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Abstract: We revisit the concept of entanglement within the Bohmian approach to quantum mechanics.
Inspired by Bohmian dynamics, we introduce two partial measures for the amount of entanglement
corresponding to a pure state of a pair of quantum particles. One of these measures is associated
with the statistical correlations exhibited by the joint probability density of the two Bohmian particles
in configuration space. The other partial measure corresponds to the correlations associated with
the phase of the joint wave function, and describes the non-separability of the Bohmian velocity
field. The sum of these two components is equal to the total entanglement of the joint quantum state,
as measured by the linear entropy of the single-particle reduced density matrix.
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1. Introduction

The de Broglie-Bohm approach to quantum mechanics [1–4], also referred to as the pilot-wave
theory, or the quantum theory of motion, has been, since the publication of the seminal works by Bohm,
a subject of constant interest in the field of the foundations of quantum mechanics. Indeed, there has
been a sustained research activity on the de Broglie-Bohm formulation along the years [5–29]. In an
article reviewing and celebrating the first 100 years of quantum physics, Tegmark and Wheeler
included the formulation of Bohmian mechanics within the list of the most significant events in the
development of this field of Science [30]. The Bohmian approach has provided stimulating new
perspectives on several fundamental aspects of quantum physics, among which we can mention
the quantum measurement problem [5–7], quantum chaos [8], entanglement [9,31,32], the thermal
equilibrium of quantum systems [10], the concept of quantum work [11], quantum cosmology [12–15],
quantum gravity [16], and quantum chemistry (in the latter case, both at the practical [17,18] and at the
conceptual-philosophical [19] levels). The Bohmian point of view also constitutes the starting point
of possible extensions of quantum theory, as the intriguing proposal made by Valentini illustrates,
leading to specific quantitative astrophysical and cosmological predictions that might be within the
reach of observational tests [20,21]. The formalism of Bohm theory has also been applied to the
treatment of problems in thermal physics, such as the classical Hamilton-Jacobi formulation of Fourier
heat conduction [22].

In Bohm’s model of quantum mechanics the particles constituting a physical system have well
defined positions in configuration space. The full description of the system is given by the particles’
configuration (i.e., the particles’ positions) and by a many-particle wave function. The particles’
configuration evolution is determined by the wave function through a “guiding” equation, while the
wave function evolves according to the standard many-particle Schrödinger equation. Even though the
particles are assumed to have, at each time, well defined positions, knowledge about these positions is
not accessible. All we can know about these positions is their probability density distribution, given by

Entropy 2018, 2, 473; doi:10.3390/e2060473 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
http://dx.doi.org/10.3390/e2060473
http://www.mdpi.com/journal/entropy


Entropy 2018, 2, 473 2 of 19

the squared modulus of the wave function. The position observable plays a dominant role within the
Bohmian formulation. In particular, within this approach, the outcome of an experiment in which
any physical observable is measured is registered by the final configuration of the particles of the
experimental apparatus. The Bohmian model thus highlights a basic feature of any measurement
process, which is that “... all experiments and certainly all measurements in physics are in the last
analysis essentially kinematic, for they are ultimately based on observations of the position of a
particle or of a pointer on a scale as a function of time” [33]. Other interesting recent approaches
to the foundations of quantum mechanics, such as the entropic dynamics formulation proposed by
Caticha [34], also stress the special role played by the position observable. It is worth emphasizing
that Bohm’s formulation of the quantum measurement process is fully consistent with Born’s rule
in standard quantum mechanics and, consequently, the experimental predictions of Bohm’s theory
coincide with those of the usual quantum mechanical formalism (see, however, Valentini’s Bohm-based
proposal for an extension of quantum theory [20,21]). The basic quantal non-locality is explicitly
expressed in the de Broglie-Bohm formalism. In point of fact, the Bell inequalities were inspired by
Bell’s reaction to the work of Bohm [35].

In spite of the intense research work that has been devoted to Bohmian dynamics and its
applications, relatively little attention has been paid to the quantitative analysis of entanglement within
the Bohmian approach. The aim of the present contribution is to advance two quantitative indicators of
the entanglement between two Bohmian particles. These quantities are explicitly formulated in terms
of the Bohmian formalism. One of them corresponds to the statistical correlations exhibited by the
joint probability density of the positions of the two particles. The other one is a quantitative measure
of the non-separability of the Bohmian flow in the two-particle configuration space. We explore
the main properties of these indicators and, as an illustrative application, we use these measures to
investigate the decoherence-like process associated with two particles evolving under the effect of
quantum friction.

The paper is organized as follows. In Section 2 we provide a brief review of the Bohmian theory.
In Section 3 we introduce two quantitative indicators of entanglement within the Bohmian approach
to quantum physics. In Section 4 we apply these measures to a system of two particles evolving under
quantum friction. Finally, some conclusions are drawn in Section 5.

2. Bohmian Formulation of Quantum Dynamics

Bohmian dynamics includes, as one of its components, most of the formal apparatus of standard
quantum mechanics. Indeed, a Bohmian quantum particle is endowed with a wave function ψ(r, t)
governed by the Schrödinger equation. On top of this, the Bohmian particle has a definite position r
that evolves in time according to the classical equation dr

dt =
p
m = v, where p and v respectively denote

the particle’s linear momentum and velocity. The position r of a Bohmian particle is the paradigmatic
example of a hidden variable in a quantum theory. Within the Bohmian formulation it is assumed that
the result of a position measurement is predetermined, even though it is not predictable. This state
of affairs propagates to any other kind of physical measurement, since all of them translate, at some
stage, into the position of some particles in the measuring device [34,35].

In spite of its classical flavor, there are fundamental differences between Bohmian dynamics and
standard classical dynamics. In contrast to what happens in classical mechanics, the velocity v and the
linear momentum p are not free variables anymore. They are instead determined, through the wave
function ψ(r, t), by the particle’s position r(t) at each time t. The particle moves according to a first
order differential equation,

dr
dt

= v(r, t), (1)

with the flow in configuration space given by the velocity field v(r, t), determined by
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v(r, t) = − ih̄
2m

[
1

ψ(r, t)
∇(ψ(r, t))− 1

ψ∗(r, t)
∇(ψ∗(r, t))

]
, (2)

where ψ(r, t) is a time-dependent solution of Schrödiner equation. When preparing a state of the
particle, one neither has control over, nor knowledge of, the particular initial value adopted by r.
In this regard, the only accessible knowledge consists of the probability density ρ(r, t) corresponding
to the different possible particle’s positions, given by

ρ(r, t) = |ψ(r, t)|2. (3)

Associated with the configuration space flow (1) there is a Liouville-like continuity equation for the
probability density ρ(r, t),

∂ρ

∂t
+∇ · (vρ) = 0. (4)

The form (2) of the velocity field, together with the Schrödinger equation and the continuity
Equation (4), have an important consequence: if the probability density of initial positions of the
Bohmian particle satisfies the relation (3), then it also satisfies this relation at all later times.

3. Entanglement Between Two Bohmian Particles: Configuration and Phase Entanglement

In this section, we are going to introduce two quantitative entanglement indicators, closely related
to the main features of the Bohmian approach, for pure states of a pair of quantum particles. We are
going to consider two spinless quantum particles moving in one spatial dimension (the extension of
the present developments to D dimensions is straightforward) with coordinates denoted by x1 and x2.
In terms of the standard quantum mechanical formalism, the two quantum particles are described by
the pure state

|ψ〉 =
∫

dx1dx2ψ(x1, x2)|x1〉|x2〉, (5)

where |x1x2〉 = |x1〉|x2〉, ψ(x1, x2) = 〈x1, x2|ψ〉 and |xi〉 is an eigenstate of the i-particle
position operator.

An important aspect of Bohm’s approach is the assumption that at each point in time particles
have well defined positions and, consequently, describe well defined orbits in configuration space,
although the initial conditions associated with these orbits are not experimentally controllable. At the
level of individual orbits of the pair of Bohmian particles that we are discussing here, quantum
entanglement manifest itself by the fact that the velocity field v(x1, x2) is not separable. That is,
v(x1, x2) 6= (v1(x1), v2(x2)). In other words, each of the two components (v1, v2) of the vector field
v depends, in general, on both particles’ coordinates (x1, x2). This means that the behaviors of both
particles are intertwined. Roughly speaking, one can say that each particle affects the behavior
of the other one, even if there is no interaction potential involved, and the particles are far apart.
This state of affairs is highly counter-intuitive and has been the focus of considerable attention in
the literature. In fact, virtually all discussions of entanglement within the Bohmian approach have
dealt, in one way or another, with this aspect of Bohmian dynamics (see, for instance [31,32] and
references therein). However, and in spite of its great theoretical-philosophical interest, the study of
individual Bohmian trajectories does not lend itself to a quantitative characterization of the amount
of entanglement associated with a two-particle system at a given time. In point of fact, at a given
instant t, two Bohmian particles following an individual trajectory are located at a specific point in
configuration space with coordinates (x1(t), x2(t)), where the velocity field is given by a specific vector
v(x1, x2). Now, it is not possible to assess the amount of non-separability that a vector field has at a
particular location (x1, x2). The non-separability of a vector field is a global property that is associated
with a region of configuration space. A sensible quantitative indicator of this non-separability can
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then be given by an average value, evaluated over such a region. In addition, Bohm’s theory does
involve a probability density in configuration space: the probability density ρ(x1, x2) = |ψ(x1, x2)|2 of
having the Bohmian particles at different locations. Consequently, it is reasonable to expect that an
appropriate quantitative measure of the degree of non-separability of the Bohmian velocity field should
be some sort of spatial average of non-sperability, related to the configuration space density ρ(x1, x2)

associated with the particles’ positions. We thus see that it seems inevitable that the probability
density in configuration space has to be involved in a quantitative treatment of entanglement within
Bohmian mechanics. Now, once this density has been incorporated to the discussion, there appears
another contribution to entanglement that has to be taken into account, which is the (classical-like)
statistical correlations present in the configuration space probability density itself. Mathematically,
these correlations are given by the non-factorizability of the density, ρ(x1, x2) 6= ρ1(x1)ρ2(x2). On the
basis of these considerations we are going to propose two indicators of the amount of entanglement
of two particles at a given time, that provide quantitative measures of the above mentioned aspects
of Bohmian mechanics: the non-separability of the velocity field and the classical-like correlations
of the probability density in configuration space. It is worth stressing that, even though we are not
going to refer explicitly to individual Bohmian orbits, our entanglement indicators are directly related
to the above explained essential aspects of the Bohmian approach which originate, in turn, from the
assumption that individual orbits exists. We can make here an analogy with the Gibbs approach to
classical statistical mechanics. When using the canonical statistical ensemble to describe a system
at thermal equilibrium one does not refer explicitly to individual orbits of a Hamiltonian system.
However, it is clear that Hamiltonian dynamics still plays a fundamental role in, and is indeed at the
foundations of, the canonical formulation of statistical mechanics.

The density matrix corresponding to the pure state (5) is

ρ̂ = |ψ〉〈ψ| =
∫

dx1dx2dx′1dx′2ψ(x1, x2)ψ
∗(x′1, x′2)|x1x2〉〈x′1x′2| (6)

and has matrix elements

〈x1x2|ρ̂|x′1x′2〉 = ψ(x1, x2)ψ
∗(x′1, x′2). (7)

The density matrix ρ̂ should not be confused with the spatial density ρ(x1, x2) mentioned before. The
spatial density corresponds to the diagonal elements of the operator ρ̂, that is ρ(x1, x2) = 〈x1x2|ρ̂|x1x2〉.
The marginal density matrix ρ̂1 = Tr2ρ̂ describing particle 1, has matrix elements

〈x1|ρ̂1|x2〉 =
∫
〈x1x3|ρ̂|x2x3〉dx3

=
∫

ψ(x1, x3)ψ
∗(x2, x3)dx3. (8)

The linear entropy of ρ̂1 constitutes a useful measure or indicator of the amount of entanglement of the
state ψ,

E = 1− Tr(ρ̂2
1), (9)

where one has,

Tr(ρ̂2
1) =

∫
〈x1|ρ̂1|x2〉〈x2|ρ̂1|x1〉dx1dx2

=
∫

ψ(x1, x3)ψ
∗(x2, x3)ψ

∗(x1, x4)ψ(x2, x4)dx1dx2dx3dx4. (10)

Alternatively, we can express this entanglement indicator in terms of the marginal density matrix
ρ̂2 = Tr1ρ̂ corresponding to particle 2, so one has
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E = 1− Tr(ρ̂2
1) = 1− Tr(ρ̂2

2). (11)

The quantity E constitutes a useful, practical way to assess quantitatively the amount of entanglement
exhibited by a two-particle pure state. In fact, it has been applied to the study of quantum entanglement
in many different settings (see, for instance, [36]) due to its various computational advantages,
both from the analytical and from the numerical points of view. However, this quantity does not have
a clear interpretation in terms of the Bohmian theory. Our aim, inspired by the Bohmian approach
to quantum mechanics, is to decompose the entanglement indicator E into two parts having a clear
meaning in terms of the two basic ingredients of the dynamics of two Bohmian particles: their joint
probability density in configuration space, and the joint velocity field describing the probability
density flow. The above mentioned two contributions to the total entanglement, as measured by
E , constitute quantitative indicators of entanglement that we shall respectively call configuration
entanglement Ec, and phase entanglement, Ep.

Following the Bohmian approach, we express the wave function as

ψ(x1, x2) = R
1
2 (x1, x2)eiα(x1,x2), (12)

where R and α are both real functions, and R ≥ 0. The quantity R(x1, x2) = |ψ(x1, x2)|2 satisfies
a continuity equation and represents the joint probability density of the two Bohmian particles
in configuration space. The wave function (12) can be entangled through R(x1, x2), through the
phase α(x1, x2), or through both these quantities. Entanglement through the density R means that
the probability density R(x1, x2) cannot be factorized as R(x1, x2) = R1(x1)R2(x2). This lack of
factorizability, which we refer to as “configuration entanglement” corresponds to a correlation (in
the classical sense) of the probability density R(x1, x2). On the other hand, entanglement through
the phase α(x1, x2) means that it cannot be additively decomposed as α(x1, x2) = α1(x1) + α2(x2).
This lack of additive decomposability means that the Bohmian dynamical equations of particles 1
and 2 are not independent. To clarify this last point, lets consider the equations of motion of the two
Bohmian particles,

dx1

dt
= v1(x1, x2) =

h̄
m

∂α

∂x1
,

dx2

dt
= v2(x1, x2) =

h̄
m

∂α

∂x2
. (13)

In general, if α(x1, x2) 6= α1(x1) + α2(x2), the two ordinary differential equations in (13) are coupled to
each other. On the contrary, if α(x1, x2) 6= α1(x1) + α2(x2), these two equations of motion decouple,
and one has,

dx1

dt
= v1(x1) =

h̄
m

dα1

dx1
,

dx2

dt
= v2(x2) =

h̄
m

dα2

dx2
. (14)

That is, in the latter case the equations of motion of the two Bohmian particles separate into two
independent equations.

In the following two Subsections we are going to propose two quantitative indicators for
configuration entanglement, and for phase entanglement, and determine some of their basic properties.

3.1. Configuration Entanglement

As a quantitative indicator of entanglement we propose,

Ec = 1−
∫

dx1dx2dx3dx4

√
R(x1, x3)R(x2, x3)R(x1, x4)R(x2, x4). (15)
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The quantity Ec can be interpreted as an indicator of classical correlations in the probability density
R(x1, x2). Indeed, if this density is factorizable, R(x1, x2) = R1(x1)R2(x2) we have,∫

dx1dx2dx3dx4

√
R(x1, x3)R(x2, x3)R(x1, x4)R(x2, x4)

=
∫

dx1dx2dx3dx4R1(x1)R1(x2)R2(x3)R2(x4) = 1 (16)

due to normalization. Therefore, in the case that R(x1, x2) is factorizable we have Ec = 0.
Now, we have ∫

dx1dx2dx3dx4

√
R(x1, x3)R(x2, x3)R(x1, x4)R(x2, x4)

=
∫

dx1dx2

{∫
dx3

√
R(x1, x3)R(x2, x3)

}{∫
dx4

√
R(x1, x4)R(x2, x4)

}
=
∫

dx1dx2

{∫
dx3

√
R(x1, x3)R(x2, x3)

}2

≤
∫

dx1dx2

{∫
dx3R(x1, x3))

}{∫
dx4R(x2, x4)

}
=
∫

dx1dx2dx3dx4R(x1, x3)R(x2, x4)

= 1. (17)

The inequality in (17) is due to the Schwartz inequality and the final equality is due to the normalization
of R(x1, x2). It follows from (15) and (17) that the configuration entanglement Ec is always bounded
according to

0 ≤ Ec ≤ 1, (18)

achieving its lowest bound (that is, vanishing) when the joint probability density in configuration
space is factorizable.

3.2. Phase Entanglement

As a quantitative indicator of the amount of phase entanglement we propose,

Ep =
∫

dx1dx2dx3dx4
{

1− exp [i {α(x1, x3)− α(x2, x3)− α(x1, x4) + α(x2, x4)}]
}
×

×R
1
2 (x1, x3)R

1
2 (x2, x3)R

1
2 (x1, x4)R

1
2 (x2, x4). (19)

We have that

Ep =

{∫
dx1dx2dx3dx4

∣∣∣ψ(x1, x3)ψ
∗(x2, x3)ψ

∗(x1, x4)ψ(x2, x4)
∣∣∣}

−
∣∣∣∣{∫ dx1dx2dx3dx4ψ(x1, x3)ψ

∗(x2, x3)ψ
∗(x1, x4)ψ(x2, x4)

}∣∣∣∣
≥ 0. (20)

In this last equation we used the fact that∫
dx1dx2dx3dx4ψ(x1, x3)ψ

∗(x2, x3)ψ
∗(x1, x4)ψ(x2, x4) = Tr(ρ̂2

1) (21)

is always a real positive number. It also follows from (17) and (19) (remembering that R
1
2 (x1, x2) =

|ψ(x1, x2)|) that Ep ≤ 1. Summing up, we have

0 ≤ Ep ≤ 1. (22)
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In the case that the phase α(x1, x2) is additively decomposable, α(x1, x2) = α1(x1) + α2(x2), we have

α(x1, x3)− α(x2, x3)− α(x1, x4) + α(x2, x4)

= α1(x1) + α2(x3)− α1(x2)− α2(x3)− α1(x1)− α2(x4) + α1(x2) + α2(x4) = 0, (23)

implying that Ep = 0. On the other hand, if Ep = 0 we must have that

exp [i {α(x1, x3)− α(x2, x3)− α(x1, x4) + α(x2, x4)}] = exp [iδ] (24)

for some real constant δ. Therefore (assuming α(x1, x2) to be a continuous function) we have

α(x1, x3)− α(x2, x3)− α(x1, x4) + α(x2, x4) = δ. (25)

This relation must hold for all values of x1, x2, x3, x4. Therefore, fixing some constant values x20 and
x40 for x2 and x4, respectively, we can write

α(x1, x3) = α(x1, x40) + α(x20, x3)− α(x20, x40) + δ. (26)

Defining now

α1(x1) = α(x1, x40)−
1
2

α(x20, x40) +
δ

2
α2(x3) = α(x20, x3)−

1
2

α(x20, x40) +
δ

2
(27)

we have
α(x1, x3) = α1(x1) + α2(x3) (28)

and therefore the function α is additively decomposable. In summary, Ep = 0 if and only if α is
additively decomposable.

Finally, it can be verified after some algebra that the total entanglement of the two-particle pure
quantum state, as measured by E (given by (9)), is equal to the sum of the entanglement of the
configuration and the phase contributions,

E = Ec + Ep. (29)

Please note that the bounds (18) and (22), respectively satisfied by the configuration and the phase
entanglement, are consistent with the bounds 0 ≤ E ≤ 1 satisfied by the total entanglement E . For a
factorizable quantum (pure) state of the two particles, both contributions Ec and Ep to the entanglement
between the particles achieve their respective lower bounds (that is, both of them vanish). However,
the configuration and the phase entanglements cannot both achieve their upper bounds (they cannot
both be equal to 1) because the total entanglement satisfies Ec + Ep ≤ 1. This means that a state with
high configuration entanglement must have low phase entanglement, and vice versa.

4. Entanglement Dynamics and Quantum Friction

We shall now apply the configuration and phase quantitative entanglement indicators to explore
the entanglement dynamics of two quantum particles evolving according to a nonlinear Schrödinger
equation incorporating quantum friction effects. Nonlinear Schrödinger equations have attracted
considerable attention in recent years, and have been applied to the description of diverse physical
phenomena. Closely related to Bohmian dynamics is the nonlinear Schrödinger equation proposed by
Nassar and Miret-Artés in [6],

ih̄
∂ψ(x, t)

∂t
=
[
H(x, t) + ih̄

(
Wc(x, t) + W f (x, t)

)]
ψ(x, t) (30)
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where H = − h̄2

2m
∂2

∂x2 + V(x) is the standard Hamiltonian for a quantum particle of mass m moving in
one dimension under the potential V(x). We also have,

Wc(x, t) = −κ
[
ln |ψ(x, t)|2 − 〈ln |ψ(x, t)|2〉

]
, (31)

and

W f (x, t) = −ν

2

[
ln

ψ(x, t)
ψ∗(x, t)

−
〈

ln
ψ(x, t)
ψ∗(x, t)

〉]
, (32)

where

〈ln |ψ(x, t)|2〉 =
∫
|ψ(x, t)|2 ln |ψ(x, t)|2dx, (33)

and 〈
ln

ψ(x, t)
ψ∗(x, t)

〉
=
∫
|ψ(x, t)|2 ln

(
ψ(x, t)
ψ∗(x, t)

)
dx. (34)

In the above equations κ is a constant related to the resolution of position measurement and ν is a
friction coefficient. The nonlinear wave Equation (30) was proposed as an effective description of the
dynamics of a quantum particle undergoing a process of continuous position measurement including
dissipation effects [6]. The non-linear logarithmic term Wc advanced by Nassar in [5] was motivated by
Mensky’s path integral formulation of continuous quantum measurements [37], whereas the term W f
considered in [6] was inspired by Kostin’s work in connection with friction in quantum systems [38].
Several aspects of these kind of nonlinear evolution equations have been investigated in [39–44].
In terms of Bohmian dynamics, the friction term W f in the non-linear Schrödinger Equation (30) leads
to a new term in the equations governing the evolution of the Bohmian velocity field, that can be
interpreted as describing a drag force [6].

Please note that the friction effects described by the term W f in the nonlinear Schrödinger
Equation (30) occur at the level of pure states. That is, the evolution of a quantum pure state is affected
by these friction effects, but the state stays pure as it evolves. The presence of the term W f gives rise, for
instance, to the decrease (dissipation) of the energy of the time-dependent state, but not to an increase
of its entropy. Equation (30) is a Schrödinger-Langevin-like equation without the stochastic force
term. These kind of equations have been the focus of considerable attention and applied to diverse
problems [4,6]. Nonlinear wave equations like (30) can be regarded as incorporating phenomenological
descriptions of friction that describe only some aspects of the dynamics of an open system (for instance,
energy dissipation). In this sense, they differ from approaches based on master equations where,
in general, the entropy of the system changes as it evolves. A classical analogue may contribute to
clarify this situation. A classical conservative system, such as a standard harmonic oscillator, is both
conservative and deterministic. Energy is conserved during evolution, and complete knowledge of
the initial conditions (represented by a point in phase space) fully determines the state of the system
at a later time (represented, again, by a point in phase space). In summary: a point in phase space
deterministically evolves into another point in phase space. If we incorporate friction effects described
by drag forces (for instance, of the form F = −av) the system is no longer conservative. Energy is not
conserved. However, the system is still deterministic: a point in phase space still evolves into another
well defined point in phase space. If one also incorporates stochastic forces (like in the Langevin
equation) the system is no longer deterministic. Even if the initial conditions correspond to a point in
phase space, to describe the evolution of the system one needs a time-dependent probability density in
phase space. A quantum mechanical analogue of this situation is an open quantum system that evolves,
for instance, according to the Linblad equation, and that has to be described by a time-dependent
density matrix. On the other hand, a wave equation like (30) (or, more specifically, Equation (37) that we
are going to consider later), governing the evolution of a quantum system that is at all times described
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by a pure state, can be regarded as a quantum mechanical analogue of a classical system that is affected
by friction (drag forces) but is still deterministic. These classical systems have practical, conceptual,
and historical relevance, and their properties have been the focus of investigation since long ago (a nice
discussion can be found in Chapters 19 and 20 of [45]). Consequently, it is an interesting problem to
explore their possible quantum mechanical counterparts.

We are now going to apply the configuration and phase entanglement indicators previously
introduced, to explore the entanglement dynamics of two quantum particles governed by a particular
two-dimensional version of the wave Equation (30), incorporating the friction term W f , but not
the nonlinear logarithmic term Wc. That is, in (30) we set κ = 0. We consider the evolution of a
two-dimensional Gaussian wave packet describing two (entangled) particles subjected to friction and
moving in one spatial dimension in a common harmonic potential well. The Gaussian ansatz is

Ψ(x1, x2, t) = eλ0(t)+λ1(t)x2
1+λ2(t)x2

2+λ3(t)x1x2+λ4(t)x1+λ5(t)x2 , (35)

where the coefficients λj(t) are complex functions of time,

λj(t) = λjR(t) + iλjI(t) for j = 0, . . . , 5 (36)

with λjR, λjI ∈ R. The λj(t)’s are then chosen so that (35) is a solution of a non-linear Schrödinger
equation incorporating a friction term. This evolution equation is given by

ih̄
∂Ψ(x1, x2, t)

∂t
=

[
− h̄2

2m

( ∂2

∂x2
1
+

∂2

∂x2
2

)
+

1
2

mω2(x2
1 + x2

2) + ih̄W f (x1, x2, t)
]

Ψ(x1, x2, t), (37)

where
W f (x1, x2, t) = −ν

2

[
2iα(x1, x2, t)− 2i

∫
dx1dx2R(x1, x2, t)α(x1, x2, t)

]
. (38)

The phase α(x1, x2, t) can be expressed in terms of the imaginary parts of the λj’s,

α(x1, x2, t) = λ0I(t) + λ1I(t)x2
1 + λ2I(t)x2

2 + λ3I(t)x1x2 + λ4I(t)x1 + λ5I(t)x2, (39)

while R(x1, x2) is given by the real parts of the λj’s,

R(x1, x2, t) = e2(λ0R(t)+λ1R(t)x2
1+λ2R(t)x2

2+λ3R(t)x1x2+λ4R(t)x1+λ5R(t)x2). (40)

Inserting the ansatz (35) into the nonlinear Schrödinger Equation (37) it is possible to prove, after some
algebra, that (35) constitutes a time dependent solution of (37), provided that the real and imaginary
parts of the λj(t)’s comply with the following set of twelve coupled ordinary differential equations,
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λ′0R(t) +
h̄
m

(
λ1I(t) + λ2I(t) + λ4R(t)λ4I(t) + λ5R(t)λ5I(t)

)
= 0

λ′0I(t) +
h̄
m

(
−λ1R(t)− λ2R(t)− 1

2 λ2
4R(t) +

1
2 λ2

4I(t)−
1
2 λ2

5R(t) +
1
2 λ2

5I(t)
)
+ h̄ν

(
λ0I(t)− 〈α〉(t)

)
= 0

λ′1R(t) +
h̄
m

(
4λ1R(t)λ1I(t) + λ3R(t)λ3I(t)

)
= 0

λ′1I(t) +
h̄
m

(
−2λ2

1R(t) + 2λ2
1I(t)−

1
2 λ2

3R(t) +
1
2 λ2

3I(t)
)
+ 1

2
mω2

h̄ + h̄νλ1I(t) = 0

λ′2R(t) +
h̄
m

(
4λ2R(t)λ2I(t) + λ3R(t)λ3I(t)

)
= 0

λ′2I(t) +
h̄
m

(
−2λ2

2R(t) + 2λ2
2I(t)−

1
2 λ2

3R(t) +
1
2 λ2

3I(t)
)
+ 1

2
mω2

h̄ + h̄νλ2I(t) = 0

λ′3R(t) +
h̄
m

(
2λ1R(t)λ3I(t) + 2λ1I(t)λ3R(t) + 2λ2R(t)λ3I(t) + 2λ2I(t)λ3R(t)

)
= 0

λ′3I(t) +
h̄
m

(
−2λ1R(t)λ3R(t) + 2λ1I(t)λ3I(t)− 2λ2R(t)λ3R(t) + 2λ2I(t)λ3I(t)

)
+ h̄νλ3I(t) = 0

λ′4R(t) +
h̄
m

(
2λ1R(t)λ4I(t) + 2λ1I(t)λ4R(t) + λ3R(t)λ5I(t) + λ3I(t)λ5R(t)

)
= 0

λ′4I(t) +
h̄
m

(
−2λ1R(t)λ4R(t) + 2λ1I(t)λ4I(t)− λ3R(t)λ5R(t) + λ3I(t)λ5I(t)

)
+ h̄νλ4I(t) = 0

λ′5R(t) +
h̄
m

(
2λ2R(t)λ5I(t) + 2λ2I(t)λ5R(t) + λ3R(t)λ4I(t) + λ3I(t)λ4R(t)

)
= 0

λ′5I(t) +
h̄
m

(
−2λ2R(t)λ5R(t) + 2λ2I(t)λ5I(t)− λ3R(t)λ4R(t) + λ3I(t)λ4I(t)

)
+ h̄νλ5I(t) = 0,

(41)

where
λ′jR,jI(t) =

d
dt

λjR,jI(t). (42)

The set of coupled, non-linear, first-order, ordinary differential Equation (41) need to be solved
numerically. Now, λ0R(t) is determined by the normalization of the state of the system (35). So, by
imposing the condition of normalization on the system, we can obtain an expression for λ0R(t) in
terms of the other λ’s:

1 =
∫

dx1dx2Ψ∗(x1, x2, t)Ψ(x1, x2, t)

= e2λ0R(t)
∫

dx1e2λ1R(t)x2
1+2λ4R(t)x1

∫
dx2e2λ2R(t)x2

2+2λ3R(t)x1x2+2λ5R(t)x2 . (43)

The integral appearing in the right hand side of the above equation only converges if

λ1R(t) < 0, λ2R(t) < 0 and λ2
3R(t) < 4λ1R(t)λ2R(t). (44)

Evaluating this integral and solving for λ0R gives

λ0R(t) =
1
2

ln


√

4λ1R(t)λ2R(t)− λ2
3R(t)

π


+

λ1R(t)λ2
5R(t) + λ2R(t)λ2

4R(t)− λ3R(t)λ4R(t)λ5R(t)
4λ1R(t)λ2R(t)− λ2

3R(t)
. (45)

Since a wave function which is normalized at some time t is then automatically normalized for all time,
it is sufficient to impose these conditions on the initial values of the λj’s.

Evaluating the nested integrals (see Equations (15) and (19)) in the expression for the total
entanglement (9), results in the following expression:

E(t) = 1− π2e4λ0R(t)e
−

4(λ1R(t)λ2
5R(t)+λ2R(t)λ2

4R(t)−λ3R(t)λ4R(t)λ5R(t))
4λ1R(t)λ2R(t)−λ2

3R(t)√
16λ2

1R(t)λ
2
2R(t)− 4λ1R(t)λ2R(t)λ2

3R(t) + λ2
3I(t)

(
4λ1R(t)λ2R(t)− λ2

3R(t)
) . (46)
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Substituting for λ0R(t) from (45) and simplifying leads to a final compact expression for the total
entanglement of the system:

E(t) = 1−

√
4λ1R(t)λ2R(t)− λ2

3R(t)
4λ1R(t)λ2R(t) + λ2

3I(t)
. (47)

Notice that the entanglement only depends on λ1R(t), λ2R(t), λ3R(t) and λ3I(t). As λ3I(t) is squared in
the total entanglement expression, the sign of λ3I(t) does not affect the total entanglement. By setting
λ3I(0) = 0 and λ3R(0) = 0, the total entanglement E(t) = 0 and so the state is separable and remains
separable. The configuration and phase entanglement of a separable state are also zero and remain
zero irrespective of the choice of parameters ν and ω. The total entanglement of the initial state can be
chosen to be maximal by making the numerator inside the square root in Equation (47) as small as
possible or the denominator as large as possible, which is achieved by choosing λ3R(0) such that it
approaches 2

√
λ1R(0)λ2R(0) or by choosing |λ3I(0)| to be very large. This makes sense as we would

expect the total entanglement of our initial state to depend strongly on λ3(0) since this is the coefficient
of the cross-term in the Gaussian state (35).

Table 1. Table of initial conditions.

Low Entanglement Intermediately Entangled Generally Entangled Highly Entangled

E(0) 0.086 0.395 0.70717 0.923

λ0R(0) 1
2 ln

(√
91

5π

)
− 5

7
1
2 ln

(
2
√

15
π

)
− 1

6 −122.79117 1
2 ln

(
2
√

15
π

)
− 1

6
λ0I(0) 1 1 4.21132 1
λ1R(0) −1 −4 −3.29371 −4
λ1I(0) 1 1 −3.51362 1
λ2R(0) −1 −4 −0.613171 −4
λ2I(0) 1 1 −0.86058 1
λ3R(0) 3

5 2 −2.54191 2
λ3I(0) 3

5 10 −3.28337 100
λ4R(0) 1 1 7.56778 1
λ4I(0) 1 1 3.99994 1
λ5R(0) 1 1 −4.69103 1
λ5I(0) 1 1 3.07785 1

We investigated numerically the evolution of the entanglement indicators for numerous initial
states and for a variety of values for ν and ω. We solved numerically the equations of motion (41) for
the λj’s and evaluated, on the corresponding time-dependent Gaussian wave packet, the configuration
and phase entanglement indicators, Ec and Ep. The conclusion was that the particular choices of initial
states given in Table 1, and of parameters ν (ν = 0 or 0.1) and ω (ω = 0 or 1), are representative of
the behaviour of states in general. For the initial state referred to as “generally entangled" (column 3
in Table 1) the coefficients were chosen randomly, whereas for the states with low, intermediate and
high entanglement listed in Table 1, the coefficients were specifically chosen. When choosing these
coefficients (randomly or otherwise) we actually choose all of them except λ0R, which is calculated in
terms of the other coefficients to satisfy normalization. The only difference between the coefficients
of the intermediately entangled and highly entangled states is that λ3I(0) is first taken to be 10 and
then 100. The time evolution of the entanglement indicators for the aforementioned initial states is
illustrated in Figures 1–11. Please note that for computing the numerical results displayed in the
Figures we have set h̄ and m to unity (i.e. we use atomic units).
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Figure 1. Plots of configuration entanglement Ec (left) and phase entanglement Ep (right) as a function
of time for a free particle without friction (ν = 0 and ω = 0). The randomly chosen initial conditions are
given in column 3 of Table 1. The total initial entanglement of the state is E = 0.70717. The quantities
Ec and Ep are dimensionless. Units of time, length and mass are chosen such that h̄ = 1 and m = 1.

Figure 2. Configuration entanglement Ec (left) and phase entanglement Ep (right) as a function of time
for an initial state of low entanglement. The initial conditions are given in column 1 of Table 1. The
system parameters are ν = 0.1 and ω = 1, and the total initial entanglement for the state is E = 0.086.
The quantities are measured in the same units as in Figure 1.

Figure 3. Total entanglement E as a function of time for the initial state of low entanglement considered
in Figure 2. The system parameters are ν = 0.1 and ω = 1, and the total initial entanglement for the
state is E = 0.086. The quantities are measured in the same units as in Figure 1.
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Figure 4. Configuration entanglement Ec (left) and phase entanglement Ep (right) as a function of time
for an initial state of intermediate (representative) entanglement. The initial conditions are given in
column 2 of Table 1. The system parameters are ν = 0.1 and ω = 1, and the total initial entanglement
for the state is E = 0.395. The quantities are measured in the same units as in Figure 1.

Figure 5. Total entanglement E as a function of time for the initial state of intermediate (representative)
entanglement considered in Figure 4. The system parameters are ν = 0.1 and ω = 1, and the total
initial entanglement for the state is E = 0.395. The quantities are measured in the same units as in
Figure 1.
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Figure 6. Plots of configuration entanglement Ec (left) and phase entanglement Ep (right) as a function
of time for a randomly chosen initial state (initial conditions are given in column 3 of Table 1). The
values of the physical parameters characterizing the system are ν = 0.1 and ω = 1, and the total initial
entanglement for the state is E = 0.70717. The quantities are measured in the same units as in Figure 1.
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Figure 7. Total entanglement E as a function of time. The system parameters, initial conditions,
and units used are the same as in Figure 6.
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Figure 8. Plots of configuration entanglement Ec (left) and phase entanglement Ep (right) as a function of
time for the same initial state as in Figures 6 and 7. The values of the physical parameters characterizing
the system are ν = 0.1 and ω = 0, and the total initial entanglement for the state is E = 0.70717.
The quantities are measured in the same units as in Figure 1.
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Figure 9. Total entanglement E as a function of time. The system parameters, initial conditions,
and units used are the same as in Figure 8.



Entropy 2018, 2, 473 15 of 19

Figure 10. Plots of configuration entanglement Ec (left) and phase entanglement Ep (right) as a function
of time for a highly entangled initial state (initial conditions are given in column 4 of Table 1). The system
parameters are ν = 0.1 and ω = 1, and the total initial entanglement for the state is E = 0.923.

Figure 11. Total entanglement E as a function of time for the same highly entangled initial state
considered in Figure 10. The system parameters are ν = 0.1 and ω = 1, and the total initial
entanglement for the state is E = 0.923.

As already mentioned, the time evolution of the entanglement indicators for the initial states
listed in Table 1 is depicted in Figures 1–11. In Figure 1 we show the evolution of the configuration and
phase indicators of entanglement for an entangled state of two free particles (that is, with no confining
potential) moving under no friction. In this system the total entanglement Ec + Ep is conserved,
although Ec and Ep are individually time dependent. Consistently with the fact that Ec + Ep is constant
in time, we see in Figure 1 that the minima of one indicator coincides to maxima of the other one
(at these points one has (dEc/dt) = (dEp/dt) = 0 and (d2Ec/dt2) = −(d2Ep/dt2), implying that the
extrema of one quantity coincide with the opposite extrema of the other one).

Figure 2 shows the time evolution of Ec and Ep for a pair of quantum particles evolving under the
effect of friction while confined by a common harmonic potential well. The parameters characterizing
the friction term and the harmonic potential are ν = 0.1 and ω = 1, respectively. The initial state,
characterized by the coefficients appearing in the first column of Table 1, is a state of low entanglement
with E = 0.086. The time evolution of the total entanglement E = Ec + Ep is depicted in Figure 3 for
the same system and initial state as in Figure 2. The time evolution of Ec and Ep is depicted in Figure 4,
for a pair of particles starting with an initial state of intermediate entanglement (E = 0.395), for the
same system parameters as in Figures 2 and 3. The corresponding evolution of the total entanglement
is plotted in Figure 5. The evolution of Ec and Ep for a pair of particles for the same system parameters
as in Figures 4 and 5, for a randomly chosen initial state (corresponding to the third column in Table 1)
is shown in Figure 6. The evolution of the total entanglement is exhibited in Figure 7. For the same
initial conditions as in Figures 6 and 7, Figure 8 depicts the evolution of Ec and Ep for a pair of free
particles (that is, with no external confining potential; ω = 0) moving under the effect of friction
(ν = 0.1). The evolution of the total entanglement is shown in Figure 9. Finally, the evolution of Ec
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and Ep for a highly entangled initial state (E = 0.923) with ν = 0.1 and ω = 1 is shown in Figure 10.
The behavior of the corresponding total entanglement is depicted in Figure 11.

It can be appreciated in Figures 2, 4, and 10 that, when the particles evolve under friction in a
common harmonic potential, both the configuration entanglement and the phase entanglement exhibit
a strong oscillatory behaviour. The maximum values of one of the entanglement indicators tends to
coincide with the minimum values of the other one. This behaviour is inherited from the corresponding
behavior observed in the conservative case, which we have already discussed. This is due to the fact
that, in the cases that we have studied, the time-scale of the energy dissipation is slower than the
time-scale of the oscillations generated by the harmonic confining field. Consequently, during one
complete harmonic period the energy stays approximately constant, and the system approximately
behaves as in the conservative case.

The amplitude of the entanglement oscillations tends to decrease with time. This trend is due to
the decrease in energy of the system, associated with the friction term in the nonlinear Schrödinger
Equation (37). Notice that Equation (37) does not have a stochastic force term [4]. The solution of
the equations of motion (41) for the λ-coefficients characterizing the evolving Gaussian wave packet,
at large times, asymptotically evolves to λ0I = λ00−ωt, λ1R = λ2R = −mω

2h̄ , λ0R given by (45), and the
rest of the λ’s equal to zero. Here λ00 is a dimensionless constant. This asymptotic solution corresponds
to the wave function,

ψ(x1, x2, t)asympt =

√
mω

h̄π
exp [i (λ00 −ωt)] exp

[
−mω

2h̄

(
x2

1 + x2
2

)]
, (48)

which represents the ground state of the two particles in the harmonic potential 1
2 mω2 (x2

1 + x2
2
)
. It can

be directly verified that (48) is a solution of (37). Please note that the wave function (48) describes a
separable state. This is the reason, for the system here under consideration, that both entanglement
indicators Ec and Ep tend to zero for large times. In summary, as the system looses energy due to
friction, it relaxes towards its ground state, which has no entanglement.

The total entanglement, depicted in Figures 3, 5 and 11, also decreases in time, but in a more
smooth way, with the oscillatory features highly attenuated. We see that in this system the amount of
entanglement of the two-particle state (configuration entanglement, phase entanglement, and total
entanglement) tends to decrease in time due to the dissipative effects. A similar decreasing trend
can be observed in Figures 8 and 9, corresponding to a two-particle system experiencing friction
but with no confining potential. However, in this case, where the common harmonic potential is
absent, the oscillatory behaviour of Ec and Ep is less strong than the one exhibited in Figures 2,
4, and 10. The behaviour of the total entanglement in Figure 9 seems to have more structure
than the corresponding behaviour in Figure 3. Some further conclusions from all the numerical
investigations were that when ω 6= 0, then for smaller initial total entanglement the periodicity for
the total entanglement is more apparent compared to higher initial values for the total entanglement.
Also, as ω increases the frequency of the entanglement oscillations (total entanglement, configuration
entanglement and phase entanglement) increases, as expected for an oscillating system. As ν increases,
the amplitude of the entanglement oscillations decreases more rapidly, as expected when friction plays
a role.

5. Conclusions

We revisited the concept of entanglement within the Bohmian formulation of quantum mechanics.
We introduced two partial measures for the amount of entanglement corresponding to a pure state of a
pair of Bohmian quantum particles. These two quantities are directly related to the main ingredients
of the Bohmian dynamics, and admit a clear interpretation in terms of that dynamics. One of these
measures is associated with the statistical correlations exhibited by the joint probability density
in configuration space corresponding to a pair of Bohmian particles. The other partial measure
corresponds to the correlations associated with the phase of the joint wave function, and describes the
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non-separability of the Bohmian velocity field. We refer to these two measures, respectively, as the
configuration entanglement indicator and the phase entanglement indicator. The sum of these two
components is equal to the total entanglement of the joint quantum state, as measured by the linear
entropy of the single-particle reduced density matrix. We investigated the main properties of the
configuration and the phase entanglement indicators and, as an illustrative application, explored the
time evolution of these quantities, corresponding to the dissipative dynamics of an initially entangled
two-particle quantum system evolving under the effect of friction. The fact that the entanglement
indicators advanced here are directly defined in terms of the elements of the Bohmian formalism
allows for their application to the study of entanglement in extensions or modifications of Bohm’s
theory, such as the one recently advanced by Valentini [20,21], where some ingredients of the standard
quantum formalism might be problematic. In the present work we have restricted our considerations
to entanglement in pure states. It would be interesting to explore extensions to mixed states of the
entanglement indicators explored here, although the Bohmian dynamics of mixed states is, in general,
much less developed than that of pure states. Any further contributions along these or related lines of
inquiry will be very welcome.
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