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Abstract: Simple intuitive models are presented for the capacity and entropy of retro-causal 

channels in measured ensembles of quantum systems which can be represented as statistical 

mixtures of pre-selected only and pre- and post-selected systems. Measurement data from a twin 

Mach-Zehnder interferometer experiment are used in these models to discuss the capacity and 

entropy of an apparent retro-causal channel observed in the experimental data. It is noted that low 

capacity/low entropy retro-causal channels can exist in strong measurement systems. 
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1. Introduction 

The possibility that future events can influence the present has long been argued by physicists 

and philosophers. In 1964 Aharonov, Bergmann, and Lebowitz proposed a time symmetric theory 

for non-relativistic quantum mechanics [1] and was further developed by Aharonov et al. in terms of 

weak measurements and weak values [2,3]. This theory not only employs standard forward in time 

evolving quantum states, but also the retro-causal property of quantum states evolving backward in 

time. Although the retro-causal interpretation of weak value theory is controversial, e.g., [4–7], 

experiments performed in recent years have verified many of the theory’s counterintuitive 

predictions, e.g., [8–12]. 

Inspired by a weak value gedanken experiment discussed by Tollaksen et al. [13], an optical twin 

Mach-Zehnder interferometer (MZI) experiment was performed in 2010 which confirmed the 

predictions made by the gedanken experiment and provided indirect experimental evidence that 

single particle quantum interference phenomena can be explained in terms of a non-local exchange 

of modular momentum [14,15]. A recent re-analysis of the reduced 2010 experimental data also 

suggests that a possible retro-causal channel was observed in the twin MZI apparatus during the 

associated measurements of ensembles of pre-selected and post-selected (PPS) quantum systems 

[16,17]. 

Using the data from the 2010 experiment as a guide, simple models are presented here for the 

capacity and entropy of this retro-causal channel. The capacity model assumes that the probability 

distribution for the measurement pointer can be represented as a statistical mixture of the probability 

distributions for the pointers associated with the PPS systems and the pre-selected only (PSO) 

systems produced by the measurement. The entropy of the channel is modelled as a classical binary 

entropy function for a Bernoulli process. Application of the capacity model to the 2010 experimental 
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data shows that even though the capacity of the channel is greatest when the measurement is weak, 

the channel persists—albeit with increasingly small capacity—as the measurement becomes stronger. 

It is also shown that—as expected for a binary entropy function—the entropy is smallest when the 

measurement is extremely weak or extremely strong and reaches its maximum value when the 

pointer distribution of the mixture is the mean of the PPS and PSO pointer distributions. 

An overview of the theory of projector measurement for PPS and PSO systems is given in Section 2 

(measurements of a projector were made in the 2010 experiment). The capacity and entropy models 

for retro-causal channels present in PPS and PSO mixtures (like that assumed for the 2010 

experiment) are presented in Section 3. Section 4 reviews the relevant features of the 2010 experiment 

and discusses—from the perspective of these models—the properties of the retro-causal channel 

associated with the twin MZI used in the experiment. Concluding remarks comprise the final section 

of this paper. 

2. Theory of Projector Measurement 

The measured value of a quantum mechanical observable for a PSO (PPS) system is the statistical 

result of a standard measurement procedure performed upon an ensemble of identical PSO (PPS) 

quantum systems. Such measurements can be described using the von Neumann description of a 

quantum measurement at time 𝑡0 of a time independent observable 𝐴 that describes a quantum 

system in an initial fixed pre-selected state |𝜓𝑖⟩ = ∑ 𝑐𝑗𝐽 |𝑎𝑗⟩  at 𝑡0 , where the set 𝐽  indexes the 

eigenstates |𝑎𝑗⟩ of the operator �̂� . In this description, the interaction between the measurement 

apparatus—i.e., the pointer—and the quantum system is described by the von Neumann interaction 

operator �̂� given by: 

�̂� = 𝑒−𝑖
ℏ∫ �̂�𝑑𝑡 = 𝑒−

𝑖
ℏ

𝛾𝐴𝑝 , 

where 𝛾 = ∫ 𝛾𝛿(𝑡 − 𝑡0)𝑑𝑡  defines the strength of the measurement’s impulsive interaction at 𝑡0 and 

�̂� is the momentum operator for the pointer of the measurement apparatus, which is in the initial 

state |𝜙⟩. Let �̂� be the pointer’s position operator that is conjugate to �̂� and assume that 𝜙(𝑞) ≡

⟨𝑞|𝜙⟩ is real valued. When the observable 𝐴 to be measured is a projector—as was the case in the 

2010 experiment—the interaction operator is given exactly by [18]: 

�̂� = 1̂ − �̂� + �̂��̂� , 

where �̂� = 𝑒−
𝑖

ℏ
𝛾𝑝  is the spatial translation operator defined by the action ⟨𝑞|�̂�|𝜙⟩ = 𝜙(𝑞 − 𝛾). 

Prior to the measurement of projector �̂�, the pre-selected system and the pointer are in the tensor 

product state |𝜓𝑖⟩|𝜙⟩. Immediately after the measurement, the combined system is in the PSO pointer 

state given—for arbitrary interaction strength—exactly by: 

|Φ⟩ = �̂�|𝜓𝑖⟩|𝜙⟩ = (1̂ − �̂� + �̂��̂� ) |𝜓𝑖⟩|𝜙⟩  (1) 

and which yields: 

⟨Φ|�̂�|Φ⟩ = ⟨𝜙|�̂�|𝜙⟩ + 𝛾⟨𝜓𝑖|�̂�|𝜓𝑖⟩  (2) 

and: 

|⟨𝑞|Φ⟩|2 = (1 − ⟨𝜓𝑖|�̂�|𝜓𝑖⟩)|⟨𝑞|𝜙⟩|2 + ⟨𝜓𝑖|�̂�|𝜓𝑖⟩|⟨𝑞|�̂�|𝜙⟩|
2
  (3) 

as the exact mean PSO pointer position and pointer distribution profile, respectively. Note that since 

there are no interference cross terms in Equation (3), the profile |⟨𝑞|Φ⟩|2  does not exhibit 

interference. 

If the state |𝜓𝑓⟩, ⟨𝜓𝑓|𝜓𝑖⟩ ≠ 0, is post-selected at 𝑡0, the resulting expression for the PPS pointer 

state is given—regardless of interaction strength—exactly by: 

|Ψ⟩ = ⟨𝜓𝑓|Φ⟩ =
𝑒𝑖𝜒

𝑁
[(1 − 𝐴𝑤)1̂ + 𝐴𝑤�̂�]|𝜙⟩,  (4) 

where: 
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    𝐴𝑤 ≡
⟨𝜓𝑓|�̂�|𝜓𝑖 ⟩

⟨𝜓𝑓|𝜓𝑖⟩
≡ (𝐴1)𝑤   

is the complex valued weak value of 𝐴 (e.g., [2,3]); 𝜒 is the Pancharatnam phase defined by: 

𝑒𝑖𝜒 =
⟨𝜓𝑓|𝜓𝑖⟩ 

|⟨𝜓𝑓|𝜓𝑖 ⟩|
 ;    

and: 

𝑁 = √𝑎 + 𝐽(1̂)   

is the normalization factor. Here: 

𝑎 = 1 − 2𝑅𝑒𝐴𝑤 + 2|𝐴𝑤|2   

and for any Hermitean �̂�: 

  𝐽(�̂�) = 𝐴𝑤(1 − 𝐴𝑤
∗ )⟨𝜙|�̂��̂�|𝜙⟩ + 𝐴𝑤

∗ (1 − 𝐴𝑤)⟨𝜙|�̂�†�̂�|𝜙⟩ .  

The associated mean PPS pointer position and pointer distribution profile are given exactly by: 

⟨Ψ|�̂�|Ψ⟩ =
1

𝑁2
[𝑎⟨𝜙|�̂�|𝜙⟩ + 𝐽(�̂�) + 𝛾|𝐴𝑤|2]    (5) 

and: 

|⟨𝑞|Ψ⟩|2 = (
1

𝑁2) {
|1 − 𝐴𝑤|2|⟨𝑞|𝜙⟩|2 + |𝐴𝑤|2|⟨𝑞|�̂�|𝜙⟩|

2

+2 𝑅𝑒[𝐴𝑤(1 − 𝐴𝑤
∗ )⟨𝑞|𝜙⟩∗⟨𝑞|�̂�|𝜙⟩]

}   (6) 

Note that since Equation (6) contains interference cross terms, the profile |⟨𝑞|Ψ⟩|2  exhibits 

interference. Of course, the PPS states are selected at times 𝑡𝑖 < 𝑡0 < 𝑡𝑓 and must be evolved forward 

and backward in time, respectively, to the measurement time 𝑡0. It is important to note here that such 

PPS systems imply retro-causality, since the weak value of 𝐴 is measured and |𝜓𝑓⟩ is the post-

selected state at measurement time 𝑡0 < 𝑡𝑓. 

A weak measurement of 𝐴 occurs when the interaction strength 𝛾 is sufficiently small so that 

the system is essentially undisturbed by the measurement and the pointer’s position uncertainty ∆𝑞 

is much larger than the separation between �̂�’s eigenvalues (if a PPS system undergoes a weak 

measurement of 𝐴, then the resulting value of 𝐴 is its weak value 𝐴𝑤). In order for measurements 

to qualify as weak measurements, the associated momentum uncertainty of the pointer must 

simultaneously satisfy the following two formal weakness conditions which define the extreme 

upper bound 𝛾𝑤 for the weak measurement regime, e.g., [14,19]: 

∆𝑝 ≪
ℏ

𝛾
|𝐴𝑤|−1   

and 

∆𝑝 ≪ min
(𝑛=2,3,⋯ )

ℏ

𝛾
|

𝐴𝑤

(𝐴𝑛)𝑤
|

1 (𝑛−1)⁄

 .   

A measurement performed in accordance with these inequalities such that 𝛾 ≪ γw is a weak 

measurement whereas a measurement performed with a sufficiently large γ ≫ γw  is a strong 

measurement. A measurement which is neither weak nor strong is a transition measurement, i.e., it 

is a measurement performed in the transition region between a weak measurement and a strong 

measurement. Although the measurements in the 2010 experiment were made—not only in the weak 

measurement regime—but also in the transition and strong measurement regions, Equations (1) and (4) 

still apply over this range of interaction strengths since these expressions are valid regardless of the 

interaction strength. 
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3. Capacity and Entropy Models for Retro-Causal Channels Present in PPS and PSO Mixtures 

Suppose a projector measurement of fixed interaction strength of an ensemble of quantum 

systems produces independent measurement pointer distributions for both PPS and PSO systems 

(i.e., there is no phase relationship between the PPS and PSO states) such that the associated 

distribution profile |⟨𝑞|Λ⟩|2 for the measurement pointer can be modelled as the statistical mixture 

|⟨𝑞|Λ⟩|2 = 𝛼|⟨𝑞|Ψ⟩|2 + 𝛽|⟨𝑞|Φ⟩|2.  (7) 

Here |⟨𝑞|Ψ⟩|2 and |⟨𝑞|Φ⟩|2 are the normalized distributions for the PPS and PSO measurement 

pointers given by Equations (6) and (3), respectively, and 0 ≤ 𝛼 ≤ 1 (𝛽 = 1 − 𝛼) is the fraction of 

PPS (PSO) systems produced by the measurement. Clearly, if 𝛼 = 1 (𝛽 = 0), the measured ensemble 

is comprised only of PPS systems, whereas if 𝛽 = 1 (𝛼 = 0), the ensemble is comprised entirely of 

PSO systems. 

The model also assumes that: (i) only the measured presence of weak values in PPS systems 

induces retro-causal channels which permit the backward in time evolution of post-selected states 

from 𝑡𝑓 to 𝑡0; and (ii) since the weak value measurement of PPS systems implies retro-causality, the 

presence of such PPS systems in a mixture indicates the presence of a retro-causal channel during a 

measurement process. Based upon these assumptions and Equation (7), the capacity C for the retro-

causal channel in a statistical mixture of PPS and PSO systems can be defined as the fraction of the 

mixture that is comprised of PPS systems, i.e., 

𝐶 ≡ 𝛼 .   

When the fraction 𝛼 is unknown, then 𝐶 can be determined from knowledge of the associated 

mean pointer positions. To see this, observe that Equation (7) can be used to relate the mean pointer 

position for a mixture to the mean pointer positions for the PPS and PSO constituents of the mixture. 

In particular: 

∫ 𝑞|⟨𝑞|Λ⟩|2𝑑𝑞 = 𝛼 ∫ 𝑞|⟨𝑞|Ψ⟩|2𝑑𝑞 + 𝛽 ∫ 𝑞|⟨𝑞|Φ⟩|2𝑑𝑞 .   

After identifying each integral in the last equation with the appropriate mean pointer position 

and setting 𝛼 = 𝐶 and 𝛽 = 1 − 𝐶, the expression: 

⟨Λ|�̂�|Λ⟩ = 𝛼⟨Ψ|�̂�|Ψ⟩ + 𝛽⟨Φ|�̂�|Φ⟩ = ⟨Φ|�̂�|Φ⟩ + 𝐶(⟨Ψ|�̂�|Ψ⟩ − ⟨Φ|�̂�|Φ⟩)   

is obtained which can be readily solved for 𝐶 to yield: 

𝐶 =
⟨Λ|�̂�|Λ⟩−⟨Φ|�̂�|Φ⟩

⟨Ψ|�̂�|Ψ⟩−⟨Φ|�̂�|Φ⟩
, ⟨Ψ|�̂�|Ψ⟩ ≠ ⟨Φ|�̂�|Φ⟩ .  (8) 

Here ⟨Λ|�̂�|Λ⟩, ⟨Φ|�̂�|Φ⟩, and ⟨Ψ|�̂�|Ψ⟩ are the mean pointer positions for the mixture, the PSO 

systems in the mixture (Equation (2)), and the PPS systems in the mixture (Equation (5)), respectively. 

It is important to note that Equation (8) cannot be used to determine 𝐶 when the associated PPS and 

PSO pointer positions are equal (since 𝐶 is undefined) or when the pointer positions are such that 

𝐶 < 0 (since 0 ≤ 𝐶 ≤ 1). Also, observe that Equation (8) has the following requisite properties: (i) if 

𝐶 = 1, then ⟨Λ|�̂�|Λ⟩ = ⟨Ψ|�̂�|Ψ⟩; and (ii) if 𝐶 = 0, then ⟨Λ|�̂�|Λ⟩ = ⟨Φ|�̂�|Φ⟩. 

In order to associate an entropy with such a retro-causal channel it is further assumed that—for 

a fixed interaction strength and a fixed 𝐶—a measured system can be treated as a random variable 

in a Bernoulli process such that after the measurement it is either a PPS system with probability 𝐶 

or a PSO system with probability 1 − 𝐶. The classical entropy 𝐻 of the channel (in Shannons) is then 

defined here as the binary entropy function for the Bernoulli process given by: 

𝐻 = −𝐶 log2 𝐶 − (1 − 𝐶) log2(1 − 𝐶) . (9) 

Relying upon the standard interpretation of a binary entropy function, 0 ≤ 𝐻 ≤ 1  can be 

viewed as a measure of the uncertainty associated with a measurement outcome: when 𝐶 = 1 (0), 

then it is certain that the measurement produces a PPS (PSO) system and 𝐻 = 0 ; maximum 

uncertainty is achieved when 𝐶 = 1

2
 in which case 𝐻 = 1. It is easy to see from Equations (7) and (8) 

that—as anticipated—maximum uncertainty is achieved when: 
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|⟨𝑞|Λ⟩|2 =
1

2
(|⟨𝑞|Ψ⟩|2 + |⟨𝑞|Φ⟩|2)   

or when: 

⟨Λ|�̂�|Λ⟩ =
1

2
(⟨Ψ|�̂�|Ψ⟩ + ⟨Φ|�̂�|Φ⟩)   

4. The Retro-Causal Channel in the 2010 Twin Mach-Zehnder Interferometer Experiment 

Now consider the 2010 twin Mach-Zehnder experiment mentioned above [14,16]. In that 

experiment, the mean pointer position measurements observed at the output port of the third 

beamsplitter were essentially derived from the overlapping at the second beamsplitter BS2 of the two 

beams traversing the arms in the interferometer between the first and second beamsplitters. When 

𝛾 = 0, i.e., there is no measurement—the two beams completely overlap at BS2. However, as 𝛾 

increases the beam overlap at BS2 decreases and the non-overlap region of the beams on BS2 

increases. 

To apply the channel capacity model to the experimental data note that—from an operational 

perspective—interference only occurs in the overlap region (at BS2) and that—from a theoretical 

perspective—only the PPS distribution given by Equation (6) exhibits interference. Pursuant to 

assumptions (i) and (ii) in the last section, the beam overlap region corresponds to the retro-causal 

channel in the apparatus. By similar reasoning, since interference does not occur in the non-overlap 

region and only the PSO distribution given by Equation (3) exhibits no interference, then the non-

overlap region does not correspond to a retro-causal channel (operationally, the second MZI in the 

apparatus effectively responds to photons in the non-overlap region as though they never traversed 

the first MZI and enter as such the input ports of the second MZI as PSO systems). Consequently, the 

measured pointer distribution can be modelled as a mixture of independent PSO and PPS pointer 

distributions. It follows that as the beam overlap decreases, |⟨𝑞|Φ⟩|2 becomes increasingly dominant 

in the mixture and ⟨Λ|�̂�|Λ⟩ is increasingly dominated by ⟨Φ|�̂�|Φ⟩.  

Here such measurements are viewed from a simplified perspective as a classical Bernoulli 

process which “sorts” measured systems into PSO and PPS “bins”: measured systems which do not 

“intercept” post-selected states at the time of measurement go into the PSO bin, whereas those that 

do go into the PPS bin. As 𝛾  increases, the number of systems occupying the PPS bin (i.e., the 

capacity 𝐶) decreases. 

Although the channel capacity is not directly measured in this experiment, it can be indirectly 

estimated using Equation (8) and the measurement pointer data presented in Figure 1 in [18] for the 

case 𝐴𝑤 = 1. In that figure the vertical axis corresponds to pointer position in μm referenced to 

⟨𝜙|�̂�|𝜙⟩ = 0 and the 𝑥 values along the horizontal axis correspond to the interaction strengths 𝛾 =

−1.5𝑥 μm. The lower curve in the figure labeled “statistical mixture 𝐴𝑤 = 1” corresponds to the 

pointer positions ⟨Λ|�̂�|Λ⟩, the line labeled “PSO theoretical 〈𝐴〉 = ½” corresponds to ⟨Φ|�̂�|Φ⟩, and 

the line labeled “PPS theoretical no ‘collapse’ 𝐴𝑤 = 1” corresponds to ⟨Ψ|�̂�|Ψ⟩. Referring to the 

figure, if 𝑥 = 300 μm (i.e., 𝛾 = −450 μm and the measurement is a transition measurement), then 

⟨Λ|�̂�|Λ⟩ ≅ −325 μm, ⟨Φ|�̂�|Φ⟩ ≅ −225 μm, and ⟨Ψ|�̂�|Ψ⟩ ≅ −450 μm. Substituting these values into 

Equation (8) yields 𝐶 ≅ 0.444 as the empirical estimate for the capacity of the associated retro-causal 

channel and corresponds to the fraction of PPS systems in the mixture when 𝛾 = −450 μm. The 

classical entropy of the channel can also be estimated using this value for the capacity in Equation (9) 

to obtain 𝐻 ≅ −0.444 log2(0.444) −  0.556 log2(0.556) = 0.991 . Thus, when 𝛾 = −450 μm  the 

uncertainty is nearly maximum as to whether the outcome of a measurement will be a PSO system 

or a PPS system. 

Also, observe from Figure 1 that as 𝑥 (i.e., 𝛾) increases and the measurement becomes stronger, 

the pointer position ⟨Λ|�̂�|Λ⟩ for the mixture converges towards the pointer position ⟨Φ|�̂�|Φ⟩ for 

PSO systems, whereas the pointer position ⟨Ψ|�̂�|Ψ⟩  for PPS systems diverges from ⟨Φ|�̂�|Φ⟩ . 

Application of these trends to Equations (8) and (9) shows the expected behavior that as the 

interaction strength increases and approaches that of a strong measurement, both the channel 

capacity and entropy approach zero. Conversely, as 𝑥 approaches 0, ⟨Λ|�̂�|Λ⟩ converges towards 
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⟨Ψ|�̂�|Ψ⟩ while both ⟨Ψ|�̂�|Ψ⟩ and ⟨Φ|�̂�|Φ⟩ approach one another at 𝑥 = 0. Using these trends in 

Equations (8) and (9) again shows the expected behavior, that as the measurement becomes weak, 

the capacity approaches unity and the entropy vanishes. 

5. Discussion 

Although the models presented here are simple, they provide an intuitive description of the 

capacity and entropy of the apparent retro-causal channel in the 2010 experimental data. This 

includes the perhaps unexpected possibility that non-vanishing retro-causal channels persist in weak 

value-measured PPS ensembles even when the measurements are strong (e.g., if the two apparently 

non-overlapping beams resulting from a strong measurement have Gaussian distributions—as was 

the case for the 2010 experiment—the associated capacity theoretically approaches zero 

asymptotically as 𝛾 → ∞ since the wings of these distributions still overlap). 

Regardless of the fact that the model assumes the use of a projector measurement (because the 

2010 experiment involved projector measurements and the presence (absence) of interference in the 

associated pointer theories provide the basis for assigning PPS (PSO) systems to the overlap (non-

overlap) region), the capacity model should be applicable for non-projector measurements of 

ensembles which have pointer probability distribution functions that can be reasonably represented 

as a statistical mixture of a weak value measured PPS pointer distribution function and a PSO pointer 

distribution function. The model is not valid for situations which do not possess an associated weak 

value measured PPS pointer distribution because assumptions (i) and (ii) in Section 3 are violated. 

As implied in Section 3, the utility of the model is also limited by the fact that Equation (8) can only 

be used to estimate the capacity when values for the mean pointer distributions for the mixture and 

the PPS and PSO components are known. 

Before closing, it is noted that although the pointer distributions associated with the capacity 

model are quantum mechanical, the entropy 𝐻 used here is effectively the classical information 

theoretic Shannon entropy and was selected for its simple adequate description of the measurement 

process as a series of Bernoulli trials. Although the Shannon entropy has a natural extension to 

quantum systems via the von Neumann entropy 𝑆 = −𝑇𝑟{�̂� log �̂�}, where �̂� is the statistical operator 

for the system, 𝐻 was chosen for use here instead of its quantum mechanical counterpart to avoid 

introducing unnecessary complexity into describing the measurement process, e.g., [20]. 

Author Contributions: S.S. designed and performed the experiment; A.P. and S.S. analyzed the data; A.P. 

developed the models and wrote the paper. 

Funding: This research was funded by a grant from the Naval Surface Warfare Center Dahlgren Division’s In-

house Laboratory Independent Research Program. This program also provided funds to cover the associated 

open access publication costs. 

Acknowledgments: The authors thank J. E. Gray for helpful suggestions concerning the preparation of this 

manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Aharonov, Y.; Bergmann, P.; Lebowitz, J. Time symmetry in the quantum process of measurement. Phys. 

Rev. 1964, 134, B1410–B1416, doi:10.1103/PhysRev.134.B1410. 

2. Aharonov, Y.; Albert, D.; Vaidman, L. How the result of a measurement of a component of the spin of a 

spin-½  particle can turn out to be 100. Phys. Rev. Lett. 1988, 60, 1351–1354, doi:10.1103’PhysRevLett.60.1351. 

3. Aharonov, Y.; Vaidman, L. Properties of a quantum system during the time interval between two 

measurements. Phys. Rev. A 1990, 41, 11–20, doi:10.1103/PhysRevA.41.11. 

4. Aharonov, Y.; Popescu, S.; Tollaksen, J. A time-symmetric formulation of quantum mechanics. Phys. Today 

2010, 63, 27–32. 

5. Nauenberg, M.; Hobson, A.; Mukamel, S.; Griffiths, R.; Aharonov, Y.; Popescu, S.; Tollaksen, J. Time-

symmetric quantum mechanics questioned and defended. Phys. Today 2011, 64, 62–63. 



Entropy 2018, 20, 411 7 of 7 

 

6. Price, H. Does Time-Symmetry Imply Retrocausality? How the Quantum World Says “Maybe”. Stud. Hist. 

Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 2012, 43, 75–83, doi:10.1016/j.shpsb.2011.12.003. 

7. Leifer, M.; Pusey, M. Is a time symmetric interpretation of quantum theory possible without retrocausality? 

Proc. R. Soc. A 2017, 473, 20160607, doi:10.1098/rspa.20160607. 

8. Ritchie, N.; Story, J.; Hulet, R. Realization of a measurement of a ‘weak value’. Phys. Rev. Lett. 1991, 66, 

1107–1110, doi:10.1103/PhysRevLett.66.1107. 

9. Parks, A.; Cullin, D.; Stoudt, D. Observation and measurement of an optical Aharonov-Albert-Vaidman 

effect. Proc. R. Soc. A 1998, 454, 2997–3008, doi:10.1098/rspa.1998.0288. 

10. Resch, K.; Lundeen, J.; Steinberg, A. Experimental realization of the quantum box problem. Phys. Lett. A 

2004, 125–131, doi:10.1016/j.physleta.2004.02.042. 

11. Wang, Q.; Sun, F.; Zhang, Y.; Li, J.; Huang, Y.; Guo, G. Experimental demonstration of a method to realize 

weak measurement of the arrival time of a single photon. Phys. Rev. A 2006, 73, 02384, 

doi:10.1103/PhysRevA.73.023814. 

12. Hosten, O.; Kwiat, P. Observation of the spin Hall effect in light via weak measurements. Science 2008, 787–790, 

doi:10.1126/science.1152697. 

13. Tollaksen, J.; Aharonov, Y.; Casher, A.; Kaufherr, T.; Nussinov, S. Quantum interference experiments, 

modular variables and weak measurements. New J. Phys. 2010, 12, 01302, doi:10.1088/1367-2630/12/1/013023. 

14. Spence, S.; Parks, A. Experimental Evidence for a Dynamical Non-Locality Induced Effect in Quantum 

Interference Using Weak Values. Found. Phys. 2012, 42, 803–815, doi:10.1007/s10701-011-9596-6. 

15. Spence, S.; Parks, A.; Niemi, D. Methods used to observe a dynamical nonlocality effect in a twin Mach-

Zehnder interferometer. Appl. Opt. 2012, 51, 7853–7857, doi:10.1364/AO.51.007853. 

16. Spence, S.; Parks, A. Experimental evidence for retro-causation in quantum mechanics using weak values. 

Quantum Stud. Math. Found. 2017, 4, 1–6, doi:10.1007/s40509-016-0082-x. 

17. Parks, A.; Spence, S. An observed manifestation of a parity symmetry in the backward in time evolved 

post-selected state of a twin Mach-Zehnder interferometer. Quantum Stud. Math. Found. 2017, 4, 315–322, 

doi:10.1007/s40509-017-0106-1. 

18. Parks, A.; Spence, S.; Gray, J. Exact pointer theories for von Neumann projector measurements of pre- and 

postselected and preselected-only quantum systems: Statistical mixtures and weak value persistence. Proc. 

R. Soc. A 2014, 470, 20130651, doi:10.1098/rspa.2013.0651. 

19. Gray, J.; Parks, A. A note on the “Aharonov-Vaidman operator action representation theorem”. Quantum 

Stud. Math. Found. 2018, 5, 213–217, doi:10.1007/s40509-017-0112-3. 

20. Peres, A. Quantum Theory: Concepts and Methods; Kluwer Academic Publishers: Dordrecht, The Netherlands, 

1995; pp. 280–281, ISBN 0-7923-3632-1. 

©  2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 

article distributed under the terms and conditions of the Creative Commons Attribution 

(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 

https://doi.org/10.1016/j.shpsb.2011.12.003

