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Abstract: Due to the weak entropy of the vibration signal in the strong noise environment, it is
very difficult to extract compound fault features. EMD (Empirical Mode Decomposition), EEMD
(Ensemble Empirical Mode Decomposition) and LMD (Local Mean Decomposition) are widely used in
compound fault feature extraction. Although they can decompose different characteristic components
into each IMF (Intrinsic Mode Function), there is still serious mode mixing because of the noise.
VMD (Variational Mode Decomposition) is a rigorous mathematical theory that can alleviate the
mode mixing. Each characteristic component of VMD contains a unique center frequency but it
is a parametric decomposition method. An improper value of K will lead to over-decomposition or
under-decomposition. So, the number of decomposition levels of VMD needs an adaptive determination.
The commonly used adaptive methods are particle swarm optimization and ant colony algorithm
but they consume a lot of computing time. This paper proposes a compound fault feature extraction
method based on Multipoint Kurtosis (MKurt)-VMD. Firstly, MED (Minimum Entropy Deconvolution)
denoises the vibration signal in the strong noise environment. Secondly, multipoint kurtosis extracts
the periodic multiple faults and a multi-periodic vector is further constructed to determine the number
of impulse periods which determine the K value of VMD. Thirdly, the noise-reduced signal is processed
by VMD and the fault features are further determined by FFT. Finally, the proposed compound fault
feature extraction method can alleviate the mode mixing in comparison with EEMD. The validity of
this method is further confirmed by processing the measured signal and extracting the compound fault
features such as the gear spalling and the roller fault, their fault periods are 22.4 and 111.2 respectively
and the corresponding frequencies are 360 Hz and 72 Hz, respectively.
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1. Introduction

At present, there is an urgent need for state detection, feature extraction and more accurate
adaptive noise reduction methods for compound fault extraction of rotating machinery. There are
always weak fault characteristic components in compound faults of rotating machinery, such as pitting
and micro-cracks in the gears or bearings, unbalancing of the active shaft and periodic vibrations
during the rotation. When local defects happen, the compound fault features and the noise will have
dynamic changes, characteristic information coupling, strong time-varying property and periodic
impulse [1]. In addition, the weak fault information in compound faults will be submerged by the
noise which increases the difficulty of fault feature extraction. Therefore, it is urgent to develop a
reasonable and accurate adaptive fault feature extraction method.
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Traditional methods have developed rapidly for single fault diagnosis. Spectrum analysis,
envelope spectrum, empirical mode decomposition, ensemble empirical mode decomposition and
local mean value decomposition and so forth, have shown good results in single fault diagnosis.
However, the imbalanced characteristic intensity of the compound faults causes the frequency-domain
processing method to be immune to weak faults [2]. In order to decompose different fault features into
different time scales, Empirical Mode Decomposition (EMD) has been widely used by scholars and
has achieved significant results but its mode mixing needs further processing. Ensemble Empirical
Mode Decomposition (EEMD) avoids the endpoint effect of EMD but the decomposition accuracy
of EEMD is influenced by the added white noise and an improper choice of the added white noise
will cause over-decomposition or under-decomposition [3,4]. Local Mean Decomposition (LMD) is
widely used in compound fault diagnosis but mode mixing still exists [5]. In order to decompose
different time scales into different intrinsic mode functions, Variational Mode Decomposition (VMD)
was proposed in 2014 [6–8] and has been developing rapidly in recent years. But the decomposition
accuracy of VMD is affected by the penalty factor and the number of the decomposition level K. If the
K value is too large or too small, over-decomposition or under-decomposition will occur [9], so the K
value needs to be optimized. Considering that compound vibration fault signals contain multiple fault
features and noise, it is necessary to determine the number of fault features in advance to determine
the K value and then decompose the fault signals one by one. That is, when the value of K is too
large, over-decomposition occurs and the white noise has been decomposed. When the K value is too
small, under-decomposition occurs and results in the failure to extract some fault features. In addition,
VMD is sensitive to noise [10] and the decomposition results are easily affected by the background
noise. Especially in a strong noise environment, false components caused by noise are more likely to
be generated, which results in misdiagnosis of faults [11,12].

For the self-determination of the K value, Yi et al. [13] used particle swarm optimization (PSO)
to determine the number of decomposition level K of VMD. Zhang et al. [14] used a grasshopper
optimization algorithm (GOA) to optimize VMD. Compared to the K value determined by personal
experience, these optimization algorithms automatically determine the K value based on the
original signal, which have good adaptability and eliminate the influence of human factors on the
decomposition results. However, these algorithms need to set a large population density and the
drawbacks of these parameter optimization algorithms are very obvious. There are problems such as
large amount of calculation, high redundancy and low computational efficiency.

Considering that the kurtosis has nothing to do with the speed, size and load of the bearings
or gears, it is sensitive to the impulse signals. The kurtosis is suitable for the diagnosis of surface
micro-cracks, early damage etc. [15]. The singularity of the signal can be reflected by the kurtosis
but the kurtosis cannot provide information such as the location of the fault. The multipoint kurtosis
can be used to measure the period and energy of the fault feature [16]. Therefore, the number of
fault periods can be determined in advance by multipoint kurtosis. According to the number of
fault features, the K value in VMD is further determined adaptively, which increases the accuracy of
decomposition. In recent years, Minimum Entropy Deconvolution (MED) has been widely used in
fault diagnosis of gearbox [17]. MED denoises the original signal with the kurtosis maximum iterative
termination condition. Therefore, MED can reduce the effect of noise on VMD and multi-point kurtosis
and increase the decomposition accuracy of multipoint kurtosis. In this paper, the position of the fault
has been identified in the simulation signal and the measured signal and the compound fault features
of the enclosed power flow experiment table have been effectively recognized.

The article is divided into five parts, the first part is the introduction; the second part is the
background and the new method; the third part is MKurt-VMD; the fourth part is Simulation signal
analysis by MKurt-VMD; the fifth part is Gearbox compound fault feature extraction.
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2. Background and New Method

2.1. Introduction of Variational Mode Decomposition

The VMD algorithm follows the concept of the Intrinsic Mode Function (IMF) in EMD. The central
frequency and bandwidth of each IMF component are constantly updated during the iterative
solution. The final decomposition results will be adaptively decomposed according to the frequency
characteristics of the original signal. The constraint of the model is that the sum of these K IMFs is
equal to the original signal input.

The specific construction steps of the constrained variational model are as follows:

Step 1 For the input signal x(t), through the Hilbert Transform (HT), we can get the analytic signal
of each mode function uk(t).

Step 2 The center frequency ωk of each mode function uk(t) is estimated and its spectrum is moved
to the baseband.

Step 3 After step 2, the bandwidth is estimated through the H1 Gauss smoothness. The final
constraint variational model can be expressed by Equation (1).

min
(uk)(ωk)

∑
k

∥∥∥∥∥∂t

[
(σ(t) +

j
πt

)uk(t)
]

e−jωkt

∥∥∥∥∥
2

2


s.t.∑

k
uk = x(t)

(1)

In the Equation (1), ∂t indicates the partial derivative of t, σ(t) is the impulse function and {uk} =
{u1, . . . , uK} represents the K IMFs obtained by VMD of the original signal x(t), {ωk} = {ω1, . . . , ωK}
represents the central frequency of each IMF component. In order to find the optimal solution to the
above variational problem, the following form of Lagrange function is introduced.

L({uk}, {ωk}, λ) = α∑
k

∥∥∥∥[(σ(t) + j
πt

)× uk(t)]e−jωkt
∥∥∥∥2

2

+

∥∥∥∥x(t)−∑
k

uk(t)
∥∥∥∥2

2
+

〈
λ(t), x(t)−∑

k
uk(t)

〉 (2)

In the Equation (2), λ is a Lagrange multiplier and α is a penalty factor.
Secondly, the Lagrange function of Equation (2) is transformed in time-frequency domain and the

corresponding extremum solution has been carried out. The frequency domain expression of the mode
function uk and the central frequency ωk can be obtained.

∧
u

n+1

k (ω) =

∧
f (ω)−∑i 6=k

∧
ui(ω) +

∧
λ(ω)

2
1 + 2α(ω−ωk)

2 (3)

ωn+1
k =

∞∫
0

ω
∣∣∣∧uk(ω)

∣∣∣2dω

∞∫
0

∣∣∣∧uk(ω)
∣∣∣2dω

(4)

Finally, the optimal solution of the constrained variational model is solved by using the alternate
direction method of multipliers (ADMM) and the original signal x(t) has been decomposed into
K IMFs.

The specific steps of the algorithm are as follows.
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Step 1 Initialize the parameters, set
{
∧
u

1

k

}
,
{
∧
ω

1

k

}
,
∧
λ

1
and n to 0.

Step 2 Update
∧
uk and

∧
ωk according to Equations (3) and (4).

Step 3 Update the value of
∧
λ

n+1
according to the Equation

∧
λ

n+1
(ω) =

∧
λ

n
(ω) + τ(

∧
f (ω) −

∑
k

∧
u

n+1

k (ω)). τ is time-step of the dual ascent

Step 4 If the inequality ∑k ‖
∧
u

n+1

k − ∧u
n
k ‖

2

2

‖∧u
n
k ‖

< ε has been satisfied, the iteration stops and the loop

exits. Otherwise, return to step 2. Finally, K intrinsic mode functions are obtained.

2.2. Introduction of MKurt

In 2016, McDonald and Qing [16] proposed a multi-pulse target identification algorithm based
on Multi-D-Norm, which is mainly applied to the fault feature extraction of periodic impulses
and further introduced the concept of multipoint optimized minimum entropy deconvolution
adjusted (MOMEDA).

Multi D-Norm = MDN(
→
y ,
→
t ) =

1

‖
→
t ‖

→
t

T→
y

‖→y ‖
(5)

MOMEDA : max MDN(
→
y ,
→
t ) = max

→
f

→
t

T→
y

‖→y ‖
(6)

Among them, the target vector
→
t is a constant vector that determines the impulse position and

the weight. The normalized 1 is to represent the best target solution. The periods of different fault

signatures at the same sampling frequency can also be identified, thus the target vector
→
t can be used

for impulse signal separation and position determination.
The filer of MOMEDA and output solution can be simply summarized in Equation (7). For a

detailed calculation, see [16]:
→
f =

(
X0XT

0

)−1
X0
→
t (7)

X0 =


xL xL+1 xL+2 . . . . . . xN

xL−1 xL xL+1 · · · · · · xN−1

xL−2 xL−1 xL · · · · · · xN−2
...

...
...

. . . · · ·
...

x1 x2 x3 · · · · · · xN−L+1


L by N−L+1

(8)

→
y = XT

0

→
f (9)

The target vector
→
t has the same length of (N − L + 1). The target vector represents the position

and the weight of the deconvolution pulse in the output, the position of the pulse has been controlled.
MOMEDA obtains the optimal solution through a non-iterative period, which provides the basis of
the periodic fault diagnosis. MOMEDA can also perform the following calculations on M consecutive
target vectors, where Equations (7) and (9) will be transformed to Equations (10) and (11).

F =
[ →

f 1

→
f 2 . . .

→
f M

]
=
(

X0XT
0

)−1
X0

[ →
t 1

→
t 2 . . .

→
t M

]
(10)

Y =
[ →

y 1
→
y 2 . . .

→
y M

]→
y = XT

0 F (11)
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However, the position for solving the deconvolution is unique by using MOMEDA. For a single
periodic impulse, it is not necessary to consider whether the period is an integer or the length of the
filter has influence on the noise reduction. A periodic impulse will appear within the entire sampling

interval. However, when there are multiple periodic faults, the number of target vector
→
t will increase.

The compound fault tracking effect of MOMEDA is not good and MOMEDA cannot identify multiple
periodic impulses.

In order to extract compound fault features accurately, multipoint kurtosis is introduced as a
metric. First introduce a normalized factor K and the multipoint kurtosis is defined as:

MKurt(
→
y ,
→
t ) = k

∑N−L
n=1 (tnyn)

4

(∑N−L
n=1 y2

n)
2 (12)

When the output
→
y is the same as target vector

→
t , the MKurt is normalized

l = k
∑N−L

n=1 (t2
n)

4

(∑N−L
n=1 t2

n)
2 (13)

Solve the normalization factor

k =
(∑N−L

n=1 t2
n)

2

∑N−L
n=1 t8

n
(14)

The final standardized multipoint kurtosis is defined as

MKurt =
(∑N−L

n=1 t2
n)

2

∑N−L
n=1 t8

n

∑N−L
n=1 (tnyn)

4

(∑N−L
n=1 y2

n)
2 (15)

The target vector allows a single position impulse to be expanded to multiple pulses and to be
further normalized. When multiple faults coexist, there are different vibration periods for each rotation
of rotating machinery and there are multiple target vectors. Therefore, multiple peaks appear in the
multiple kurtosis. The peak corresponds to an impulse period, the integral multiple of the period or
half of the period. If multiple faults coexist, multiple peaks will appear in the low sampling interval
and the peaks are dense, making the size of the period difficult to determine. Therefore, it is necessary
to determine the periodic vector and enumerate the different periodic factors together with multiples
to further determine the number of periodic pulses in the compound signal. Taking into account that
the peak of the main period is not the largest, using multiple kurtosis alone to determine the frequency
of the impulse signal will lead to misdiagnosis. The multiple kurtosis is used to determine the number
of periods, then other adaptive methods are used to decompose and extract the fault features.

In addition, the multipoint kurtosis will be buried by the noise, so the filter needs a prior
determination in order to highlight the period of the impulse in a strong noise environment.
The multipoint kurtosis of the simulation signal will be analyzed in Section 3.

3. Introduction of MKurt-VMD method

The multipoint kurtosis can adaptively determine the multiple fault impulses but it has the
following features:

1. The multipoint kurtosis searches for the target vector in noisy environment without target,
2. There are many spectral peaks in multipoint kurtosis, which are not only at integer multiple

periods but also at half, one-third or quarter multiples of the periods.
3. The main period cannot be determined only by the multipoint kurtosis, because the peaks in the

main period are not the largest.
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In order to extract the number of fault periods with multiple fault characteristics accurately, the
signal can be denoised by MED in a strong noise environment. Under the premise of determining
penalty factor, the K value in VMD is further set by determining the number of periods in advance.
Considering that there is a large amount of noise in the original signal, the original signal can be
denoised by MED before decomposition to further improve the signal-to-noise ratio of the original
signal. VMD adaptively decomposes the original signal into K IMFs from low frequency to high
frequency and K frequencies are arranged in order from low frequency to high frequency. The flowchart
of MKurt-VMD is in Figure 1. Specific steps of MKurt-VMD are as follows:

(1) The multipoint kurtosis of the original signal is calculated and the multipoint kurtosis spectrum
is determined. The number of sampling points corresponding to the peak is listed according to
the spectrum peak,

(2) If there is no peak in the vibration signal, the peak has been polluted by the noise,
(3) Perform MED on the original signal and then continue to perform step 1,
(4) List the sampling points corresponding to the peaks one by one and search for sampling points

with multiple relationships, finally determine the number of periods,
(5) Determine the number of decomposition level K in VMD,
(6) Decompose the original signal by VMD,
(7) Solve the spectrum of each IMF,
(8) Determine the fault characteristics.
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Figure 1. The flowchart of Multipoint Kurtosis Variational Mode Decomposition (MKurt-VMD).

4. Simulation Signal Analysis by MKurt-VMD method

First of all, verify the performance of multipoint kurtosis. A simulation signal shown in Figure 2
is given, the sampling frequency is 2000 Hz, the number of sampling points is 2048 and the vibration
period is T = 100. Since there is no noise, its amplitude and frequency characteristics are obvious.
The vibration frequency is 20 Hz. The multipoint kurtosis spectrum is shown in Figure 3. There are
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many peaks in the entire interval and the density of peaks turns to be sparse with the increase of
sampling points. This is due to the multipoint kurtosis appears the peaks of the vibration period and
the integral multiple of the period during the searching process. The period corresponding to the peaks
is counted and a period vector is obtained. These periods are [5, 20, 25, 33.3, 50, 100, 200] corresponding
to [T/20, T/5, T/4, T/3, T/2, T, 2T] respectively. We know that vector represents periodic impulses.
However, the corresponding period of the main peak cannot be obtained under a priori uncertainty.
After observing the amplitude of each peak, it is obvious that the corresponding amplitudes at T/20,
T/5, T/4 and T/2 are the same and the corresponding peak of 2T becomes smaller. The location of
the main peak cannot be determined. A large number of main peaks will lead to misdiagnosis unless
there is a priori knowledge of the impulse periods. When we simply determine the periodic impulse
from the multiple kurtosis, the only information we can get is that there are indeed impulses in the
vibration signal. The period of the vibration signal has not yet been solved.
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Multipoint kurtosis analysis is now performed on a multi-impulse signal. The simulation signal
has three impulse signals and one noise signal. Their frequencies are 20 Hz, 16 Hz, 120 Hz and
the sampling frequency is 2000 Hz and sampling points are 2048. Their corresponding periods are
T1 = 100, T2 = 125 and T3 = 16.6 corresponding to the simulation signal. The time domain is shown in
Figure 4. The envelope spectra corresponding to y1, y2, y3 and yy are shown in Figure 5. The first
three frequencies are 20 Hz, 16 Hz and 120 Hz respectively but the frequency in the synthesized
signal yy is only 120 Hz. The three frequencies need to be identified simultaneously and further
decomposition of the original signal is required. The multipoint kurtosis of the simulation signal is
shown in Figure 6. Although there are a few peaks, the noise has distorted the true characteristics of the
signal, so the multipoint kurtosis is not immune in a strong noise environment. Denoise the simulation
signal by MED with the purpose of improving the signal-to-noise-ratio together with the energy of
the impulse vibration. The multipoint kurtosis of the denoised signal is shown in Figures 7 and 8.
The search interval in Figure 7 is [10, 600] and Figure 8 is obtained in order to refine the interval
[10, 100]. From the figures, we know that there is a large number of spectral peaks in the low period
range and the mean values are not much different and the multipoint kurtosis is a measure of the
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periodic existence. The specific analysis is as follows: The periods corresponding to the two peaks can
be divided into three types from low to high: [12, 5, 62.5, 125, 250, 500] = [T2/10, T2/2, T2, 2T2, 4T2],
[20, 25, 50, 100, 200, 300, 400] = [T1/5, T1/4, T1/2, T1, 2T1, 3 T1, 4 T1] and [16.7, 33.3, 41.7, 66.7, 83.3,
166.7] = [T3, 2T3, 2.5T3, 4T3, 5T3, 10T3]. The three-period vectors represent three impulse periods and
each vector represents a type of fault. It only shows that the original signal contains three different
periodic impulses but the main frequency and the main period still remain unknown.
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According to the multipoint kurtosis spectrum, the number of periodic impulses in the simulation
signal is determined to be three. At this time, K equals 3 and the optimized VMD decomposes the
denoised simulation signal. The results are shown in Figure 9, although the three intrinsic mode functions
are still polluted by a little noise. The results of processing the three IMFs through the envelope spectrum
are shown in Figure 10. The three decomposed intrinsic mode functions are arranged from low-frequency
to high-frequency in turn and each level contains only a time scale. The frequencies of the three levels
are 16 Hz, 20 Hz and 120 Hz respectively. There is no over-decomposition in the results and there is no
mode mixing.

Comparing EEMD with the proposed methods, EEMD is an adaptive noise reduction method but
it is also a parametric method. The two parameters of EEMD are the amplitude of the added white
noise and the added times. The amplitude of added white noise is 0.2 and the number of added times
is 100 by experience. After decomposing, the first four levels of the intrinsic mode functions which
have the strongest correlation with the original signal are taken and the results are shown in Figure 11.
There are obvious periodic oscillations in these four levels. The corresponding envelope diagram is
shown in Figure 12. The low frequencies are decomposed into four intrinsic mode functions one by
one. There is serious mode mixing in the second and third levels and 20 Hz has not been extracted.
The decomposition results are not as good as the method proposed in this article.
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Figure 11. The first four levels of Intrinsic Mode Functions (IMFs) decomposed by Ensemble Empirical
Mode Decomposition (EEMD).

When K = 4, the original signal is decomposed by VMD and the results are shown in
Figures 13 and 14. According to the envelope spectrum, it can be found that 20 Hz, 10 Hz and 120 Hz
have been extracted but there is over-decomposition. The corresponding frequency of the second level
does not belong to the center frequency in the simulation signal, so when the K value is too large,
it may easily lead to misdiagnosis.
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5. Gearbox Compound Fault Feature Extraction

The test bench designed in this paper is a closed-type power flow experimental rig, which is
loaded by the internal force generated by the torsion bar. The speed is adjusted by an electromagnetic
speed-regulated asynchronous motor, ranging from 120 r/min to 1200 r/min. Under different loads,
the vibration signal of the gear under normal and pitting conditions is measured. This chapter mainly
uses compound fault as an example to verify the feasibility of the above method. The enclosed
power flow experimental rig is shown in Figure 15. It includes a speed-adjustable motor, coupling,
an accompanied gearbox, a speed reversing instrument, torsion bar, test gearbox and a three-way
acceleration sensor. The transmission ratio is 1:1 and the half-tooth meshing (the number of teeth is 18)
is adopted, the rotation speed is 1200 r/min, the rotation frequency is 20 Hz, the fault frequency of the
roller is 72 Hz, the meshing frequency is 360 Hz and the sampling frequency is 8000 Hz. There are two
faults in this experiment: gear spalling and the roller fault. The load torque is 1000 Nm and the test
bearing model is 32212. The gear peeling is generated by the gear fatigue test and the outer ring fault
is artificially implanted by the electric discharge machining method.
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The sensor is YD77SA three-way acceleration sensor (the sensitivity is 0.01 V/ms2) and the
number of samples is 2048. Through a simple calculation, the roller fault period is T1 = 400 (sample
point) and the gear meshing period is T2 = 22.4. Fault types are shown in Figure 16.
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Figure 16. Roller fault of tapered roller bearings and gear fault.

The time waveform of the compound fault vibration signal is shown in Figure 17. With the increase
of the load, the noise increases gradually. Obvious impulses in the figure and the gear fault can be
preliminarily determined through spectrum analysis. The multipoint kurtosis spectrum analysis of the
fault data results is shown in Figure 18. The two periodic are 22.4 and 111.2. [22.4, 44.8, 67.2, 134.4] =
[T2, 2T2, 3T2, 6T2] and [55.6, 111.2, 222.4, 333.6, 444.8] = [T1/2, T1, 2T1, 3T1, 4T1], which represent the
meshing period of the gear and the fault period of the roller respectively and there are two primary
faults. In order to successfully extract these two fault characteristics, the fault signal is denoised by
MED and then decomposed by VMD. The K value is 2 corresponding to Figures 19 and 20. The three
frequencies in Figure 21 are 72 Hz, 180 Hz and 360 Hz corresponding to the roller fault frequency,
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gear meshing frequency and its double frequency. The fault location has been preliminarily determined
and the fault characteristics have been extracted. In order to further analyze the results of the original
signal decomposed by EEMD, the white noise amplitude is 0.2 and the number of added times is 100.
Taking the first five IMFs which have the strongest correlation with the original signal, the corresponding
results are shown in Figure 21. The second and third level fault characteristics correspond to the fault
characteristics of the gear and the first, the fourth and the fifth levels is not related to the original signal.
The decomposition accuracy of EEMD is affected by the noise and the added white noise. Improper
selection of white noise is likely to lead to misdiagnosis. At the same time, the effectiveness of the
proposed method in this article has been demonstrated.Entropy 2018, 20, x FOR PEER REVIEW  14 of 17 
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6. Conclusions

(1) The decomposition level of VMD is generally determined by experience. In engineering
applications, K too large or too small will lead to over-decomposition or under-decomposition.
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(2) MKurt can solve the compound fault impulse periods. A large number of spectral peaks appear in
the multipoint kurtosis spectrum and this method is immune in noisy environments. According
to this feature, the number of VMD decomposition level can be determined adaptively.

(3) Both the VMD and the multipoint kurtosis are affected by the noise. In a strong noise environment,
MED can be used as the prefilter to increase the signal-to-noise ratio of the signal. The proposed
MKurt-VMD method can improve the decomposition accuracy. The method proposed in the
article determines the fault cycle of gears and rollers, which are 22.4 and 111.2 respectively
and the corresponding frequencies are 360 Hz and 72 Hz, respectively. This paper verifies the
reliability of the method and verifies the certain reference value of this method in engineering
applications in comparison to EEMD. Of course, for non-periodic shock signals, the proposed
method has limitations.
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