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Abstract: We develop a useful model considering an atom-field system interaction in the framework of
pseudoharmonic oscillators. We examine qualitatively the different physical quantities for a two-level
atom (TLA) system interacting with a quantized coherent field in the context of photon-added
coherent states of pseudoharmonic oscillators. Using these coherent states, we solve the model
that exhibits the interaction between the TLA and field associated with these kinds of potentials.
We analyze the temporal evolution of the entanglement, statistical properties, geometric phase and
squeezing entropies. Finally, we show the relationship between the physical quantities and their
dynamics in terms of the physical parameters.

Keywords: pseudoharmonic oscillators; entanglement; von Neumann entropy; geometric phase;
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1. Introduction

Recently, the outgrowth and development of quantum information processing (QIP) have
been supplied to enhance a large knowledge-base and increase the literature background of the
quantum entanglement phenomenon, which is responsible for the implantation of the most tasks of
QIP [1–4]. The importance of quantum entanglement in various applications of QIP has led to the
examination and realization of high-dimensional systems and provided the significance of this kind
of correlation in many-body quantum systems [5]. In recent years, various optical devices have been
suggested to realize and generate the quantum entanglement, such as NMR systems [6], beam splitters
[7], nanoresonators [8] and cavity QED [9]. Moreover, the generation of this kind of correlation
actually emerges as an objective in the quantum experimental implementation when examining the
non-classicality effects in quantum mechanics. Several attempts have been made to measure the
quantum entanglement among particles and fields. Entanglement between atoms and photons has
been treated and examined at optical frequencies with atoms [10] and electron spins [11], to interface
stationary and flying qubits [12], to perform quantum communication [13] and to implement nodes
for quantum repeaters [14] and networks [15].

The geometric phase (GP) is an example of the features of quantum mechanics that could remain
overlooked by almost two generations of physicists. A considerable understanding of the formal
description of quantum mechanics has been achieved after Berry’s discovery [16–20] of a geometric
feature related to the dynamics of a quantum system in the adiabatic and cyclic unitary evolution of
non-degenerate states. There are plenty of generalizations including nonadiabatic [17], non-cyclic and
even nonunitary evolution of the quantum state. Berry has demonstrated that the wave function of
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a quantum system retains a memory of its evolution in its complex phase argument, which apart from
the usual dynamical contribution, only depends on the geometry of the path traversed by the system.
Known as the GP factor, this contribution originates from the very heart of the structure of quantum
mechanics. The GP is attractive for the implementations of fault-tolerant quantum computation [21–25].
The idea is to exploit this inherent robustness provided by the topological properties of some quantum
systems as a means of constructing built-in fault-tolerant quantum logic gates.

Squeezed states in quantized electromagnetic fields have attracted much attention and exhibited
in several interesting works in the literature [26]. This squeezing physical concept has been extended
to atomic systems [27] considering the definition used for the radiation field. In this context, the atomic
squeezing has obtained a great deal of interest and provided many potential applications [28–30].
The atom-photon interactions are utilized to describe the conditions under which the squeezing
effect will exist [31]. The appearance of atomic squeezing in a system of three-level atoms placed in
a two-mode cavity is analyzed through the effective dipole-dipole interaction between atoms [32].
The model of spin-squeezed atoms, which is based on the Raman scattering with a strong laser pulse,
was used to determine the transfer of the change of the correlation between the atom and the light [33].
Atomic squeezing under collective emission was considered to introduce a method for controlling the
temporal behavior of the squeezing factor and characterizing the collective emission by the influence of
the squeezing effect [34]. The squeezing effect in optimal and nonlinear spin states has been examined
in [35,36], respectively. The relationship between the atomic spin squeezing and bosonic quadrature
was introduced [37]. Moreover, the experimental realization for an ensemble of V-type atoms was
reported [38,39]. In all these cases, the atomic squeezing has been treated in the framework of the
Heisenberg uncertainty relations.

The Jaynes–Cummings (JC) model has received much interest, and various axes in different
branches of the optical physics both theoretically and experimentally have been developed. The JC
model has seen its real practice by exploiting the experimental step in the electrodynamics cavities.
In order to understand the physical phenomena through that model, it is important to include the
external noises on the studied quantum system [40–43]. Interestingly, it is shown that the noises that
lead to the loss of energy have a significant impact on experimental progress in realistic physical
situations. On the other hand, the noises that lead to destruction of the coherence in the system state
also play a crucial role in those fields.

Coherent states play a crucial role in various physical branches [44,45], which are introduced as
an eigenvector of the lowering operator for quantum harmonic oscillators [46]. These states exhibit
physical properties like the classical electromagnetic field. In this context, the classical trajectory is
used to determine the center of the coherent states’ wave packet for the harmonic oscillator potentials.
There are other coherent states for nonlinear quantum electromagnetic fields, called nonclassical states,
which are antibunching and sub-Poissonian statistics, squeezing and high order squeezing [47,48].
When the nonclassical quantum effects are taken into account, the classical limit and nonclassical limit
of the radiation fields are determined by the ordinary coherent state.

The pseudoharmonic oscillator (PHO) potentials have attracted much attention, and more insights
are being obtained on different physical subjects [49]. The PHO can be considered in a certain sense
as an intermediate potential between the harmonic oscillator (HO) potential (an ideal potential)
and anharmonic potentials (the more realistic potentials) [50]. A comparative analysis of potentials
considering three-dimensional harmonic oscillator potential (HO-3D) and PHO was introduced in [51].
It is claimed that like the coherent states (CSs) for the HO, the CSs for the PHO can be helpful in
the theory of quantum information [50]. In this context, it is shown that even if the HO-3D can
be considered as a limit oscillator of the PHO, it is possible to find a harmonic limit that leads the
obtained formulae for the PHO in the CSs formalism to the corresponding well-known formulae for
the Glauber coherent state of the HO-1D (referring to a coherent state of a quantum simple harmonic
oscillator) [52,53]. In fact, it is shown that apart from their theoretical merit (by contributing to a better
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understanding of the behavior and properties of the PHO), the formalism of the CSs of the PHO may
have also a practical importance (by using it in the quantum information theory and practice) [50].

In the present manuscript, we consider the coherent states associated with the pseudoharmonic
oscillator potentials and propose a new model of the atom-field in the framework of these kinds of
potentials. We investigate the dynamical behavior of the atomic inversion, photons’ distribution,
geometric phase, degree of entanglement and atomic squeezing for the quantum system, which will
be described in the next section. The paper is organized as follows: In Section 2, we describe our
Hamiltonian model and provide an exact form for the ket state of the system using the Schrödinger
picture. Section 3 describes the quantum quantifiers considered in this manuscript. In Section 4,
we show the numerical results and discuss the variation of the population inversion, entanglement,
geometric phase and atomic squeezing. Finally, some conclusions are given in Section 5.

2. Physics Model and Dynamics

The PHO is considered as an anharmonic potential [51,54], which plays a similar role as
the HO potential, and it admits exact mathematical studies. The PHO potential can be utilized
in some cases as an intermediate oscillator between the HO and more anharmonic oscillators,
e.g., Morse oscillator [55,56], Pöschl–Teller oscillator [57], which are more realistic. Similarly to the
HO-1D (and a few other quantum systems, e.g., the Morse potential, as well as Poschl–Teller), the PHO
potential accepts the building of coherent states [49,58]. Generally, the coherent states are of special
importance due to their remarkable mathematical properties and interesting physical applications,
especially in quantum optics [59] and also in quantum information theory [60]. The excitation on
CSs can be considered as one of the possible generalizations of CSs. These states may be useful in
the optical communications field, which employes the nonclassical signal beams, usually mixed with
thermal noise [61]. On the other hand, the statistical properties of the CSs are useful in quantum
optics and quantum electronics. A new class of states has been introduced, which are generated by
the successive action of the raising operator on the Klauder–Perelomov coherent states of the PHO,
and we have shown the important nonclassical properties such states possess [61].

The PHO effective potential has the form [58]:

V(r) =
Mω2
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It is shown that the bounded states for the PHO are associated with the dynamical SU(1, 1)
group [49]. The su(1, 1) Lie algebra is of great interest in quantum optics because it can characterize
many kinds of quantum optical systems [62,63]. It has recently been utilized for investigating the
nonclassical properties of light in quantum optical systems [45]. In particular, the bosonic realization of
su(1, 1) describes the degenerate and non-degenerate parametric amplifiers [64]. The squeezed states
and nonlinear CSs of photons have been considered in terms of the su(1, 1) Lie algebra and the CSs
associated with this algebra [64]. The photon-added coherent states of the pseudoharmonic oscillator
(PA-PHOCSs) are expanded as [65]:

|z, m, k〉 = 1√
Ck

(
|z|2
) ∞

∑
n=0

zn√
R(n, k, m)

|n + m, k〉, (3)
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where:

R(n, k, m) =
Γ(2k) {Γ(n + 1)}2

Γ(n + m + 2k)Γ(n + m + 1)
, (4)

and:

Ck

(
|z|2
)
=

∞

∑
n=0

z2n

R(n, k, m)
. (5)

where m denotes the excited or the number of added photons and k is the Bragmann index. The energy
spectrum of the PHO is identical to the HO-1D energy spectrum, up to a translation in the energy
scale. It was demonstrated [66,67] that two specific elements of the positive discrete series of the
SU(1, 1) group unitary irreducible representations (for k = 1/4 and k = 3/4) reduce the corresponding
representation spaces to the Hilbert space of the HO-1D.

The JC model is considered as one of the simplest models to describe the interaction between matter
and radiation [68]. This model provides a considerably richer way to investigate the dynamical behavior
of the physical phenomena that occur in the atom-field systems. In the rotating wave approximation
limit, the model allows an explicit solution, which may be proven empirically. Here, we consider a TLA
system interacting with PA-PHOCSs where the coupling term is dependent on the time,

HI(t) = λ(t)
(

â
√

â† â |0〉 〈1|+
√

â† ââ† |1〉 〈0|
)

, (6)

where |1〉 (respectively |0〉) defines the lower (respectively upper) level of the two-level atom
(TLA), â (two-level atom â†) is correspondent to the annihilation (respectively creation) operator
of the quantum field and λ(t) = g sin2(t) is the coupling parameter, where in the case of constant
coupling between the TLA and the field, it can be obtained at λ(t) = g. The time-dependent coupling
λ(t) is assumed to be a sine function. In this context, the transient regime of the coupling varies
rapidly with time. The generalization from the constant coupling λ to arbitrary time-dependent
coupling λ(t) gives the possibility to model various new physical situations not discussed before.
A realization of particular interest is when λ(t) may be the time-dependent alignment or orientation
of the atomic/molecular dipole moment using a laser pulse [69] and the motion of the atom through
the cavity. Theoretical examination of a cavity-quantum electrodynamics (QED) system monitored
by utilizing bichromatic adiabatic passage under the influence of a dissipative environment [70],
where the authors have analyzed the generation of a controlled Fock number state inside the cavity by
a traveling atom, encounters the time-dependent effect and the delays of the Rabi frequencies of the
laser fields and cavity.

We suppose that the TLA starts from the upper state |0〉, and the quantum field is prepared in the
PA-PHOCS, |z, m, k〉; hence, the quantum state of the combined system is written as:

|v(0)〉 = |vA(0)〉 ⊗ |z, m, k〉 . (7)

The ket state vector for any later time is written as:

|v(t)〉 = exp

−i
t∫

0

HI(T)dT

 |v(0)〉 =
∞

∑
n=0
{Xn(t)|n, u〉+ Yn(t)|n + 1, l〉} . (8)

The time-dependent functions Xn and Yn are given by:

Xn(t) = Qn cos( f (t)(n + m + 1))

Yn(t) = Qn sin( f (t)(n + m + 1)),

where |z, m, k〉 in Equation (7) can be written as:
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|z, m, k〉 =
∞

∑
n=0

Qn|n〉,

and:

f (t) =

{
gt f or λ(t) = g

g( t
2 −

sin(2t)
4 ) f or λ(t) = g sin2(t).

Once the wave function has been analytically obtained, it can be employed to analyze and discuss
many physical features of the whole system and subsystems.

3. Quantum Quantifiers

In this section, we define and give a brief discussion of the different physical quantities. The atomic
inversion is introduced as the probability difference of getting the TLA system in the upper and
lower levels:

Sz(t) =
∞

∑
n=0

{
|Xn(t)|2 − |Yn(t)|2

}
. (9)

When the field is defined in a Glauber state at t = 0, the atomic inversion exhibits a collapse-revival
feature during the time-evolution [71]. The origin of this phenomenon is dependent on the photon
distribution of the field, and it is experimentally realizable through ionization detectors as the atomic
beam leaving the cavity [72].

To examine the dynamical behavior of the entanglement for the TLA-field state, we introduce the
von Neumann entropy as a measure, which is defined as [73]:

SA(t) = −Tr {ρA ln ρA} = −
2

∑
j=1

µj ln µj, (10)

where ρA (respectively ρF) presents the TLA (respectively field) density operator, obtained by making
the trace over the quantum field (respectively TLA) element basis, i.e., ρA = TrF (|v(t)〉 〈v(t)|)) and
µj denotes the eigenvalues of the TLA (respectively field) density operator. This entropy function
changes from zero value for a factorizable state to one for a maximally-entangled state.

In order to analyze the photons’ distribution, we utilize Mandel’s parameter, which is considered
as an accurate measure for the statistical properties of the quantum field. It is defined in terms of the
average photon number of the field state as [74,75]:

MP =
〈N2〉 − 〈N〉2 − 〈N〉

〈N〉 , (11)

where:

〈Ni〉 =
∞

∑
n=0

{
ni |Xn(t)|2 + (n + 1)i |Yn(t)|2

}
, i = 1, 2. (12)

The MP parameter determines the statistical properties of the field state, where (−1 ≤ MP < 0)
corresponds to the sub-Poissonian photon distribution, MP > 0 is for super-Poissonian distribution
and QP = 0 is for the Poissonian distribution (semi-classical states).

The evolution of the quantum system is described as noncyclic, when the initial and final states
are considered different. The initial and the final vector ket states are not connected through a complex
scalar factor. If we assume that the initial ket state |v(0)〉 evolves to |v(t)〉 and the scalar product
M(t) = 〈v(0)|v(t)〉 is expressed by a real number `, where M(t) = Reiφ, consequently, the noncyclic
phase is given by the angle φ. The cyclic geometric phase is considered as a particular case of the
noncyclic phase, and it can be obtained by taking R = 1. The Pancharatnam phase includes the
geometric phase (GP) and dynamical phase and is defined as [76]:
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ΦG(t) = arg(〈v(0)|v(t)〉). (13)

The Heisenberg uncertainty relation (HUR) is introduced to examine the squeezing entropy,
which is described by Pauli matrices σx, σy and σz for the TLA in the framework of the quantum
field as:

∆σx∆σy ≥
1
2
|〈σz〉|, (14)

where ∆σα =
√
〈σ2

α〉 − 〈σα〉2. If σα verifies the condition:

V(σα) = ∆σα −
√
|〈σz〉|

2
< 0, α = x, y. (15)

then, the atomic dipole fluctuation in σα will be squeezed.
For sets of complementary observable in an even-dimensional Hilbert space, an optimal entropic

uncertainty relation has been studied through the quantum entropy theory [77],

N+1

∑
k=1

H(σk) ≥
N
2

ln(
N
2
) + (1 +

N
2
) ln(1 +

N
2
), (16)

with H(σk) giving the information entropy corresponding to the variable Sk. For the general criterion
of the squeezing, we employ entropic uncertainty relation (EUR) defined in Equation (16) in terms of
the information entropy to examine the squeezing for the considered JC model. For the TLA state, ρA,
the information entropies corresponding to the operators σx, σy and σz are given by:

H(σx) = −
{

1
2
+< [ρlu (t)]

}
ln
{

1
2
+< [ρlu (t)]

}
−
{

1
2
−< [ρlu (t)]

}
ln
{

1
2
−< [ρlu (t)]

}
, (17)

H(σy) = −
{

1
2
+= [ρlu (t)]

}
ln
{

1
2
+= [ρlu (t)]

}
−
{

1
2
−= [ρlu (t)]

}
ln
{

1
2
−= [ρlu (t)]

}
, (18)

H(σz) = −ρUu(t) ln ρUu(t)− ρll(t) ln ρll(t), (19)

where ρUu(t) = ∑∞
n=0 |Xn(t)|2, ρll(t) = ∑∞

n=0 |Yn(t)|2 and ρlu (t) = ∑∞
n=0 Xn(t)Y∗n (t). For a TLA

N = 2, then 0 ≤ H(σα) ≤ ln 2, while from Equation (16), we obtain that the information entropies
corresponding to the operators σx, σy and σz verify:

H(σx) + H(σy) ≥ 2 ln 2− H(σz). (20)

The aforementioned inequality may be also given as:

δH(σx)δH(σy) ≥
4

δ|H(σz)|
, (21)

where:
δH(σα) = exp[H(σα)]. (22)

The EUR, described by Equation (21), evidences the impossibility of knowledge of simultaneous
information about the observables σx and σy, where the uncertainty of the polarization component σx

(respectively σy) is measured by δH(σx) (respectively δH(σy)).
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Let us now introduce the squeezing of the TLA using EUR defined in Equation (21), which is
called squeezing entropy [77]. The component fluctuations σα (α = x or y) of the TLA are said to be
squeezed if the entropy H(σα) of σα verifies the inequality,

E(σα) = δH(σα)−
2√

|δH(σz)|
< 0, α = x, y. (23)

4. Numerical Results and Discussion

In Figure 1, for a TLA initially defined in an upper-level state and the quantum field in
PA-PHOCSs, we display the variation of the population inversion Sz dimensionless for the scaled
time gt with respect to various physical parameters. We compare the effects of parameters k and m in
both cases with and without the time effect. We can see that the population inversion makes period
oscillations during the time-evolution. The atomic inversion after suddenly decreasing to its minimum
value at the beginning of the interaction increases to a maximum value for each periodicity in the case
of m = 0. When m 6= 0, the behavior of the atomic inversion makes rapid oscillations exhibiting local
minima and local maxima in each periodicity. Moreover, as is seen, the parameter k has an impact
on the temporal evolution of the atomic inversion only in the absence of photon excitation k = 0
and leads to a decrease in the amount of Sz by a suitable choice k. On the other hand, the existence
of time-dependent coupling influence leads to a reduction of the oscillations of the Sz during the
time-evolution.

The numerical results of the von Neumann entropy have been shown versus the time gt in Figure 2
for various values of the photon-added number in the absence and existence of the time-dependent
coupling influence when the TLA initially stated in the upper level and the quantum field is in
PA-PHOCSs. The dashed line (red) is for m = 0, and the solid line (blue) is for m = 10. Figure 1c,d
presents the temporal evolution of the entanglement for λ(t) = g and λ(t) = g sin2(t), respectively,
in the case of k = 3/4. Generally, the von Neumann is a periodic function with sudden death and
sudden birth entanglement phenomenon during the time-evolution. In the ideal case in which no
atomic motion is considered, von Neumann entropy suddenly increases from zero to its maximum
value, then it decays to zero for each periodic time interval, whereas when the time-dependent effect is
considered, SA attains rapid oscillations due to the fluctuations during the interaction, but also leads
to an enhancement or reduction of the degree of entanglement. This shows that the quantum field
system can help to stabilize the temporal evolution of the entanglement. This behavior is due only to
the influence of the kind of coupling term via the generalized parameter λ(t) and the photon-added
number m. Moreover, it is found that as the parameter m increases, the structure of the oscillations
becomes very complex for different values of k, whereas the coupling effect leads to the disappearance
of these structures of the von Neumann entropy, i.e., the periodicity time increases and the oscillations
are more transparent and accompanied by an increase in the lifetime of sudden death entanglement
phenomenon. From Figures 1 and 2, an interesting relationship can be seen between the dynamical
behavior of the population inversion and the quantum entanglement.

Figure 3 refers to the effect of the parameters m and k on the time evolution of Mandel’s MP
parameter defined by Equation (11) when the field is initially defined in PA-PHOCSs in the absence and
existence of the time-dependent coupling influence. Generally, Mandel’s parameter makes periodic
oscillations, exhibiting a sub-Poissonian and Poissonian distribution at m = 0 for different values of
k. Whereas, for m 6= 0, the field statistics tend to fluctuate around the sub-Poissonian distribution.
Interestingly, we obtain that the choice of the initial parameter k only influences the photon statistics of
the quantum field in the absence of the excited photons. When the time-dependent effect is considered,
Mandel’s parameter keeps its behavior with an increase in the periodic time interval during the
evolution.
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Figure 1. Population inversion for the two-level atom (TLA) initially defined in its excited state, and
the field is in photon-added coherent states of the pseudoharmonic oscillator (PA-PHOCSs) for z = 0.5.
(a) The solid line (blue) is for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The

solid line (blue) is for (k, m) = ( 1
4 , 0), and the solid line (red) is for (k, m) = ( 1

4 , 10). (c) the solid line is
for (k, m) = ( 3

4 , 0) and the dashed line (k, m) = ( 3
4 , 10). (d) The solid line (blue) is for (k, m) = ( 3

4 , 0)
and the solid line (red) is for (k, m) = ( 3

4 , 10). In (a,c), we consider the case of constant coupling
λ(t) = g and in (b,d), the time dependent coupling λ(t) = g sin2(t).
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Figure 2. von Neumann entropy SA with the same conditions of Figure 1. (a) The solid line (blue)
is for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The solid line (blue) is for
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Figure 3. Parameter MP with the same situation as in Figure 1. (a) The solid line (blue) is for (k, m) =
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Let us investigate the main results on the variation of the GP for the whole system state |ψ〉
with respect to the physical parameters in the presence and absence of the time-depending coupling
influence. To understand the impact of the parameters’ effects on ΦG, we display the dynamical
behavior of the ΦG in Figure 4 with respect to different values of k and m. Generally, it can be seen
that the GP provides a periodic behavior, exhibiting collapse and revival phenomena. The duration of
these phenomena strictly depends on the excited number m and coupling term λ(t), where the atomic
motion leads to an increase in the periodicity time of the GP. On the other hand, for large values of
m, the GP is unaffected by the parameter k, and the result seems to be similar for both cases k = 1/4
and k = 3/4. From the obtained results, we find that the control and the stabilization of the system
dynamics highly benefit from the combination of the quantum field and coupling term parameters.

We now examine the dynamical behavior of the atomic squeezing with regard to the physical
parameters. In Figures 5 and 6, we plot the time-evolution of E(σx) and E(σy) versus the dimensionless
time gt, respectively, with respect to different values of the parameters m and k for both cases λ(t) = g
and λ(t) = g sin2(t). We find that the atomic squeezing provides periodic oscillations, where E(σx)

and E(σy) remain unchanged under the parameter k as the added photon number m obtains large
values. This shows that the enhancement and loss of squeezing are due to the physical properties
of the quantum field. Interestingly, the atomic motion leads to an increase in the time periodicity of
the squeezing entropies. On the other hand, it seems that the squeezing occurs only in the variable y
and no squeezing in x, where the increase in m would be accompanied by an increase in E(σy) and
enhance the squeezing effect during the time-evolution. In a nutshell, the obtained results provide
that the effect of the initial parameters k and m on the physical quantities seems to be the same in the
existence and absence of the atomic motion influence, showing a monotonic relationship between
these quantifiers with respect to the initial parameters.
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Figure 5. Entropy squeezing component E (σx) with the same conditions of Figure 1. (a) The solid line
(blue) is for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The solid line (blue) is

for (k, m) = ( 1
4 , 0), and the solid line (red) is for (k, m) = ( 1

4 , 10). (c) the solid line is for (k, m) = ( 3
4 , 0)

and the dashed line (k, m) = ( 3
4 , 10). (d) The solid line (blue) is for (k, m) = ( 3
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(red) is for (k, m) = ( 3
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Figure 6. Entropy squeezing component E
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with the same conditions of Figure 1. (a) The solid line
(blue) is for (k, m) = ( 1

4 , 0), and the dashed line (red) is for (k, m) = ( 1
4 , 10). (b) The solid line (blue) is

for (k, m) = ( 1
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5. Conclusions

We have developed a JC model considering the interaction between a TLA and a quantum field in
the framework of pseudoharmonic oscillator potentials. We have shown the necessary optimal conditions
that are appropriate for empirical implementation to execute various tasks of quantum computational and
information technologies. We have examined qualitatively various quantum quantifiers in terms of the
initial parameters during the time-evolution with and without time-dependent coupling, considering the
quantum entanglement, geometric phase, nonclassicality and atomic squeezing. Furthermore, we have
displayed the relationship between the different physical quantities in terms of the initial parameters
during the evolution. We have shown that the change of the parameters strongly influences the dynamical
behavior of the quantifiers. The obtained results confirm that the considered quantum system is
helpful to withstand the effect of noises on the physical quantities by a suitable choice of the initial
parameters. The result suggests future study, considering that the initial mixed state under the effect of
the finite-temperature environments on the quantifiers could be pondered.
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