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Abstract: Owing to the complexity of the ocean background noise, underwater acoustic signal
denoising is one of the hotspot problems in the field of underwater acoustic signal processing. In this
paper, we propose a new technique for underwater acoustic signal denoising based on complete
ensemble empirical mode decomposition with adaptive noise (CEEMDAN), mutual information (MI),
permutation entropy (PE), and wavelet threshold denoising. CEEMDAN is an improved algorithm of
empirical mode decomposition (EMD) and ensemble EMD (EEMD). First, CEEMDAN is employed to
decompose noisy signals into many intrinsic mode functions (IMFs). IMFs can be divided into three
parts: noise IMFs, noise-dominant IMFs, and real IMFs. Then, the noise IMFs can be identified on the
basis of MIs of adjacent IMFs; the other two parts of IMFs can be distinguished based on the values of
PE. Finally, noise IMFs were removed, and wavelet threshold denoising is applied to noise-dominant
IMFs; we can obtain the final denoised signal by combining real IMFs and denoised noise-dominant
IMFs. Simulation experiments were conducted by using simulated data, chaotic signals, and real
underwater acoustic signals; the proposed denoising technique performs better than other existing
denoising techniques, which is beneficial to the feature extraction of underwater acoustic signal.

Keywords: denoising; CEEMDAN; mutual information; permutation entropy; wavelet threshold
denoising; chaotic signal; underwater acoustic signal

1. Introduction

With the development of ocean scientific technology, the use and protection of the oceans have
attracted more extensive attention. Because of the complexity of the marine environment and the
time-varying nature of the underwater acoustic channel, it is more difficult to detect and reduce the
noise of underwater acoustic signals [1,2]. Therefore, the research on underwater acoustic signal
processing method and its application are very essential and important in the field of underwater
acoustic. Underwater acoustic signals not only are nonlinear, non-stationary, and non-Gaussian, but
also chaos and fractal, traditional signal processing methods based on the classic Fourier analysis are
not suitable for underwater acoustic signals such as short-time Fourier transform, Fourier transform,
Wigner–Ville, and wavelet transform [3,4]. Therefore, finding a suitable method is the key to analysis
underwater acoustic signal.

Entropy 2018, 20, 563; doi:10.3390/e20080563 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-5035-223X
https://orcid.org/0000-0001-5973-9780
https://orcid.org/0000-0001-6501-5922
https://orcid.org/0000-0002-3285-6490
http://dx.doi.org/10.3390/e20080563
http://www.mdpi.com/journal/entropy
http://www.mdpi.com/1099-4300/20/8/563?type=check_update&version=3


Entropy 2018, 20, 563 2 of 23

EMD and its improved algorithms are suitable for analyzing nonlinear, non-stationary,
and non-Gaussian signals. Furthermore, EMD and its improved algorithms are self-adaptive and
based on characteristic time scale of the data itself. However, EMD has the phenomena of mode mixing
due to intermittency, which hinders the development and application of EMD [5]. In order to reduce its
influence, many improved algorithms are presented such as EEMD, complementary EEMD (CEEMD),
and complete EEMD with adaptive noise (CEEMDAN) [6–8]. The proposed method follows a study of
the statistical characteristics of white noise, involves a noise-assisted analysis, and adds white noise of
a uniform frequency distribution into EMD to avoid mode mixing. EEMD is a noise-assisted analysis
algorithm to avoid mode mixing by adding white noise. However, this improved algorithm raises
two new problems, one is the difference in IMF numbers and the other is the introduction of extra
noise. CEEMD can avoid adding extra noise using positive and negative white noises, however, it still
cannot make the number of IMF consistent by each decomposition. CEEMDAN can solve this problem
because it only decomposes the first IMF for each decomposition; it has better decomposition effect
and lower computational cost than EEMD and CEEMD.

EMD and its improved algorithms are widely used in different fields [9–11]. In the field of
fault diagnosis, a fault detection and diagnosis algorithm is proposed based on EEMD and the
particle swarm optimization algorithm previous reported [12]. In a previous paper [13], a new
health degradation monitoring and early fault diagnosis for rolling bearing signal is proposed
using CEEMDAN and improved multi-scale entropy. In another past paper [14], a fault diagnosis
algorithm for planetary gear is put forward based on CEEMDAN, PE, and an adaptive neuro-fuzzy
inference system. In the field of medicine, CEEMDAN is carried out toanalyze heart rate variability in
electrocardiogram (ECG) signals [15]. In addition, the EMD algorithm was used for analyzing focal
electroencephalogram (EEG) signals and 3D EEG signals [16,17]. In the underwater acoustic area,
EMD and EEMD algorithms are carried out for extracting the characteristics of underwater acoustic
signals [1,18]. In conclusion, a large number of studies have proved the effectiveness and feasibility of
the EMD and its improved algorithms.

In recent years, many denoising methods based on EMD and its improved algorithms have been
proposed [19,20]. In a previous paper [21], a denoising algorithm for gear signals is proposed based on
CEEMDAN, PE and peak filtering, the IMF spectra are obtained by CEEMDAN, and the PEs of IMFs
are calculated to identify whether the IMFs require denoising by peak filtering, the filtered and the
others IMFs are reconstructed finally. In a previous paper [22], a ECG signal denoising algorithm is put
forward using CEEMDAN and wavelet threshold denoising. In addition, denoising algorithms for the
impact signal and friction signal are proposed using CEEMDAN combined with fuzzy entropy and MI
in past papers [23,24]. However, there has been no previous studies on underwater acoustic signal
denoising based on CEEMDAN as far as we know [25,26]. Moreover, among the existing denoising
algorithms, IMFs are usually divided into two parts: noise IMFs and real IMFs, and there are some
limitations in this division.

In this paper, a hybrid denoising algorithm for underwater acoustic signals is presented by taking
advantage of CEEMDAN, MI, PE, and wavelet threshold denoising. Compared with the existing
denoising algorithms, the proposed algorithm divides IMFs into three parts, which is beneficial to
signal denoising. This paper is organized as follows: Section 2 is the basic methods of CEEMDAN, MI,
PE, and wavelet threshold denoising; in Section 3, the underwater acoustic signal denoising technique
is presented; in Sections 4–6, the proposed denoising algorithm is applied to simulated data, chaotic
signals, and real underwater acoustic signals respectively; finally, Section 7 is the conclusion.

2. Methods

2.1. CEEMDAN

CEEMDAN, as an improved algorithm of EMD and EEMD, can adaptively decompose complex
signal into IMFs in order. The specific steps of CEEMDAN are summarized as follows [8]:
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(1) Add white noise ni (̂t) to the target signal x(t):

xi (̂t) = x(t) + ni (̂t), i = 1, 2, · · · , N (1)

(2) Decompose xi (̂t) by EMD to obtain the first IMF ci1 (̂t) and residual mode ri(t):

x1 (̂t)
x2 (̂t)
· · ·

xi (̂t)
· · ·

xN (̂t)


EMD→



c11 (̂t) r1(t)
c21 (̂t) r2(t)
· · · · · ·

ci1 (̂t) ri(t)
· · · · · ·

cN1 (̂t) rN(t)


(2)

(3) Obtain the first IMF of CEEMDAN by calculating the mean of ci1 (̂t):

c1 (̂t) =
1
N

N

∑
i=1

ci1 (̂t) (3)

(4) Obtain the residual mode of c1 (̂t):

r1 (̂t) = x(t)− c1 (̂t) (4)

(5) Decompose white noise ni (̂t) by EMD:



n1 (̂t)
n2 (̂t)
· · ·

ni (̂t)
· · ·

nN (̂t)


EMD→



cn11 (̂t) cn12 (̂t) · · · cn1 j (̂t) rn1 (̂t)
cn21 (̂t) cn22 (̂t) · · · cn2 j (̂t) rn2 (̂t)
· · · · · · · · · · · · · · ·

cni1 (̂t) cni2 (̂t) · · · cni j (̂t) rni (̂t)
· · · · · · · · · · · · · · ·

cnN1 (̂t) cnN2 (̂t) · · · cnN j (̂t) rnN (̂t)


(5)

where cni j (̂t) represents the j-th IMF of the i-th white noise, rni (̂t) represents the residual mode of
the i-th white noise. Ej(si(t)) is defined as a set which includes the j-th IMF of si(t), E1(ni (̂t)) is
expressed as:

E1(ni (̂t)) =
(

cn11 (̂t) cn21 (̂t) · · · cni1 (̂t) · · · cnN (̂t)
)T

(6)

(6) Construct signal xnew1(t) and decompose it by EMD (only decompose the first IMF):

xnew1(t) = r1 (̂t) + E1(ni (̂t)) (7)

xnew1(t) = r1 (̂t) +



cn11 (̂t)
cn21 (̂t)
· · ·

cni1 (̂t)
· · ·

cnN1 (̂t)


EMD→



cr1n11 (̂t)
cr1n21 (̂t)
· · ·

cr1ni1 (̂t)
· · ·

cr1nN1 (̂t)


(8)
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(7) Obtain the second IMF c2 (̂t) and residual mode r2 (̂t) of CEEMDAN:

c2 (̂t) =
1
N

N

∑
i=1

cr1ni 1 (̂t) (9)

r2 (̂t) = r1 (̂t)− c2 (̂t) (10)

(8) Obtain xnewj−1(t) and repeat step (6) and (7), cj (̂t) and rj (̂t) are expressed as:

xnewj−1(t) = rj−1 (̂t) + Ej−1(ni (̂t)) (11)

cj (̂t) =
1
N

N

∑
i=1

crj−1ni 1 (̂t) (12)

rj (̂t) = rj−1 (̂t)− cj (̂t) (13)

(9) x(t) is expressed as:

x(t) =
L

∑
j=1

cj (̂t) + r(t) (14)

where L represents the number of IMF by CEEMDAN, r(t) represents the residual mode. The flow
chart of CEEMDAN is designed in Figure 1.

In this paper, we chose the CEEMDAN algorithm for the following reasons:

(1) CEEMDAN has better decomposition effect and lower computational cost than EEMD
and CEEMD.

(2) CEEMDAN is suitable for analyzing non-linear, non-stationary and non-Gaussian signals,
in theory, it can decompose all signals.

(3) CEEMDAN is self-adaptive and based on characteristic time scale of the data itself without
basis function.

2.2. MI

For two discrete random variables X and Y, the MI can be defined as [27]:

I(X; Y) = ∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p(x)p(y)
) (15)

where p(x, y) is the joint probability distribution function of x and y, p(x) and p(y) are the marginal
probability distribution functions of x and y, respectively.

The MI of continuous random variables can be expressed as a double integral:

I(X; Y) =
w

Y

w

X
p(x, y) log(

P(x, y)
p(x)p(y)

)dxdy (16)

In probability theory and information theory, the mutual information of two random variables
represents a measure of the interdependence of variables. If X and Y are independent, I(X; Y) = 0.
In addition, the symmetry of MI can be expressed as:

I(X; Y) = I(Y; X) (17)
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Furthermore, the MI can also be expressed as:

I(X; Y) = H(X)− H(X|Y)
= H(Y)− H(Y|X)

= H(X) + H(Y)− H(X, Y)
= H(X, Y)− H(X|Y)− H(Y|X)

(18)

where H(X) and H(Y) are informationentropy, H(X|Y) and H(Y|X) are conditional entropy, H(X, Y)
is joint entropy of X and Y.

Usually the MIs between noise IMFs are different from ones between non-noise IMFs. We take a
ship signal as an example. The normalized ship signal is shown as shown in Figure 2, the sampling
frequency and the number of sampling points are 44.1 kHz and 2000, respectively. The decomposition
result of the ship signal by CEEMDAN is shown in Figure 3. The center frequency distribution of
IMFs and the MIs of two neighboring IMFs are shown in Tables 1 and 2, where MIi represents the MI
of IMFi and IMFi+1. As shown in Tables 1 and 2, the center frequency decreases with the increase of
IMF, the first three MI of IMFs are obviously less than the other ones of IMFs. According to the prior
information of ship signal, its main frequency range is less than 5000Hz, the first three IMFs are noise
IMFs, which is consistent with the judgment of MI. Therefore, we can use MI to identify noise IMFs in
this paper, when the MI of IMFi and IMFi+1 increases, obviously more than the former MIs, the former
i − 1 IMFs are considered as noise IMFs.
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Figure 1. The flow chart of complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN).
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Figure 2. The normalized ship signal.

Figure 3. The decomposition result of the ship signal by CEEMDAN.

Table 1. The center frequency distribution of intrinsic mode functions (IMFs).

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

12333 9068.1 6296.3 3065.5 1595.4 902.08 446.55 340.21 127.43 67.039

Table 2. The mutual informations (MIs) of two neighboring IMFs.

MI1 MI2 MI3 MI4 MI5 MI6 MI7 MI8 MI9

0.0676 0.0501 0.0511 0.1279 0.1751 0.3437 0.8394 0.9998 1.6231
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2.3. PE

PE is proposed by Bandt in [24]. The brief process of PE is as follows [28]:

(1) Reconstruct time series X = {x1, x2, · · · , xN}:

{x(1), x(1 + τ), · · · , x(1 + (m− 1)τ)}
...

{x(j) , x(j + τ), · · · , x(j + (m− 1)τ )}
...

{x (K), x(K + τ), · · · , x(K + (m− 1)τ )} (K = n− (m− 1)τ)

(19)

where τ and m are the time lag and embedding dimension.
(2) Rearrange each row vectorin ascending order:

x(i + (j1− 1)τ) ≤ x(i + (j2− 1)τ) ≤ · · · ≤ x(i + (jm− 1)τ) (20)

(3) Obtain a symbol-sequence for each row vector as:

S(g) = (j1, j2, · · · , jm) (g = 1, 2, · · · , l and l ≤ m!) (21)

(4) Define PE as:

HP(m) = −
l

∑
j=1

Pj lnPj (22)

where Pj is the probability of one symbol-sequence.

(5) Define normalized PE as:
HP = HP(m)/ ln(m!) (23)

More detail about PE was described previously [29]. In this study, we set m = 3 and τ = 1
according to the suggestiondescribed previously [30]. In a previous paper [21], PE is used to identify
noisy IMF. Therefore, in this paper, we choose PE to identifynoise-dominant IMF.

2.4. Wavelet Threshold Denoising

Signal denoising is an important research direction of signal processing. The wavelet transform
has multi-resolution characteristics. One-dimensional noisy time series can be expressed as follows [31]:

s(k) = f (k) + e(k), k = 0, 1, 2, · · · , n (24)

where f (k) is original signal, e(k) isnoise signal, s(k) is noisy signal.
Assuming that e(k) is Gaussian white noise, f (k) is usually represented as a low-frequency signal

in practical engineering applications. Therefore, we can use the following methods to reduce noise.
The specific steps are as follows:

(1) A proper wavelet basis function and decomposition level are selected to perform wavelet
decomposition on the noisy signal.

(2) Threshold is performed by selecting an appropriate threshold method for high frequency
coefficients at different decomposition scales.

(3) The low frequency coefficient of wavelet decomposition and the thresholdhigh frequency
coefficient of different scales are used to reconstruct.

Wavelet thresholding with different thresholds usually has three methods: denoising by default
threshold, denoising with specified threshold, and forcing threshold. Among them, denoising with a
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specified threshold is divided into soft threshold and hard threshold. In this paper, a soft threshold
method is selected to estimate threshold.

3. Denoising Algorithm for Underwater Acoustic Signal

The proposed denoising algorithm for underwater acoustic signal is designed in Figure 4.
The specific procedures are summarized as follows:

(1) The underwater signal is decomposed by CEEMDAN, we can obtain a lot of IMFs, which contain
noise IMFs, noise-dominant IMFs, and real IMFs.

(2) Calculate MIs of two neighboring IMFs in ascending order.
(3) Identify noise IMF according to MIs. If the MI of the K-th IMF and (K + 1)-th IMF increases

obviously than the former MIs, the former K− 1 IMFs are considered as noise IMFs.
(4) Screen out noise IMFs and calculate the PEs of the other IMFs.
(5) Identify noise-dominant IMF according to PEs. If the PE of IMF is more than 0.5, weconsider it as

noise-dominant IMF, otherwise real IMF.
(6) Denoise noise-dominant IMFs by wavelet threshold denoising (WTD). We use the wavelet soft

threshold denoising for noise-dominant IMFs, wavelet basis function, and decomposition level
are db4 and 4, respectively.

(7) The denoised signal can be obtain by reconstructing denoised noise-dominant IMFs and real IMFs.
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4. Denoising for Simulation Signal

4.1. CEEMDAN for Simulation Signal

Four kinds of simulation signals are selected for denoising, namely, Blocks, Bumps, Doppler,
and Heavysine, as shown in Figure 5. The sampling frequency and data lengthare 1 kHz and
1024, respectively.

Taking the Blocks signal as an example, we can obtain the noisy Blocks signal with 0 dB
signal-to-noise ratio (SNR) by adding Gaussian white noise. The time-domain waveform of the
noisy Blocks signal with 0 dB is shown in Figure 6, and the decomposition result is shown in Figure 7.
As shown in Figure 6, the Blocks signal has been completely submerged in noise. The noisy Blocks
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signal is decomposed using EMD, EEMD, and CEEMDAN.As shown in Figure 7, ten IMFs are obtained
by three kinds of methods, however, there are some differences for different decomposition methods.
IMF1 of each decomposition methods represent the shortest oscillation period, typically a noise
component or the high frequency components.

Figure 5. Cont.
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Figure 5. The time-domain waveforms for simulation signals. (a) Blocks, (b) Bumps, (c) Doppler,
and (d) Heavysine.
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Figure 6. The time-domain waveform of the noisy Blocks signal with 0 dB.
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Figure 7. The decomposition result of the noisy Blocks signal with 0 dB. (a) Empirical mode
decomposition (EMD), (b) Ensemble EMD (EEMD), and (c) CEEMDAN.

4.2. Identifying Noise IMFs

In order to observe the effect of noise IMFs on denoising effect, we define the NWn signal
as follows:

NWn = x(t)−
n

∑
i=1

IMFi(n = 1, 2, · · · , N) (25)

where x(t) and N represent the noisy signal and the number of IMF by CEEMDAN, NWn is the
restructured signal by removing the first N IMFs. For the noisy Blocks signal with 0 dB SNR, the six
kinds of reconstructed signals are shown in Figure 8 using different decomposition methods.As shown
in Figure 8, the noise IMFs is eliminated and the reconstructed signal becomes more smoothwith
the increasing of n. When n is larger than a certain value, the non-noise IMF is eliminatedand the
reconstructed signal is obviously different from the original signal. Therefore, how to identify noise
IMFs is the key problem for denoising.
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Figure 8. The six kinds of reconstructed signals by different decomposition methods. (a) EMD,
(b) EEMD, and (c) CEEMDAN.
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MIs of two neighboring IMFs can expressed as:

Mn = MI(IMFn, IMFn+1)(n = 1, 2, · · · , N − 1) (26)

where Mn represents the MI of IMFn and IMFn+1. Usually, MI of two noise IMFs is obviously less than
the MI of two non-noise IMFs. Therefore, when Mn increases obviously, the former n− 1 IMFs can be
judged as noise IMFs.

For the noisy Blocks signal with 0 dB SNR, MIs of two neighboring IMFs by different
decomposition methods are shown in Table 3. As shown in Table 3, M4 is more than the former
ones for EMD and EEMD, we can judge the first three IMFs as noise IMFs. Similarly, the first four
IMFs are noise IMFs for CEEMDAN.

Table 3. MIs of two neighboring IMFs by different decomposition methods.

Methods M1 M2 M3 M4 M5 M6 M7 M8 M9

EMD 0.0034 0.0113 0.0633 0.1805 0.4233 0.6419 1.332 2.1514 3.0829
EEMD 0.0014 0.0023 0.0475 0.1969 0.5045 0.8873 1.8319 1.5387 3.0034

CEEMDAN 0.0143 0.0419 0.0647 0.0803 0.2169 0.5376 0.8044 1.5476 2.3663

4.3. Identifying Noise-Dominant IMFs

Noise-dominant IMFs can be identified according to PEs of non-noise IMFs. For the noisy Blocks
signal with 0 dB SNR, PEs of non-noise IMFs are shown in Table 4. As shown in Table 4, the PE of IMF5
is more than 0.5, IMF5 is the noise-dominant IMF for CEEMDAN; real IMFs are the last five IMFs.

Table 4. PEs of non-noise IMFs.

IMF5 IMF6 IMF7 IMF8 IMF9 IMF10

0.5869 0.4945 0.4547 0.4263 0.4038 0.3767

4.4. Denoising for Noise-Dominant IMFs and Reconstruction

The wavelet soft-threshold denoising is applied to IMF5, the wavelet basis function and
decomposition level are db4 and 4, respectively. The denoised Blocks signal is obtainedby
reconstructing denoised IMF5 and real IMFs. The denoising results are shown in Figure 9. Denoising
methods using MI combined with EMD, EEMD, and CEEMDAN are called EMD-MI, EEMD-MI,
and CEEMDAN-MI, theproposed denoising method is calledCEEMDAN-MI-PE.

Figure 9. Cont.
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Figure 9. The denoising results for different methods. (a) EMD-MI, (b) EEMD-MI, (c) CEEMDAN-MI,
and (d) CEEMDAN-MI-PE.

The parameters of different denoising methods are shown in Table 5. As shown in Table 5,
theproposed denoising method has lower root mean square error (RMSE) and higher SNR, which
outperforms other three denoising methods.
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Table 5. Comparison of the parameters of different denoising methods.

Parameter EMD-MI EEMD-MI CEEMDAN-MI CEEMDAN-MI-PE

SNR/dB 7.1052 8.6122 9.0433 9.3663
RMSE 0.8031 0.7496 0.7189 0.7078

4.5. Comparison of Different Denoising Methods

4.5.1. Wavelet Denoising

The wavelet soft-threshold denoising (WSTD) is applied to four kinds of noisy signals with
different SNR, wavelet basis function is db4, decomposition level is from 1 to 6. WSTD results are
shown in Table 6. As shown in Table 6, SNRs of the four kinds of signals increase with the increasing
of decomposition levels. When the decomposition level increases to a certain value, the SNR reaches
a maximum. For Doppler and Heavysine signals, when the decomposition level is 5, the denoising
results are optimal. For Blocks and Bumps signals with different SNRs, the optimal denoising effects
are distributed in different decomposition levels.

Table 6. (a) Wavelet soft-threshold denoising (WSTD) results for Blocks signal. (b) WSTD results for
Bumps signal. (c) WSTD results for Doppler signal. (d) WSTD results for Heavysine signal.

SNR Parameter
Decomposition Level

1 2 3 4 5 6

(a)

−10 dB
SNR/db −7.2271 −4.8104 −2.3898 0.2149 1.6290 1.0946

RMSE 3.6839 3.5798 3.5307 3.5614 3.3392 3.4362

−5 dB
SNR/db −2.3435 0.3025 3.1728 5.7484 6.3767 3.8336

RMSE 1.4457 1.5207 1.4748 1.6308 1.5565 1.2164

0 dB
SNR/db 3.2235 6.2477 8.1067 8.4866 7.7998 5.8663

RMSE 0.8504 0.7895 0.8176 0.8341 0.7473 0.6417

5 dB
SNR/db 7.6526 10.1584 11.4382 10.2663 9.6887 8.4297

RMSE 0.3915 0.4133 0.4045 0.4114 0.4347 0.4945

(b)

−10 dB
SNR/db −7.4756 −4.5317 −2.0528 0.3106 0.8154 0.5481

RMSE 1.6983 1.6584 1.7329 1.6642 1.3528 1.5681

−5 dB
SNR/db −3.2325 −0.1944 2.3835 4.5283 4.3014 3.5033

RMSE 1.5826 1.5639 1.5729 1.4888 1.5554 1.9642

0 dB
SNR/db 2.6556 5.1528 7.8573 8.3710 6.9682 6.3942

RMSE 0.3337 0.3153 0.3046 0.2942 0.3022 0.3025

5 dB
SNR/db 7.4436 10.3617 11.2783 10.7887 9.1181 9.2302

RMSE 0.2211 0.2385 0.2360 0.2486 0.2182 0.2427

(c)

−10 dB
SNR/db −6.6660 −4.3199 −0.7130 1.4574 3.4092 3.2951

RMSE 0.9655 0.9220 0.9301 0.8570 0.9781 1.2149

−5 dB
SNR/db −1.8736 0.9657 4.1477 6.8774 7.0568 6.4521

RMSE 0.0502 0.0538 0.0511 0.0491 0.0342 0.0254

0 dB
SNR/db 2.4724 4.5147 8.0985 8.8992 9.1371 8.8475

RMSE 0.0694 0.0756 0.0545 0.0445 0.0272 0.0284

5 dB
SNR/db 8.1516 10.7101 11.0123 11.2306 11.5458 10.0998

RMSE 0.0324 0.0333 0.0338 0.0343 0.0285 0.0127

(d)

−10 dB
SNR/db −6.1624 −3.3838 −0.9295 1.7670 5.8097 4.1349

RMSE 2.8465 2.6462 2.5926 2.4760 2.6292 4.2984

−5 dB
SNR/db −2.3572 0.2426 3.1175 6.0666 7.3376 6.857

RMSE 0.8090 0.8554 0.8105 0.7434 0.7203 0.7268

0 dB
SNR/db 2.9317 5.4369 8.9585 11.8276 14.4169 13.8013

RMSE 0.2792 0.1840 0.1973 0.1924 0.1682 0.3920

5 dB
SNR/db 8.1963 10.8592 13.4744 15.5710 17.9746 17.6310

RMSE 0.2759 0.2346 0.2099 0.2277 0.1028 0.1503
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4.5.2. Comparison of Denoising Effect

Four kinds of signals with different SNRs are denoised by EMD-MI, EEMD-MI, CEEMDAN-MI,
CEEMDAN-MI-PE, and WSTD. Denoising results of different methods are shown in Table 7, where
WSTD denoising results are optimal values in Table 6. All the results of SNRs and RMSEs are the
mean of 500 simulations. As shown in Table 7, the CEEMDAN-MI is better than EMD-MI, EEMD-MI,
and WSTD, the CEEMDAN-MI-PE has lower RMSE and higher SNR, which has a better performance
than the other four denoising methods.

Table 7. (a) Denoising results of different methods for Blocks signal. (b) Denoising results of different
methods for Bumps signal. (c) Denoising results of different methods for Doppler signal. (d) Denoising
results of different methods for Heavysine signal.

SNR Parameter
Denoising Method

EMD-MI EEMD-MI CEEMDAN-MI CEEMDAN-MI-PE WSTD

(a)

−10 dB
SNR/db 1.8632 2.0988 2.2803 2.5588 1.6290

RMSE 5.0621 3.3228 2.5753 2.4237 3.3392

−5 dB
SNR/db 4.8004 6.4972 6.6097 6.8239 6.3767

RMSE 1.6806 1.4843 1.3438 1.3401 1.5565

0 dB
SNR/db 6.2426 8.4579 9.2502 9.8326 7.7998

RMSE 0.8261 0.7834 0.7651 0.7051 0.7473

5 dB
SNR/db 11.3699 11.5903 11.7158 11.8733 11.4382

RMSE 0.6600 0.3917 0.4086 0.3489 0.4045

(b)

−10 dB
SNR/db −0.1258 0.4728 0.9903 1.2130 0.8154

RMSE 1.7652 1.4865 1.0045 1.0041 1.3528

−5 dB
SNR/db 3.4745 4.4220 4.6204 4.7355 4.5283

RMSE 1.8357 1.5325 1.5554 1.4859 1.5888

0 dB
SNR/db 6.8187 7.7571 8.7208 9.0641 8.3710

RMSE 0.4253 0.3461 0.1969 0.1950 0.2942

5 dB
SNR/db 9.5890 10.5161 11.4614 11.5623 11.2783

RMSE 0.3158 0.2058 0.1609 0.1513 0.2360

(c)

−10 dB
SNR/db 3.0361 3.3580 3.5508 4.1789 3.4092

RMSE 1.2158 0.5124 0.4747 0.4597 0.9781

−5 dB
SNR/db 5.7752 6.3432 7.2250 7.2939 7.0568

RMSE 0.0604 0.0463 0.0263 0.0213 0.0342

0 dB
SNR/db 8.3418 8.6526 8.8555 9.5866 9.1371

RMSE 0.0235 0.0190 0.0182 0.0165 0.0272

5 dB
SNR/db 11.2457 11.7545 11.8473 12.1583 11.5458

RMSE 0.0298 0.0025 0.0015 0.0013 0.0285

(d)

−10 dB
SNR/db 6.0781 6.236 6.4919 6.6696 5.8097

RMSE 1.8252 1.6397 1.5395 1.4666 2.6292

−5 dB
SNR/db 7.1830 8.1239 8.2463 8.3975 7.3376

RMSE 0.7325 0.6431 0.6324 0.6216 0.7203

0 dB
SNR/db 14.896 15.128 15.2882 15.4476 14.4169

RMSE 0.1224 0.1158 0.1142 0.1139 0.1682

5 dB
SNR/db 17.8843 19.5125 19.7096 19.7125 17.9746

RMSE 0.1052 0.0931 0.0925 0.0921 0.1028

5. Denoising for Chaotic Signal

Underwater acoustic signals have the chaotic characteristic, a typical Lorenz chaotic system is
used to test the effectiveness of the CEEMDAN-MI-PE denoising algorithm.
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The Lorenz system can be expressed as:
.
x
.
y
.
z

 =

 −A A 0
C −1 0
0 0 −B


 x

y
z

+

 0
−xz
xy

 (27)

where A is 10, B is 8/3, C is 28.
The Runge–Kutta iteration method is used to calculate the x component with a step length of

0.01.The x component signal with a length of 2000 points is selected as Lorenz signal, and the Lorenz
noisy signal with different SNR are obtained for CEEMDAN-MI-PE denoising.

Lorenz noisy and denoised signals with different SNRs and their chaotic attractor trajectories
are shown in Figure 10. As shown in Figure 10, denoised Lorenz signals and their chaotic attractor
trajectories by CEEMDAN-MI-PE are close to Lorenz signal and its attractor trajectory, the denoised
chaotic attractor trajectories are more smooth and regular.

Denoising results of different SNR by CEEMDAN-MI-PE are shown in Table 8. As shown in
Table 8, the SNR and RMSE are improved evidently, the proposed denoising method enhances the
SNR more than 10 dB. Overall, the above results show that the CEEMDAN-MI-PE method is suitable
for chaotic signals.
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Figure 10. Lorenz noisy and denoised signals with different SNRs and their attractor trajectories.
(a) Lorenz signal, (b) Lorenz attractor trajectory, (c) Lorenz noisy signal with 0 dB, (d) Noisy attractor
trajectory with 0 dB, (e) Lorenz noisy signal with 10 dB, (f) noisy attractor trajectory with 10 dB,
(g) denoised Lorenz signal with 0 dB, (h) denoised attractor trajectory (0 dB), (i) denoised Lorenz signal
with 10 dB, and (j) denoised attractor trajectory (10 dB).

Table 8. Denoising results of different signal-to-noise ratio (SNR).

SNR Parameter CEEMDAN-MI-PE

0 dB
SNR/db 13.254

RMSE 1.8762

10 dB
SNR/db 20.146

RMSE 0.3993
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6. Denoising for Underwater Acoustic Signal

The CEEMDAN-MI-PE denoising is applied to three kinds of underwater acoustic signals, namely
ship-1, ship-2, and ship-3. Three kinds of ship signals were recorded by calibratedomnidirectional
hydrophones at a depth of 29 m in the South China Sea. During recording, there wereno observed
disturbances from biological or man-made sources. The distance between the ship andhydrophone
was about 1 km. The sampling frequency was set as 44.1 kHz. Ship signals and denoised ship
signals and their attractor trajectories are shown in Figures 11–13. As shown in Figures 11–13, ocean
background noiseis included in original ship signal, high frequency noise is removed effectively by
CEEMDAN-MI-PE, denoised attractor trajectories of ship signals are more regular than original ones.

Figure 11. Ship-1 and denoised Ship-1 signals and their attractor trajectories. (a) Ship-1, (b) attractor
trajectory for ship-1, (c) denoised Ship-1, and (d) attractor trajectory for denoised ship-1.

Figure 12. Cont.
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Figure 12. Ship-2 and denoised Ship-2 signals and their attractor trajectories. (a) Ship-2, (b) attractor
trajectory for ship-2, (c) denoised Ship-2, (d) attractor trajectory for denoised ship-2.

Figure 13. Ship-3 and denoised Ship-3 signals and their attractor trajectories. (a) Ship-3, (b) attractor
trajectory for ship-3, (c) denoised Ship-3, (d) attractor trajectory for denoised ship-3.

Denoising results of different ships by CEEMDAN-MI-PE are shown in Table 9. Two kinds of PE
were used to evaluate the effect of denoising. PE can represent the complexity of time series. A new PE
(NPE) was proposed in a previous paper [32], and is interpreted as the distance to noise, which shows
a reverse trend to PE. As shown in Table 9, the PE after denoising is less than the one before denoising,



Entropy 2018, 20, 563 21 of 23

which means that the complexity is reduced by denoising; the NPE after denoising is more than the
one before denoising, which means that the distance to noise is increased by denoising. In summary,
the above results show that the CEEMDAN-MI-PE method is effective and suitable for underwater
acoustic signals.

Table 9. Denoising results of different ships by CEEMDAN-MI-PE.

Parameter Ship-1 Ship-2 Ship-3

Before denoising PE 0.8094 0.9231 0.8856
NPE 0.1227 0.0495 0.0739

After denoising PE 0.5537 0.5381 0.5148
NPE 0.2680 0.2765 0.2861

7. Conclusions

To improve the denoising effect of underwater acoustic signal, a new denoising method is
proposed based on CEEMDAN, MI, PE, and WSTD. CEEMDAN is used to decompose noisy signal
into IMFs, noise IMFs, and noise-dominant IMFs which can be identified by MI and PE, WSTD is
used for denoising noise-dominant IMFs. The innovations and conclusions of the proposed denoising
method are as follows:

(1) CEEMDAN, as an adaptive decomposition algorithm, is introduced for underwater acoustic
signal denoising.

(2) Compared with existing denoising methods, IMFs by CEEMDAN are divided into three parts
(noise IMFs, noise-dominant IMFs, and real IMFs) for the first time.

(3) Four kinds of signals (Blocks, Bumps, Doppler, and Heavysine) with different SNRs are denoised
by EMD-MI, EEMD-MI, CEEMDAN-MI, CEEMDAN-MI-PE, and WSTD, the proposed denoising
method has lower RMSE and higher SNR, which has a better performance.

(4) For chaotic signals with different SNR and underwater acoustic signals, the CEEMDAN-MI-PE is
also an effective denoising method, which is beneficial to the subsequent processing of underwater
acoustic signals.

Author Contributions: Yu.L. and Ya.L. conceived and designed the research; Yu.L. and X.C. performed the
experiments; J.Y. and H.Y. analyzed the data; Yu.L. and L.W. wrote the manuscript.

Funding: This work was supported by Natural Science Foundation of China (No. 51709228 and No. 11574250).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Li, Y.X.; Li, Y.A.; Chen, Z.; Chen, X. Feature extraction of ship-radiated noise based on permutation entropy
of the intrinsic mode function with the highest energy. Entropy 2016, 18, 393. [CrossRef]

2. Tucker, J.D.; Azimi-Sadjadi, M.R. Coherence-based underwater target detection from multiple disparatesonar
platforms. IEEE J. Ocean Eng. 2011, 36, 37–51. [CrossRef]

3. Li, Y.; Li, Y.; Chen, X.; Yu, J. A novel feature extraction method for ship-radiated noise based on variational
mode decomposition and multi-scale permutation entropy. Entropy 2017, 19, 342.

4. Wang, S.G.; Zeng, X.Y. Robust underwater noise targets classification using auditory inspired time-frequency
analysis. Appl. Acoust. 2014, 78, 68–76. [CrossRef]

5. Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shi, H.H.; Zheng, Q.A.; Yen, N.; Tung, C.C.; Liu, H.H.
The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis. Proc. R. Soc. Lond. 1998, 454, 903–995. [CrossRef]

6. Wu, Z.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method.
Adv. Adapt. Data Anal. 2009, 1, 1–41. [CrossRef]

http://dx.doi.org/10.3390/e18110393
http://dx.doi.org/10.1109/JOE.2010.2094230
http://dx.doi.org/10.1016/j.apacoust.2013.11.003
http://dx.doi.org/10.1098/rspa.1998.0193
http://dx.doi.org/10.1142/S1793536909000047


Entropy 2018, 20, 563 22 of 23

7. Yeh, J.R.; Shieh, J.S.; Huang, N.E. Complementary ensemble empirical mode decomposition: A novel noise
enhanced data analysis method. Adv. Adapt. Data Anal. 2010, 2, 135–156. [CrossRef]

8. Torres, M.E.; Colominas, M.A.; Schlotthauer, G.; Flandrin, P. A complete ensemble empirical mode
decomposition with adaptive noise. In Proceedings of the 2011 IEEE International Conference on Acoustics,
Speech and Signal (ICASSP), Prague, Czech Republic, 22–27 May 2011; pp. 4144–4147.

9. Gao, B.; Woo, W.L.; Dlay, S.S. Single channel blind source separation using EMD-subband variable
regularized sparse features. IEEE Trans. Audio Speech Lang. Process. 2011, 19, 961–976. [CrossRef]

10. Bi, F.; Li, L.; Zhang, J.; Ma, T. Source identification of gasoline engine noise based on continuous wavelet
transform and EEMD–Robust ICA. Appl. Acoust. 2015, 100, 34–42. [CrossRef]

11. Li, N.; Yang, J.; Zhou, R.; Liang, C. Determination of knock characteristics in spark ignition engines:
An approach based on ensemble empirical mode decomposition. Meas. Sci. Technol. 2016, 27, 045109.
[CrossRef]

12. Lee, D.H.; Ahn, J.H.; Koh, B.H. Fault detection of bearing systems through EEMD and optimization algorithm.
Sensors 2017, 17, 2477. [CrossRef] [PubMed]

13. Lv, Y.; Yuan, R.; Wang, T.; Li, H.; Song, G. Health degradation monitoring and early fault diagnosis of a
rolling bearing based on CEEMDAN and improved MMSE. Materials 2018, 11, 1009. [CrossRef] [PubMed]

14. Kuai, M.; Cheng, G.; Pang, Y.; Li, Y. Research of planetary gear fault diagnosis based on permutation entropy
of CEEMDAN and ANFIS. Sensors 2018, 18, 782. [CrossRef] [PubMed]

15. Queyam, A.B.; Pahuja, S.K.; Singh, D. Quantification of feto-maternal heart rate from abdominal ECG signal
using empirical mode decomposition for heart rate variability analysis. Technologies 2017, 5, 68. [CrossRef]

16. Sharma, R.; Pachori, R.B.; Acharya, U.R. Application of entropy measures on intrinsic mode functions for
the automated identification of focal electroencephalogram signals. Entropy 2015, 17, 669–691. [CrossRef]

17. Shih, M.T.; Doctor, F.; Fan, S.Z.; Jen, K.K.; Shieh, J.S. Instantaneous 3D EEG signal analysis based on empirical
mode decomposition and the hilbert–huang transform applied to depth of anaesthesia. Entropy 2015,
17, 928–949. [CrossRef]

18. Li, Y.; Li, Y. Feature extraction of underwater acoustic signal using mode decomposition and measuring
complexity. In Proceedings of the 2018 15th International Bhurban Conference on Applied Sciences and
Technology (IBCAST), Islamabad, Pakistan, 9–13 January 2018; pp. 757–763.

19. An, X.; Yang, J. Denoising of hydropower unit vibration signal based on variational mode decomposition
and approximate entropy. Trans. Inst. Meas. Control 2016, 38, 282–292. [CrossRef]

20. Figlus, T.; Gnap, J.; Skrúcaný, T.; Šarkan, B.; Stoklosa, J. The use of denoising and analysis of the acoustic
signal entropy in diagnosing engine valve clearance. Entropy 2016, 18, 253. [CrossRef]

21. Bai, L.; Han, Z.; Li, Y.; Ning, S. A hybrid de-noising algorithm for the gear transmission system based on
CEEMDAN-PE-TFPF. Entropy 2018, 20, 361. [CrossRef]

22. Xu, Y.; Luo, M.; Li, T.; Song, G. ECG signal de-noising and baseline wander correction based on CEEMDAN
and wavelet threshold. Sensors 2017, 17, 2754. [CrossRef] [PubMed]

23. Zhan, L.; Li, C. A comparative study of empirical mode decomposition-based filtering for impact signal.
Entropy 2017, 19, 13. [CrossRef]

24. Li, C.; Zhan, L.; Shen, L. Friction signal denoising using complete ensemble EMD with adaptive noise and
mutual information. Entropy 2015, 17, 5965–5979. [CrossRef]

25. Li, Y.; Li, Y.; Chen, X.; Yu, J. Denoising and feature extraction algorithms using npe combined with vmd and
their applications in ship-radiated noise. Symmetry 2017, 9, 256. [CrossRef]

26. Li, Y.; Li, Y.; Chen, X.; Yu, J. Research on ship-radiated noise denoising using secondary variational mode
decomposition and correlation coefficient. Sensors 2018, 18, 48.

27. Kvålseth, T.O. On normalized mutual information: measure derivations and properties. Entropy 2017, 19, 631.
[CrossRef]

28. Zanin, M.; Gómez-Andrés, D.; Pulido-Valdeolivas, I.; Martín-Gonzalo, J.A.; López-López, J.;
Pascual-Pascual, S.I.; Rausell, E. Characterizing normal and pathological gait through permutation entropy.
Entropy 2018, 20, 77. [CrossRef]

29. Gao, Y.; Villecco, F.; Li, M.; Song, W. Multi-Scale permutation entropy based on improved LMD and HMM
for rolling bearing diagnosis. Entropy 2017, 19, 176. [CrossRef]

30. Bandt, C.; Pompe, B. Permutation entropy: A natural complexity measure for time series. Phys. Rev. Lett.
2002, 88, 174102. [CrossRef] [PubMed]

http://dx.doi.org/10.1142/S1793536910000422
http://dx.doi.org/10.1109/TASL.2010.2072500
http://dx.doi.org/10.1016/j.apacoust.2015.07.007
http://dx.doi.org/10.1088/0957-0233/27/4/045109
http://dx.doi.org/10.3390/s17112477
http://www.ncbi.nlm.nih.gov/pubmed/29143772
http://dx.doi.org/10.3390/ma11061009
http://www.ncbi.nlm.nih.gov/pubmed/29904002
http://dx.doi.org/10.3390/s18030782
http://www.ncbi.nlm.nih.gov/pubmed/29510569
http://dx.doi.org/10.3390/technologies5040068
http://dx.doi.org/10.3390/e17020669
http://dx.doi.org/10.3390/e17030928
http://dx.doi.org/10.1177/0142331215592064
http://dx.doi.org/10.3390/e18070253
http://dx.doi.org/10.3390/e20050361
http://dx.doi.org/10.3390/s17122754
http://www.ncbi.nlm.nih.gov/pubmed/29182591
http://dx.doi.org/10.3390/e19010013
http://dx.doi.org/10.3390/e17095965
http://dx.doi.org/10.3390/sym9110256
http://dx.doi.org/10.3390/e19110631
http://dx.doi.org/10.3390/e20010077
http://dx.doi.org/10.3390/e19040176
http://dx.doi.org/10.1103/PhysRevLett.88.174102
http://www.ncbi.nlm.nih.gov/pubmed/12005759


Entropy 2018, 20, 563 23 of 23

31. Wang, X.; Xu, J.; Zhao, Y. Wavelet based denoising for the estimation of the state of charge for lithium-ion
batteries. Energies 2018, 11, 1144. [CrossRef]

32. Bandt, C. A new kind of permutation entropy used to classify sleep stages from invisible EEG microstructure.
Entropy 2017, 19, 197. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/en11051144
http://dx.doi.org/10.3390/e19050197
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	CEEMDAN 
	MI 
	PE 
	Wavelet Threshold Denoising 

	Denoising Algorithm for Underwater Acoustic Signal 
	Denoising for Simulation Signal 
	CEEMDAN for Simulation Signal 
	Identifying Noise IMFs 
	Identifying Noise-Dominant IMFs 
	Denoising for Noise-Dominant IMFs and Reconstruction 
	Comparison of Different Denoising Methods 
	Wavelet Denoising 
	Comparison of Denoising Effect 


	Denoising for Chaotic Signal 
	Denoising for Underwater Acoustic Signal 
	Conclusions 
	References

