifies the above expression to:

e∆Velectrode = ∆∆rG− e · Seint · ∆T + ∆µe− (11)

Se = −∆Velectrode

∆T
= − 1

e · ∆T
(∆∆rG + ∆µe−) + Seint (12)

We suppose that the chemical potential difference of electrons between the two conducting
electrodes (∆µe− ) is negligible, i.e., the Seebeck coefficient of the metal (of the order of µV/K) is
negligibly small compared to that of the solution (of the order of mV/K). Therefore:

Se = Seint −
∆∆rG
e · ∆T

(13)

The measured Seebeck coefficient at the electrodes is thus the sum of two terms with distinct
origins: the internal Seebeck coefficient created by the ensemble of ions/particles in the solution and
the term due to the redox couple.

The internal electric field
−→
E int is the field experienced by one charged particle in the bulk of the

solution. It is of fundamental importance for a large number of diffusion phenomena of charged species
in electrolytes [17–20,30–33]. However,

−→
E int is very difficult to measure experimentally, given the

fact that the introduction of metallic electrodes inevitably induces surface phenomena (e.g., electronic
double layer formation). The corresponding internal Seebeck coefficient is given by:

−→
E int = Seint

−→∇T (14)

where
−→
E int can be obtained from the particle current

−→
J Ni equation,

−→
J Ni = −Di

[
−→∇ni + ni

Ŝi
kBT
−→∇T − ni

ξie
kBT
−→
E

]
(15)

We now show the derivation of this particle current Equation (15) and the dependence of the
parameters Di, Ŝi and ξi on physical quantities such as particle concentration and magnetic field.

3. Particle Flux

In this section, we attempt to establish the particle flux Equation (15) with explicit expressions for
Di, Ŝi and ξi as a function of physical quantities. As it has been done in many previous works, we start
from Onsager’s theorem applied to liquid electrolytes. The three-dimensional system (liquid inside
a thermogalvanic cell) considered here is composed of p species of mobile particles. The system is
considered to be weakly out-of-equilibrium, such that thermodynamic quantities (T, P, V, Ni, ...) vary
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slowly with respect to the system size, and thus one can define a local, mesoscopic equilibrium at
all points −→r in the system by T

(−→r ), P
(−→r ), etc. The energy flux

−→
JU
(−→r ) represents the quantity of

energy passing through a unit surface area per unit time in J·s−1·m−2 and the particle flux
−→
J Ni

(−→r ),
i ∈ J1; pK, the number of particles of ith species crossing through a unit surface area per unit time,
in s−1·m−2.

In the framework of Onsager’s theorem [34,35] built upon the particle and energy conservation
laws, the energy and the particle flux are proportional to the gradients of their respective conjugated
variables obtained from the differential entropy of the system (to a first approximation):

dS =
dU
T

+
P
T
· dV −

p

∑
i=1

µ̃i
T
· dNi (16)

which gives:
∂S
(
U, V, N1, ..., Np

)
∂U

=
1
T

(17)

∂S
(
U, V, N1, ..., Np

)
∂V

=
P
T

(18)

∂S
(
U, V, N1, ..., Np

)
∂Ni

= − µ̃i
T

(19)

with U, the total energy of the system, V, the volume and N, the number of particles of ith specie. In
the presence of magnetic particles, the magnetic energy should be added to U, i.e., U + UH where
UH = −µ0 · Mi · H with Mi the magnetization of ith species and H the magnetic field. µ̃i is the
chemical potential which is composed of three terms in the general case:

µ̃i =

(
∂F
∂Ni

)
T,V,H

= µi︸︷︷︸
chemical component

+ µe
i︸︷︷︸

electric component

+ µH
i︸︷︷︸

magnetic component

(20)

F is the free energy of the system (F = U− TS). The electric component is null for neutral particles and
the magnetic component is negligible for diamagnetic and for most paramagnetic particles. µi + µe

i is
often referred to as the electrochemical potential.

Then the energy and the particle flux of a system consisting of particles of p species is written as:



−→
J U−→
J N1−→
J N2

...
−→
J Np


=


LUU LU1 LU2 · · · LUp
LU1 L11 0 · · · 0
LU2 0 L22 · · · 0

...
...

...
. . .

...
LUp 0 0 · · · Lpp





−→∇
(

1
T

)
−−→∇

(
µ̃1
T

)
−−→∇

(
µ̃2
T

)
...

−−→∇
(

µ̃p
T

)


(21)

Here, we have used the Onsager reciprocity relations[34]: ∀i, ∀j, Lij = Lji and supposed that the

terms Lij
−→∇
(

µ̃j
T

)
are negligibly small compared to the terms Lii

−→∇
(

µ̃i
T

)
, for all j 6= i. Thus we have

p + 1 vector equations:

−→
J U = LUU ·

−→∇
(

1
T

)
−

p

∑
i=1

LUi ·
−→∇
(

µ̃i
T

)
(22)

∀i ∈ J1; pK,
−→
J Ni = LUi ·

−→∇
(

1
T

)
− Lii ·

−→∇
(

µ̃i
T

)
(23)
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By combining (23) and (21) the energy flux can be expressed simply as:

−→
J U =

[
LUU −

p

∑
i=1

LUi
2

Lii

]
· −→∇

(
1
T

)
+

p

∑
i=1

LUi
Lii

−→
J Ni (24)

The heat flux
−→
J Q is the difference between the total energy flux

−→
J U and µ̃i ·

−→
J Ni (energy carried

by particles):
−→
J Q =

−→
J U −

p

∑
i=1

µ̃i ·
−→
J Ni =

p

∑
i=1

Qi
−→
J Ni − κ

−→∇T (25)

where

Qi =
LUi
Lii
− µ̃i (26)

κ =
1

T2

[
LUU −

p

∑
i=1

LUi
2

Lii

]
(27)

Qi is the quantity of transported heat by one particle i moving in the system, which is different from µ̃i.
This transported heat is associated to the transported entropy Si :

Si =
Qi
T

(28)

κ is the thermal conductivity of the system, and we remark that in the absence of particle flux;
i.e., ∀i,

−→
J Ni =

−→
0 , one recovers Fourier’s law:

−→
J Q = −κ

−→∇T (29)

In addition, finally, ∀i ∈ J1; pK, the particle flux can be expressed in terms of Si as

−→
J Ni = −

Lii
T

[−→∇ µ̃i + Si ·
−→∇T

]
(30)

The particle flux has thus two components; a term related to the chemical potential gradient, e.g.,
the concentration gradient, and the entropic term related to the temperature gradient. In order to
express this flux, it is thus necessary to know the expression for three types of chemical potential (20)
of all particles/ions µ̃i.

3.1. Chemical Potential of Magnetic Nanofluids

In magnetic nanofluids, two types of particles are involved

• Diamagnetic solutes, ions or neutral species, all less than nanometer in size. These solutes will be
treated as an ideal gas.

• Charged magnetic particles whose characteristic sizes are in the order of ten nanometers.
These particles will be described by an effective hard-sphere model derived from
Carnahan-Starling equation of state and the inter-particle magnetic interactions are taken into
account through a mean-field approach.

The chemical potential can be defined from several thermodynamic state functions. We adopt
here the definition obtained from the free energy of the system F:

µ̃ =

(
∂F
∂N

)
T,V,H

=

(
∂ f
∂n

)
T,H

(31)
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where N is the number of particles in the system, f = F
V the free energy per unit volume and n = N

V
the number density of the particles.

Free chemical energy, and thus the chemical potential of a system composed of particles can be
obtained from its equation of state, noting that the differential of the free energy is:

dF = −PdV − SdT +
p

∑
i=1

µidNi (32)

and (
∂F
∂V

)
T,Ni ,H

= −P (33)

Note that we do not use the Gibbs-Duhem thermodynamic equation which is convenient for describing
thermodiffusive [20,36] systems where one takes in account the change in the local pressure upon ith
specie due to the change in the chemical potential of other (k 6= i) species. Here we assume that such
force, arising from the cross-terms in the Onsager equations is negligibly small.

Two types of equations of states are possible.

Case I: ideal gas

The state equation of a perfect gas at equilibrium, i.e., composed of point-like non-interacting
particles, is well known:

P ·V = N · kB · T (34)

with P, the pressure, V, the volume, N, the number of particles, kB the Boltzmann constant and T,
the temperature. This state equation is suitable for diluted gas for which the particle size is much
smaller than the average distance between them and the inter-particle interactions are negligible.

Case II: Hard-sphere gas

A generic equation of state for a non-ideal gas can be obtained through a series function (of particle
density), known as a virial expansion:

P
kB · T

=
N
V

+
∞

∑
i=2

Bi

(
N
V

)i
=

N
V

+ B2

(
N
V

)2
+ B3

(
N
V

)3
+ B4

(
N
V

)4
+ ... (35)

Bi are called ith virial coefficients that depend on temperature. For B1 = 1 and up to the 1st order in N
V ,

one recovers the equation of state of an ideal gas.
Nanofluids can be approximated to a hard-sphere gas, consisting of spherical particles with a finite

diameter. In this case, the particle density can be converted to the volume fraction φ (always less
than one)

φ =
Vpart

V
=

N · π · d3

6 ·V = n · v0 (36)

with Vpart the total volume occupied by the particles in the system, and v0 the volume of one particle.
Carnahan and Starling [37] remarked that under such condition the virial coefficients are very close to
those of a power series; i.e.,

SCS (φ) = 1 +
∞

∑
n=2

(
n2 + n− 2

)
φn−1 (37)

The series converges for |φ| < 1, which is always the case as φ is the volume fraction of particles
and the Carnahan-Starling equation of state for hard-sphere gas is expressed as:

P ·V
N · kB · T

=
1 + φ + φ2 − φ3

(1− φ)3 (38)
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Indeed, the pressure described above corresponds to that of osmotic pressure rather than the
real pressure of the liquid. An important quantity in a Carnahan-Starling hard-sphere gas is then the
isothermal osmotic compressibility, χ:

χ =
kBT
v0

(
∂P
∂φ

)−1
(39)

χ describes the change in pressure due to the variation of particle concentration, and in the case of
a Carnahan-Starling gas χCS is:

χCS(φ) =
(1− φ)4

1 + 4φ + 4φ2 − 4φ3 + φ4 (40)

The free chemical energy can be calculated once again, for an ideal gas and a hard-sphere gas
cases separately.

Case I: Ideal gas

Starting from Equation (34), the free energy can then be obtained from Sackur–Tetrode equation:

Fid = N · f0 (T) + N · kB · T · ln (n) (41)

with f0 a function of temperature T associated to the internal degrees of freedom of the particles and
constant with respect to the number of particles N. Equivalently, one can express Fid as a function of φ

rather than n :

Fid = N · f0 (T) + N · kB · T · ln
(

φ

v0

)
(42)

Case II: Hard-sphere gas

For a hard sphere gas obeying the Carnahan-Starling equation of state, the pressure is expressed as:

PCS =
N · kB · T

V
· 1 + φ + φ2 − φ3

(1− φ)3 = −
(

∂FCS
∂V

)
T,N

(43)

By noting that: (
∂V
∂φ

)
N
= − v0

φ2 , (44)

one obtains:

1
N · kB · T

(
∂FCS
∂φ

)
T,N

=
1 + φ + φ2 − φ3

φ · (1− φ)3 . (45)

The excess free energy of a hard-sphere gas can now be calculated from subtracting the ideal case
from Equation (45)

1
N · kB · T

[(
∂FCS
∂φ

)
T,N
−
(

∂Fid
∂φ

)
T,N

]
=

4− 2 · φ
(1− φ)3 (46)

Noting that:
d

dx

[
4x− 3x2

(1− x)2

]
=

4− 2x
(1− x)3 (47)

the above expression is simplified to:

FCS − Fid = N · kB · T ·
4φ− 3φ2

(1− φ)2 (48)
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The integration constant, which is a function of T and N, is included in the constant N · f0(T) that
appears in Fid. The free energy of a hard-sphere gas is then expressed as:

FCS = N · f0(T) + N · kB · T · ln
(

φ

v0

)
+ N · kB · T ·

4φ− 3φ2

(1− φ)2 (49)

or, equivalently:

fCS =
φ

v0
· f0(T) +

φ

v0
· kB · T · ln

(
φ

v0

)
+

φ

v0
· kB · T ·

4φ− 3φ2

(1− φ)2 (50)

Thus we recover the first two terms of an ideal gas, while the last term corresponds to the
correction for a hard-sphere case.

Combining Equations (50) and (31) (via (47)), we can now obtain the expression for the chemical
potential µ of a hard-sphere gas:

µ

v0
=

1
v0
· ∂ fCS

∂n
=

∂ fCS
∂φ

(51)

=
f0(T)

v0
+

kB · T
v0

+
kB · T

v0
· ln
(

φ

v0

)
+

kB · T
v0
· 8φ− 9φ2 + 3φ3

(1− φ)3 (52)

Then, introducing µ◦ as:
µ◦(T) = f0(T) + kB · T (53)

one obtains:

µ = µ◦(T) + kB · T · ln
(

φ

v0

)
+ kB · T ·

8φ− 9φ2 + 3φ3

(1− φ)3 (54)

Note that the chemical potential of a hard sphere gas is equal to that of an ideal gas when the
sphere radius approaches 0; that is, φ→ 0, at a constant n = φ/v0 .

3.2. Electric Component µe

We consider now a particle with an electric charge z · e under an electrical potential V
(−→r ).

The electric component of the chemical potential is simply the potential energy of the particle up to
a constant:

µe = z · e · V
(−→r ) (55)

Then, the associated free energy is:

Fe = N · z · e · V
(−→r ) (56)

Equivalently,

f e =
φ

v0
· z · e · V

(−→r ) (57)

The above equation is valid for a point-like species. In the case of nanoparticles, the charge
number z must be replaced by the effective charge number ξ0. The electric component of the chemical
potential and of the free energy become:

µe = ξ0 · e · V
(−→r ) (58)

f e =
φ

v0
· ξ0 · e · V

(−→r ) (59)
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3.3. Magnetic Component µH

In the case of magnetic nanofluids, the charged particles are made of ferro- or ferri-magnetic
material and thus the magnetic component µH needs to be taken in account. We assume that in a liquid
medium, these particles can move and rotate freely such that the magnetic anisotropy energy can be
neglected. Furthermore, they are sufficiently small and the temperature sufficiently high and thus are
in the superparamagnetic state.

3.3.1. Single Particle Magnetization

We first consider a very dilute system in which magnetic nanoparticles do not interact with
one another. The magnetization

−→
M of an assembly of non-interacting particles is solely due to the

orientation of the magnetic moment −→m of individual particles along the applied magnetic field
−→
H .

As shown in Figure 2
−→
H = H−→u z and thus the x and y components of magnetization averaged out to

zero by symmetry around the z-axis. Therefore
−→
M can be written as:

−→
M = M−→u z (60)

The magnetic energy of a single nanoparticle is:

UH = −µ0 · −→m ·
−→
H = −µ0 ·m · H · cos(θ) (61)

where µ0 is the magnetic permeability of vacuum and θ, the angle between the vectors −→m and −→u z.
At a thermodynamic equilibrium, the particles are distributed according to the Boltzmann statistics
and the magnetization is given by the well-known Langevin function [38]:

M = n ·m · L (ξ) with ξ =
µ0 ·m · H

kB · T
(62)

where ξ is the Langevin parameter and L (x) = coth(x)− 1
x the Langevin function. The magnetization

of particles is thus zero on average when ξ → 0, that is, the thermal energy (kBT) is much larger than
the magnetic energy (µ0mH). On the contrary, i.e., for ξ → ∞ (kBT � µ0mH), all particles’ magnetic
moments are aligned parallel to the applied field direction and the magnetization reaches its saturation
value n ·m.

H

z

y

x

m

ѳ

α

Figure 2. Single magnetic nanoparticle. The magnetic field
−→
H is applied along the z-axis. θ defines the

angle between −→m and the unit vector along z, −→u z, and α the angle between the projection of −→m in the
xy plane and the unit vector along x, −→u x.
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3.3.2. Magnetization of Interacting Particles: Mean-Field Approach

By increasing the particle concentration, not only the applied magnetic field but also that exerted
by its neighboring particles starts to influence the magnetization of the assembly (dipole-dipole
interactions). In the framework of mean field theory, the effective magnetic field felt by a single particle−→
H e is expressed by [39]:

−→
H e =

macroscopic magnetic field︷︸︸︷−→
H +

local field︷ ︸︸ ︷
λ · −→M (63)

The first term corresponds to the macroscopic magnetic field, which is the sum of two terms:−→
H 0 is the uniformly applied external field and

−→
H 1, the internal demagnetization field created by

magnetic moments of other particles. The second term is proportional to the local magnetization of
the system and it represents the influence of nearby particles. λ is a non-dimensional proportionality
coefficient, which is zero in the absence of inter-particle magnetic interactions, and typically 1

3
in a uniformly magnetized medium [38]. In the case of aqueous ferrofluids, this value has been
determined experimentally [40–44] and numerically[45,46] to be λ = 0, 22.

This effective magnetic field must satisfy the self-consistency equation:

ξe =
µ0 ·m · He

kB · T
=

µ0 ·m · H
kB · T︸ ︷︷ ︸

ξ0

+
µ0 ·m · λ ·M

kB · T
(64)

Substituting M by Equation (62):

ξe = ξ0 +
µ0 · λ · n ·m2 · L (ξe)

kB · T
= ξ0 + λψddφ · L (ξe) (65)

with

ψdd =
µ0m2

v0kBT
(66)

where ψdd is the dipolar interaction parameter representing the ratio between the dipole-dipole
interaction energy (i.e., inter-particle distance is equal to the particle diameter) and the thermal energy.

The total magnetic energy (per unit volume) of the system is composed of two terms :

UH = −µ0 · N· < −→m >
−→
H − µ0 · N· < −→m > ·λ · −→M

2
(67)

= −µ0 ·V ·M · H −
µ0 · λ ·V ·M2

2
(68)

The first term corresponds to the magnetic energy associated to the direct interaction between
the magnetic moments m and the applied field

−→
H while the second term corresponds to the pair

interaction between the magnetic moments themselves. A factor 1
2 appears to avoid double-counting

the same particle combinations.
The magnetic component of entropy can be calculated using the Shannon formula [39]:

sH = −n ·
∫ π

θ=0
kB · P (θ) · ln (P(θ)) · 2π · sin(θ)dθ (69)

which gives

sH

n · kB
= ln

(
ξe

2π
(
eξe − e−ξe

))+ ξe · L (ξe) (70)
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In addition, using Equations (62) and (65):

n · kB · ξe · L (ξe) =
µ0 · n ·m · H · L (ξe)

T
+

µ0 · n2 ·m2 · λ · L2 (ξe)

T
(71)

=
µ0 ·M · H

T
+

µ0 · λ ·M2

T
(72)

By combining Equations (68), (70) and (72), one can now calculate the magnetic free energy as:

f H = n · kB · T · ln
(

ξe

2π
(
eξe − e−ξe

))+
µ0 · λ ·M2

2
(73)

In terms of v0 and φ,

f H =
φ

v0
· kB · T · ln

(
ξe

2π
(
eξe − e−ξe

))+
µ0 · λ · φ2 ·m2 · L2 (ξe)

2 · v2
0

(74)

3.3.3. Expression for µH

The magnetic component of the chemical potential can be deduced from the free energy:

µH

v0
=

∂ f H

∂φ
(75)

=
kBT
v0

[
ln

(
ξe

2π ·
(
eξe − e−ξe

))− φL (ξe)
∂ξe

∂φ

]
+

µ0λm2

v2
0

[
φL2 (ξe) + φ2L (ξe)L

′
(ξe)

∂ξe

∂φ

]
(76)

where ∂ξe
∂φ is determined from the self-consistency equation (Equation (65)):

∂ξe

∂φ
=

µ0λm2

v0kBT
L (ξe) + λψddφL′ (ξe)

∂ξe

∂φ
(77)

=
µ0λm2

v0kBT
(
1− λψddφL′ (ξe)

)L (ξe) (78)

Then the final expression of µH is simplified to:

µH = kBT ln
(

ξe

4 · π sinh(ξe)

)
(79)

The magnetic part of the chemical potential is thus a monotonous and negative function, with its
minimum at ξe → 0. The higher ξe is, the larger the average magnetic energy of one particle and the
probability of its magnetic moment being aligned in the direction of magnetic field become.

3.4. Total Chemical Potential

The chemical potential of one charged colloidal and superparamagnetic particle can now be
obtained by summing the three components; chemical (Equation (54)), electric (Equation (55)) and
magnetic (Equation (79)).

µ̃ = µ◦ + kBT ln
(

φ

v0

)
+ kBT

8φ− 9φ2 + 3φ3

(1− φ)3 + z · e · V + kBT ln
(

ξe

4π · sinh(ξe)

)
(80)
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Again, we perform transformation of f0, the free energy term associated with the internal degrees
of freedom the particle; f0(T)− kBT ln(4π)→ f0(T), to obtain the final expression:

µ̃ = µ◦ + kBT ln
(

φ

v0

)
+ kBT

8φ− 9φ2 + 3φ3

(1− φ)3 + z · e · V + kBT ln
(

ξe

sinh(ξe)

)
(81)

In the case of point-like and non-magnetic particles (i.e.,majority of ions found in common
electrolytes), one recovers the classic expression electrochemical potential;

µ̃ = µ◦ + kBT ln(n) + z · e · V (82)

with n the particle concentration.

3.5. General Expression for Particle Flux

We can now determine the expression for particle flux (Equation (30)) of charged and magnetic
colloidal particles by calculating the gradient of the magneto-electrochemical potentials (

−→∇ µ̃i).

−→∇ µ̃i =

(
∂µ̃i
∂Ni

)
T,H

−→∇Ni +

(
∂µ̃i
∂T

)
Ni ,H

−→∇T +

(
∂µ̃i
∂H

)
Ni ,T

 −→H∣∣∣−→H ∣∣∣ · −→∇
−→H + ξ0

i · e ·
−→∇V (83)

Here
−→
H =

−→
H 0 + δ

−→
H stands for the total magnetic field (

−→
H 0 applied field and δ

−→
H field perturbations).

Below, we first calculate the partial derivatives of µ̃i to obtain the general expressions for particle
flux. The variation in the local magnetic field will be treated later in two particular cases where the
temperature gradient and the magnetic field are applied either perpendicularly or in parallel.

3.5.1. Chemical Potential Gradient: With Respect to N

By definition, φi = v0
Ni
V and thus:(

∂µ̃i
∂Ni

)
T,H

−→∇Ni =

(
∂µ̃i
∂φi

)
T,H

−→∇φi (84)

then, according to (81) and using (78),

1
kBT

(
∂µ̃i
∂φi

)
T,H

=
1
φi

+
8− 2φi

(1− φi)
4 +

sinh(ξe)

ξe

[
1

sinh(ξe)
− cosh(ξe)ξe

sinh2(ξe)

]
∂ξe

∂φi
(85)

=
1
φi

+
8− 2φi

(1− φi)
4 −

µ0λm2

v0kBT
(
1− λψddφiL′ (ξe)

)L2 (ξe) (86)

=
1
φi

+
8− 2φi

(1− φi)
4 −

αλ (φi, H)

φi
(87)

with
αλ (φi, H) =

λψddφi

1− λψddφiL′ (ξe)
L2 (ξe) (88)

and thus: (
∂µ̃i
∂φi

)
T,H

= kBT

(
1 + 4φi + 4φ2

i − 4φ3
i + φ4

φi (1− φi)
4 − αλ (φi, H)

φi

)
(89)

(
∂µ̃i
∂φi

)
T,H

= kBT
(

1
χCS(φi)φi

− αλ (φi, H)

φi

)
(90)
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The first term corresponds to the hard-core interactions between the spherical particles in the
Carnahan-Starling formalism and the second term due to to magnetic interactions (Figure 3). It is
zero for particles without dipolar interactions (λ = 0) as well as in the absence of applied magnetic
field (ξe = 0). In addition, it saturates once the magnetic energy is very large compared to the thermal
energy, i.e., ξ → ∞. This term exists, however, even for a homogeneous fluid, without a temperature
gradient or concentration gradient, under a magnetic field.

0 20 40 60 80 100
ξ

0.000

0.002

0.004

0.006

0.008

0.010

α
λ

αλ (ξ) =
λγφL2 (ξ)

1−λγφL′(ξ)

S1 (ξ) =ln
(

ξ

sinh(ξ)

)
+

ξL(ξ)
1−λγφL′(ξ) 0

1

2

3

4

5

S
1

Figure 3. Fonctions αλ and S1 as a function of Langevin parameter ξ. The other parameters are fixed:
φ = 0.01, λ = 0.22 et ψdd = 4.3.

3.5.2. Derivative of µ̃i with Respect to Temperature

The expression of the second term can be obtained from Equation (32).

∂µ̃i
∂T

=
∂µi
∂T

+
∂µH

i
∂T

(91)

According to Schwartz’s theorem the first term becomes:

∂µi
∂T

=
∂

∂T
∂F
∂Ni

=
∂

∂Ni

∂F
∂T

= − ∂S
∂Ni

= −Si(φi, H) (92)

where Si is the partial entropy of the ith species. The second term gives:

∂µH
i

∂T
= kB ln

(
ξe

sinh(ξe)

)
− kBTL (ξe)

∂ξe

∂T
(93)

then using (65):

∂ξe

∂T
= − 1

T
ξe

1− λψddφiL′ (ξe)
(94)

that is:
∂µH

i
∂T

= kB ln
(

ξe

sinh(ξe)

)
+ kB

ξe · L (ξe)

1− λψddφiL′ (ξe)
= kB · S1(φi, H) (95)
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with

S1(φi, H) = ln
(

ξe

sinh(ξe)

)
+

ξe · L (ξe)

1− λψddφiL′ (ξe)
(96)

and finally: (
∂µ̃i
∂T

)
Ni ,H

= −Si(φi, H) + kB · S1(φi, H) (97)

In the case of non-magnetic particles (ξ = 0) or in the absence of applied magnetic field (H = 0),
one recovers the classic partial entropy.

3.5.3. Derivative of µ̃i with Respect to Magnetic Field

From Equation (81)

(
∂µ̃i
∂H

)
T,Ni

=
∂kBT ln

(
ξe

sinh(ξe)

)
∂H

= −kBTL (ξe)
∂ξe

∂H
(98)

where the partial derivative of the Langevin parameter ξe (Equation (65)) with respect to H is:

∂ξe

∂H
=

µ0m
kBT

+ λψddφiL
′
(ξe)

∂ξe

∂H
=

µ0m
kBT

(
1− λψddφiL′ (ξe)

) (99)

leading to: (
∂µ̃i
∂H

)
T,Ni

= − µ0mL (ξe)

1− λψddφiL′ (ξe)
(100)

3.5.4. Electric Term of the Chemical Potential Gradient

By definition,
−→∇V = −−→E with

−→
E the electric field. Therefore, electric term is re-written as:

ξ0
i · e
−→∇V = −ξ0

i · e
−→
E (101)

3.5.5. General Expressions for Chemical Potential Gradient and Particle Flux

The general expression for
−→∇ µ̃i can now be expressed by combining the above results.

−→∇ µ̃i = kBT
(

1+4φi+4φ2
i −4φ3

i +φ4
i

φi(1−φi)4 − αλ(φi ,H)
φi

)−→∇φi + (−Si(φi, H) + kBS1(φi, H))
−→∇T−

µ0mL(ξe)

1−λψddφiL
′
(ξe)

(
−→
H∣∣∣−→H ∣∣∣ ·
−→∇
)
−→
H − ξ0

i e · −→E
(102)

Then the particle flux (Equation (30)) becomes:

−→
J Ni = −Di(φi)

[ (
1

χCS(φi)
− αλ(φi, H)

)−→∇ φi
v0

+ φi
v0

Ŝ0
i (φi ,H)+kBS1(φi ,H)

kBT
−→∇T−

φi
v0kBT

µ0mL(ξe)

1−λψddφiL
′
(ξe)

(
−→
H∣∣∣−→H ∣∣∣ ·
−→∇
)
−→
H − ξ0

i e·φi
v0kBT

−→
E

] (103)

with

Di(φi) = kB · v0
Lii
φi

= D0
i

ζ0

ζ(φi)
(104)

Ŝ0
i (φ, H) = Si − Si(φ, H) (105)
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Di(φi) is the diffusion coefficient that takes in account the friction between the particle i and the
surrounding liquid, ζ. ζ0 = 6πηRH,i is the friction at φi = 0 with η the viscosity of the liquid and
RH,i the hydrodynamic radius of the particle i. Note that the friction of interacting system, ζ(φ)

is not well known and also that here, a term dependent on (dP/dT)
−→∇T does not appear unlike

in the models developed by [20,47]. This is due to the assumption introduced in Section 3 that
Lij
−→∇
(

µ̃j
T

)
<< Lii

−→∇
(

µ̃i
T

)
∀j 6= i, i.e., that the variation of species j 6= i chemical potential has little

direct influence on the flux of i (Theoretically, however, the variation in species j’s chemical potential
will modify the osmotic pressure locally and therefore influence the flux of all other species). For
point-like particles, in the absence of temperature gradient, magnetic field and electric field, Equation
(103) is simplified to the well-known Fick’s law :

−→
J Ni = −Di(φi)

−→∇ni (106)

In addition, Ŝ0
i is the Eastman Entropy of transfer as defined by de Groot [48] and Agar [49] (and

not by Eastman [50]). This entropy corresponds to the difference between the transported entropy and
the partial entropy of the particles, thus associated to the enthalpy ĥi such that:

ĥi = Ŝ0
i (φ, H) · T (107)

ĥi arises from the interactions between a particle and its environment; e.g., solvent, ions, other particles,
etc. If Ŝ0

i is positive, the presence of particles tends to stabilize the solution locally, and such particles
are called structure makers In the opposite case, particles are called structure breakers. Note that
for non-magnetic, neutral particles in the absence of concentration gradient, the particle flux is
simplified to:

−→
J Ni = −

Di(φi)

kBT
Ŝ0

i (φ, H)
−→∇T (108)

The sign of Ŝ0
i defines the diffusion direction of the particles under a thermal force (temperature

gradient). If Ŝ0
i is positive, the particles migrate toward the cold region (thermophobic), but if negative,

they migrate toward the hot region (thermophilic). The notions of thermophilic/thermophobic and
of structure maker/breaker are thus equivalent for neutral and non-magnetic particles. This simple
relation becomes less straightforward in the case of charged particles [17].

The enthalpies and the Eastman entropies of transfer have been measured experimentally by
Ikeda [51,52] in the 1950’s through the Seebeck coefficient measurements, then in a more controlled
manner via conductivity for a large number of aqueous ionic species in the 1960s by Snowdon, Turner,
Agar and their coauthors [23,49,53,54]. These measurements were made in the framework of Soret
effect experiments and the conductivity measurements allowed a more precise determination of the
concentration at different points in the measurement cell. However, very little information is available
on non-aqueous electrolytes.

3.5.6. Local Field Perturbation Effect on Particle Flux

Even though the applied external field is uniform, the local magnetic field experienced by a single
particle can be heterogeneous i.e., field perturbations δ~H, which can stem from both temperature and

concentration variations (in space) within the system. Noting that
−→
H 0∣∣∣−→H 0

∣∣∣ = ~h0 is constant (uniform

applied field), one can re-write up to first order: −→H∣∣∣−→H ∣∣∣ · −→∇
−→H = ~h0 ·

−→∇ δ
−→
H =

−→∇
(
~h0 · δ

−→
H
)

(109)
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Then
−→
H can be calculated from Maxwell’s equations.

−→∇ .
−→
B = 0 (110)

and that −→
B = µ0

(−→
H +

−→
M
)

(111)

the divergence of
−→
H and

−→
M must be equal and opposite;

−→∇ · −→H = −−→∇ · −→M (112)

Therefore, one can write the divergence of the magnetic field from the divergence of the
corresponding magnetization.

−→
H and

−→
M are co-linear and make an angle ϕ with the unit vector

−→u z (direction of
−→∇T ). According to [39,41,42,44]

−→∇ · −→M can be written as a function of variables φ,
T and

−→
H :

−→∇ · −→M = −∂δHz

∂z
(113)

=

(
∂M
∂φi

)
T,H

−→
h 0 ·
−→∇φi +

(
∂M
∂T

)
φi ,H

−→
h 0 ·
−→∇T +

M
H0

−→∇ · δ−→H +
∂M
∂H
−→
h 0 ·
−→∇H − M

H
−→
h 0 ·
−→∇H

(114)

and the divergence of the magnetic field becomes:

∂ (δHz)

∂z
= − cos(ϕ)

(
∂M
∂φi

)
T,H

(
∂φi
∂z

)
x,y

+
(

∂M
∂T

)
φi ,H

(
∂T
∂z

)
x,y

1 +
(

∂M
∂H

)
φi ,T

+

[
M
H −

(
∂M
∂H

)
φi ,T

]
sin2(ϕ)

(115)

The derivative of the magnetization (Equation (62)) with respect to the volume fraction (φ) and
temperature can be obtained (in the framework of mean field theory) using Maxwell’s relation [40,41]:(

∂M
∂φi

)
T,H

= − 1
µ0 · v0

(
∂µ̃i
∂H

)
φi ,T

(116)

The right-hand side of the equation has already been obtained in Equation (100); i.e.,(
∂M
∂φi

)
T,H

=
mL (ξe)

v0
(
1− λψddφiL′ (ξe)

) (117)

The partial derivative of magnetization with respect to temperature is calculated from
Equations (62) and (94).

(
∂M
∂T

)
φi ,H

=
∂
(

φi
v0

mL (ξe)
)

∂T
(118)

= −φim
v0T

L′ (ξe) ξe

1− λψddφiL′ (ξe)
(119)
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Lastly, the partial derivative of M with respect to magnetic field is obtained from Equation (99) as:(
∂M
∂H

)
φi ,T

=
φi
v0

mL′ (ξe)
∂ξe

∂H
(120)

=
φiψddL

′
(ξe)

1− λψddφiL′ (ξe)
(121)

This result can be used in the denominator of Equation (115) to calculate:

1 +
(

∂M
∂H

)
φi ,T

=
1 + (1− λ) φiψddL

′
(ξe)

1− λψddφiL′ (ξe)
(122)

Combined together, the final expression of Equation (115) then becomes green (at low field or for
ϕ = 0) :

∂ (δHz)

∂z
= − mL (ξe) cos(ϕ)

v0
(
1 + (1− λ)ψddφiL′ (ξe)

) (∂φi
∂z

)
x,y

+
φim
v0T

L′ (ξe) ξe cos(ϕ)

1 + (1− λ)ψddφiL′ (ξe)
(

∂T
∂z

)
x,y

(123)

As the concentration gradient is induced by the gradient of temperature,
−→∇φi and

−→∇T are
co-linear, and thus we can define θ the angle between

−→∇φi (or
−→∇T) and

−→
H (or

−→
M). Then the final

expression for the contribution to Equation (83) becomes:

−→∇
(−→

h 0. δ~H
)
= − mL(ξe)

v0(1+(1−λ)ψddφiL
′
(ξe))

cos2(ϕ)
−→∇φi +

φim
v0T

L′ (ξe)ξe

1+(1−λ)ψddφiL
′
(ξe)

cos2(ϕ)
−→∇T (124)

This term, clearly due to the concentration and temperature gradients within the system,
disappears if

−→∇φi and
−→∇T are perpendicular to the magnetic field

−→
H . On the other hand, it is

maximized when the gradients are parallel to the field.
From Equations (124) in (103), a general expression for the particle flux of ith species can

be obtained:

−→
J Ni = −Di(φi)

[ (
1

χCS(φi)
− αλ(φi, H)

)−→∇ φi
v0

+ φi
v0

Ŝ0
i (φi ,H)+kBS1(φi ,H)

kBT
−→∇T+

φiµ0m2

v2
0kBT

L2(ξe)

(1−λψddφiL
′
(ξe))(1+(1−λ)ψddφiL

′
(ξe))

cos2(ϕ)
−→∇φi

− φ2
i

v0T
µ0m2

v0kBT
L′ (ξe)L(ξe)ξe

(1−λψddφiL
′
(ξe))(1+(1−λ)ψddφiL

′
(ξe))

cos2(ϕ)
−→∇T − ξ0

i e·φi
v0kBT

−→
E

] (125)

This can be further simplified to

−→
J Ni = −Di(φi)

[ (
1

χCS(φi)
− αλ(φi, H)

)−→∇ φi
v0

+ φi
v0

Ŝ0
i (φi ,H)+kBS1(φi ,H)

kBT
−→∇T+

βλ (φi, H) cos2(ϕ)
−→∇ φi

v0
− φi

v0T S2 (φi, H) cos2(ϕ)
−→∇T − ξ0

i e·φi
v0kBT

−→
E

] (126)

with

βλ (φi, H) =
φiψddL2 (ξe)(

1− λψddφiL′ (ξe)
) (

1 + (1− λ)ψddφiL′ (ξe)
) (127)

and

S2 (φi, H) = βλ (φi, H)
ξeL

′
(ξe)

L (ξe)
(128)
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These two functions are represented as parametrized Langevin function of ξ in Figure 4.
The function βλ behaves similarly to αλ. It becomes zero for ξ = 0 and saturate when ξ → ∞.
The function S2, on the other hand, approaches zero for ξ = 0 and ∞ with an intermediate maximum
in between.

We now consider two particular cases that are frequently encountered in magneto-thermodiffusion
experiments, i.e.,

−→∇T ⊥ −→H et
−→∇T ‖ −→H .
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β
λ

βλ (ξ) =
φψddL2 (ξ)[

1−λψddφL(ξ)
][
1+(1−λ)ψddφL′(ξ)

]
S2 (ξ) =βλ (ξ) ·ξL

′(ξ)
L(ξ)

0.000
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0.008

0.010

S
2

Figure 4. Functions βλ et S2 as a function of Langevin parameter ξ. Other parameters are fixed:
φ = 0, 01, λ = 0, 22 et ψdd = 4, 3.

Case I: Field perpendicular to temperature gradient

When the temperature gradient and thus the concentration gradient are perpendicular to the
applied magnetic field, the system is homogeneous in the direction parallel to the field. Under such
such condition, the particle flux is reduced to:

−→
J Ni = −Di(φi)

[ (
1

χCS(φi)
− αλ(φi, H)

)−→∇ φi
v0

+ φi
v0

Ŝ0
i (φi ,H)+kBS1(φi ,H)

kBT
−→∇T − ξ0

i e·φi
v0kBT

−→
E

]
(129)

The application of the field still modifies the diffusion of magnetic particles via αλ and S1, the terms
associated to the concentration and the temperature gradients, respectively.

Case II: Field parallel to temperature gradient

In this case, inhomogeneities are present in the direction parallel to the field and Equation (126)
becomes, regardless of the field amplitude:

−→
J Ni = −Di(φi)

[ (
1

χCS(φi)
− αλ(φi, H) + βλ (φi, H)

)−→∇ φi
v0
+

φi
v0

Ŝ0
i (φ, H) + kB (S1(φi, H)− S2(φi, H))

kBT
−→∇T −

ξ0
i e · φi

v0kBT
−→
E

] (130)
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3.5.7. Final Expression of Particle Flux in directions parallel and perpendicular to ~H

One can introduce a Kronecker-like parameter δ−→∇T
−→
H

, in Equation (130):

δ−→∇T
−→
H

=

{
0 if

−→∇T ‖ −→∇φi ⊥
−→
H

1 if
−→∇T ‖ −→∇φi ‖

−→
H

(131)

and the following expressions for the diffusion coefficient D∗i , the Eastman entropy of transfer Ŝi and
the effective charge number ξi:

D∗i (φi, H) = Di(φi)

(
1

χCS(φi)
− αλ(φi, H) + δ−→∇T

−→
H

βλ (φi, H)

)
(132)

Ŝi(φi, H) =
Ŝ0

i (φ, H) + kB

(
S1(φi, H)− δ−→∇T

−→
H

S2(φi, H)
)

1
χCS(φi)

− αλ(φi, H) + δ−→∇T
−→
H

βλ (φi, H)
(133)

ξi(φi, H) =
ξ0

i
1

χCS(φi)
− αλ(φi, H) + δ−→∇T

−→
H

βλ (φi, H)
(134)

to obtain

−→
J Ni = −

D∗i (φi, H)

v0

[
−→∇φi + φi

Ŝi(φi, H)

kBT
−→∇T − ξi(φi, H)eφi

kBT
−→
E

]
(135)

It needs to be noted; however, that Equation (135) is valid for specific magnetic field direction;
parallel or perpendicular with respect to the temperature gradient. Otherwise, Equation (126) (valid
only at low field) should be used.

4. Calculation of Se and Seint

We are now in the position to calculate the Seebeck coefficient (Seint, to be precise) of
a thermogalvanic cell containing charged colloidal particles using Equation (135). Exact expressions
of Seint can be found in two distinct states; the initial state, just after the temperature gradient is
established across the cell; and at the Soret equilibrium state, (stationary state) when all particle/ion
currents come to a halt.

4.1. Initial State

Application of a temperature gradient across a homogeneous system exerts a thermal force on
all particles, charged or neutral inducing their thermophoretic movements. It is supposed here that
the temperature gradient is established instantaneously, i.e., the thermal diffusivity of the suspension
is much faster than the diffusion time of ions/particles. The charged particles/ions with the highest
thermodiffusion coefficient will diffuse faster than the slower ones, creating an electric field inside
the solution

−→
E int. This internal field will “accelerate” the slower particles but “slow down” the faster

ones. Therefore, the diffusion coefficients of particles/ions are strongly related to their charges and the
global diffusion time of charged species is that of the slowest ones in the solution. The initial electric
field when the concentration of all species is still homogeneous can be expressed analytically:

∀i,
−→∇ni =

−→
0 (136)

Equation (135) then becomes:

−→
J Ni = −D∗i

[
ni

Ŝi
kBT
−→∇T − ni

ξie
kBT
−→
E ini

int

]
(137)
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Moreover, the total electric current in an open-circuit configuration is null.

∑
i

zie
−→
J Ni =

−→
0 (138)

with zi the charge contribution in the electric charge neutrality of the solution. zi corresponds to the
effective static charge of the colloidal particles. Therefore,

−→
E ini

int :[
∑

i
zie2niD∗i

ξi
kBT

]
−→
E ini

int =

[
∑

i
zieniD∗i

Ŝi
kBT

]
−→∇T (139)

−→
E ini

int =
∑i zieniD∗i Ŝi

∑i zie2niD∗i ξi

−→∇T (140)

−→
E ini

int =

[
∑

i
ti

Ŝi
ξie

]
−→∇T (141)

with:

ti =
ziξie2niD∗i

∑i ziξie2niD∗i
=

σi
σtot

(142)

ti is the transport or Hittorf number, which is the ratio of the conductivity of the ith species to the
total conductivity of the solution. The contribution from a given particle/ion is proportional to its
Eastman entropy of transfer, that is, the thermal force experienced by the particle/ion. The initial
internal Seebeck coefficient is then written as:

Seini
int = ∑

i
ti

Ŝi
ξie

(143)

As we have seen Section 2, there are two components to the Se of a thermogalvanic cell
Equation (146). At the initial state, the concentrations of all ions/particles are uniform, including the
redox couples. Therefore one can rewrite, up to the first order:

∆µj =
∂µj

∂nj
∆nj +

∂µj

∂T
∆T =

∂µj

∂T
∆T = −Sj∆T (144)

Additionally, the derivative of the chemical potential with respect to temperature is equal and
opposite to the partial entropy. Combined initial Seebeck coefficient is therefore,

Seini =
1
e ∑

j
λjSj︸ ︷︷ ︸
−∆rS

+Seint (145)

where ∆rS denotes the entropy of the redox half reaction to simplify the expression to:

Seini =
1
e

(
−∆rS + ∑

i

tiŜi
ξi

)
(146)

The entropy of the redox half reaction ∆rS can be obtained by the Nernst equation [55],
which depends strongly on the ionic strength of the solution [56].

For ordinary ions whose Eastman entropy of transfer is small, the internal Seebeck coefficient
is negligibly small compared to the redox reaction entropy. For electrolytes containing charged
colloidal particles; however, it can make non-negligible contribution to Seint as witnessed in certain
ferrofluids [16,57]. We note that, the above equation can be used to predict the Seebeck coefficient of
electrolytes containing large solute ions and polymers. The latter is of particular interest as the effective
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charge number of a polymer and its subsequent thermophoretic behavior are known to depend on the
pH level of the surrounding solution [58].

4.2. Stationary State: Soret Equilibrium

Sufficiently long time after the application of a temperature gradient, the particle flux due to the
thermal force is compensated by the opposing flux due to the concentration gradient of all particles
and by another flux due to the internal electric field of charged particles/ions. Then the system is said
to be in a stationary state, also known as the Soret equilibrium state.

∀i,
−→
J Ni =

−→
0 (147)

The particle flux equation then becomes:

−→∇ni + ni
Ŝi

kBT
−→∇T − ni

ξie
kBT
−→
E int =

−→
0 (148)

for all particles/ions. By exploiting the electrical neutrality at all points inside the cell, the equation
above is multiplied by the charge zi and all particle flux equations can be added to give:

∑
i

zi
−→∇ni + ∑

i
zini

Ŝi
kBT
−→∇T −∑

i
zini

ξie
kBT
−→
E Eq

int =
−→
0 (149)

Note that:

∑
i

zi
−→∇ni = ∑

i

−→∇ (zini) (150)

=
−→∇
(

∑
i

zini

)
(151)

=
−→
0 (152)

The stationary state electric field is then:

∑
i

zini
ξie

kBT
−→
E Eq

int = ∑
i

zini
Ŝi

kBT
−→∇T (153)

−→
E Eq

int =
∑i ziniŜi

e ·∑i ziξini

−→∇T (154)

The stationary state electric field is thus independent of the diffusion coefficients of different
species and the internal Seebeck coefficient at the Soret equilibrium is:

SeEq
int =

∑i ziniŜi
e ·∑i ziξini

(155)

Before calculating the thermogalvanic component of the stationary state Seebeck coefficient,
we point out the direct relationship between the SeEq

int and the Ludwig-Soret coefficient, ST :

−→∇n
n

= −ST
−→∇T (156)
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ST is the ratio between the concentration gradient of particles/ions and the applied temperature
gradient in the stationary state. ST is positive for thermophobic particles and negative for thermophilic
ones. For a given specie i, Equation (148) can be rewritten by using the Seebeck coefficient:

−→∇ni +

(
ni

Ŝi
kBT
− ni

ξie
kBT
· SeEq

int

)
−→∇T =

−→
0 (157)

and thus: −→∇ni
ni

= −
(

Ŝi
kBT
− ξie

kBT
· SeEq

int

)
−→∇T (158)

Thus, the Ludwig-Soret coefficient of charged colloidal particle has both thermodiffusive and
thermoelectro-diffusive components:

ST =
Ŝi

kBT
− ξie

kBT
· SeEq

int (159)

This effect was described in depth by recent work of Würger et co-authors [17,19,30,31,33,59].
Experimentally, it was also demonstrated that for identical and charged nanoparticles, the substitution
of counterion (lithium) by another (tetrabutylammonium) can change the same particles from
thermophilic to thermophobic [60]. Similar results were also observed for the thermodiffusion of
micellar solutions by replacing the dissolved OH− ions in a solution by Cl− [61].

Finally, we will now calculate the thermogalvanic contribution to the Seebeck coefficient in the
Soret equilibrium state. As all particle currents ceases:

∀j
−→∇ µ̃j =

−→∇µj +
−→∇µe

j =
−→∇µj − zje

−→
E int =

−→∇µj − zje · Seint
−→∇T = −Sj

−→∇T (160)

By integrating these equations from the hot electrode to the cold and assuming that the transported
entropies are constant across the entire cell: For all J equations,

∀j ∆µj = zje · SeEq
int∆T − Sj∆T (161)

One can then rewrite the second term of Equation (13) as:

∆∆rG = ∑
j

νjzj ·
(

e · SeEq
int∆T

)
−∑

j
νjSj∆T (162)

=

[
SeEq

int −
1
e

(
∑

j
νjSj

)]
e∆T (163)

This simplifies the stationary state Seebeck coefficient to

SeEq = SeEq
int − SeEq

int +
1
e

(
∑

j
νjSj

)
(164)

=
1
e

(
∑

j
νjSj

)
(165)

implying that the rearrangement of the redox couple molecules after diffusion screens entirely the
internal electric field of the solution. In addition, finally, using the definition of S, one can rewrite the
total stationary state Seebeck coefficient as:
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SeEq =
1
e

∑
j

νjSj︸ ︷︷ ︸
−∆rS

+∑
j

νjŜj

 (166)

SeEq =
1
e

(
−∆rS + ∑

j
νjŜj

)
(167)

At Soret equilibrium, the Seebeck coefficient depends only on the redox reactions with all influence
from charged particles/ions lost.

4.3. Comparison with Experiments in Ferrofluids

The magneto-thermodiffusion of particles, therefore, impact only the initial state Seebeck
coefficient of magnetic nanofluids. Supposing that the ionic strength varies only weakly near the
electrodes between the initial and the stationary states, the difference between the stationary and the
initial Seebeck coefficients can be expressed simply from Equations (146) and (167); i.e.,

∆Se =
1
e

(
∑

j
λjŜj + ∑

r
λrŜr −∑

i

tiŜi
ξi

)
(168)

Therefore, it is possible to separate the thermogalvanic and the magneto-thermodiffusion
components. These models had been applied to describe the experimental data of thermodiffusion and
thermoelectric effects in magnetic nanofluids [16,57,62] where Ŝi of nanoparticles were found to be in
the order of 10–100 meV/K per particle, two orders of magnitude larger than typical ions in aqueous
electrolytes [54]. Furthermore, the signs of the electrophoretic charge of nanoparticles and the Eastman
entropy of transfer with respect to the sign of the thermogalvanic Seebeck coefficient were found to
play a decisive role in determining whether the thermodiffusion contribution enhances (in the case
of aqueous media with Fe(CN)3−

6 /Fe(CN)4−
6 redox couple and positively charged nanoparticles) or

reduces (in the case of organic solvent media with Ferrocene/Ferrocenium redox couple and negatively
charged magnetic nanoparticles). The next test step will be to compare the proposed model to the
initial Seebeck coefficient measurement under applied magnetic field. To the best of our knowledge,
there are no other experimental reporting of the Seebeck coefficient in ionic nanofluids where relevant
physical parameters such as Eastman entropy of transfer and effective charge number of colloidal
particles are analyzed.

5. Summary

General expressions for particle flux in magnetic nanofluids was derived in the context of
magneto-thermoelectric diffusion. The key physical parameters; i.e., diffusion constant, effective charge
number and the Eastman entropy transfer are expressed as functions of particle concentration and the
applied magnetic field strength. The proposed model can be tested on experimental measurements on
the initial Seebeck coefficient in magnetic nanofluids who has been reported to show non-negligible
contribution from particle thermodiffusion to the overall production of the thermoelectric potential.
It should be noted that in a typical thermogalvanic cell (∆T of 10–100 kelvin applied across ≈mL
of liquid) it can take up to several tens of hours to reach the Soret equilibrium state. Therefore the
Seebeck coefficients reported in such thermogalvanic cells correspond to that of (close-to) initial state
values. The present model can be relevant for understanding the thermogalvanic effects observed in
complex fluids containing charged (magnetic or non-magnetic) particles as well as macro-ions such
as ionic liquids. Systematic measurements of the Seebeck coefficient as a function of charged particle
concentration and applied magnetic field strength should be used to verify its validity. Furthermore,



Entropy 2018, 20, 405 25 of 27

in comparison to ionic liquids, the thermoelectric property of ionic nanofluids (magnetic or not) is
under-explored today. We hope that the present work will serve to motivate the thermogalvanic
community to investigate this largely untapped class of complex fluids.
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