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Abstract: The main purpose of this paper is to find new estimations for the Shannon and
Zipf–Mandelbrot entropies. We apply some refinements of the Jensen inequality to obtain different
bounds for these entropies. Initially, we use a precise convex function in the refinement of the Jensen
inequality and then tamper the weight and domain of the function to obtain general bounds for the
Shannon entropy (SE). As particular cases of these general bounds, we derive some bounds for the
Shannon entropy (SE) which are, in fact, the applications of some other well-known refinements
of the Jensen inequality. Finally, we derive different estimations for the Zipf–Mandelbrot entropy
(ZME) by using the new bounds of the Shannon entropy for the Zipf–Mandelbrot law (ZML). We also
discuss particular cases and the bounds related to two different parametrics of the Zipf–Mandelbrot
entropy. At the end of the paper we give some applications in linguistics.
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1. Introduction

The idea of the Shannon entropy [1] plays a key role in information theory, while in some cases, it
is denoted as measure of uncertainty. There are basically two methods for understanding the Shannon
entropy. Under one point of view, the Shannon entropy quantifies the amount of information in regard
to the value of X (after measurement). Under another point of view, the Shannon entropy tells us the
amount of uncertainty about the variable of X before we learn its value (before measurement) [2]. The
random variable, entropy, is characterized regarding its probability distribution and it can appear as a
better measure of predictability or uncertainty. SE permits the appraisal of the normal least number
of bits expected to encode a series of symbols based on the letters in order of estimation and the
recurrence of the symbols. The formula for SE is given by [1]

S(Ψ) =
n

∑
i=1

ψi log
(

1
ψi

)
, (1)

where ψ1, ψ2, ..., ψn ∈ <+ with ∑n
i=1 ψi = 1.

There are many applications of the Shannon entropy in most applied sciences and in other sciences,
such as biology [3], genomic geography [4], and finance [5]. Currently, the Shannon entropy is applied
in the simulation of laser dynamics and as an objective measure to evaluate models and compare
observational results [6,7].
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In 1932, George Zipf gave the idea that the size of the r′th largest occurrence of an event is
inversely proportional to its rank. That is, this law states that Pr = 1/rb, where Pr is the frequency
of occurrence of the r′th ranked and b is close to unity. As in linguistics, Zipf found that one can
calculate the number of times each word appears in the text. Therefore, if the rank (γ) of the word is in
accordance with the frequency of the word’s appearance (ρ), then the product of these two numbers is
a constant ((C): C = ρ.γ, see [8,9]).

There are several applications of the Zipf law, and here we present some of them. This law has
been used in city populations. Kristian Giesen and Jens Suedekum conducted a study on the city
measure distributions of single German districts’ reliance on researching the phenomenon [10]. They
built their study based on the intuition by Gabaix (1999) which states that the Zipf law takes after an
irregular development process. This means that Gabaix displays that if the districts follow the Gibrat
law, they should notice the Zipf law at both the districts at a national level. By utilizing non-parametric
procudures, they found that the Gibrat law holds in each German district, regardless of how “districts”
are defined. To put it differently, the Gibrat and Zipf laws are inclined to hold ubiquitously in space. In
geology, the Zipf law has been used with temperate prosperity in the resource estimation of extracting
ores from the ground and petroleum [11]. In principle, it forecasts how many entities of a confident size
can be left in a sequence of decreasing size, assuming the largest has been established. The solar flare
intensity (M. E. J. Newman, 2004) [12] represents the cumulative distribution of the vertex gamma-ray
density of solar flares, for which perceptions were made between 1980 and 1989 by the well-known
HardX-Ray fulmination spectrometer onboard the solar maximum mission satellite launched in 1980.
The spectrometer uses a CsI gleaming discloser to measure gamma-rays from solar flares. For website
traffic (Shane Parkins, 2015) [13], the Zipf law seems, by all accounts, to be the control as opposed to
the special case. It is available at the level of routers that transmit data from one geographic location to
another and in the content of the World Wide Web. At the social and economic levels, it also determines
how persons choose the sites they visit and form peer-to-peer societies. The omnipresent nature of the
Zipf law in cyberspace is geared toward deeper empathy with the internet phenomena, for example,
discovering the potential of prevalence proxy caches in divergent Autonomous Systems (ASes) with
the purpose of reducing the costs incurred by internet service providers and pacification of the load on
the internet backbone [14].

It was determined that Zipf’s law can describe the size and rank distribution of earthquakes,
including those with magnitude, but it cannot predict when they will occur. In the earth-moon the
crater size-frequency distribution can be represented by the Zipf law [12,15].

In 1966, Benoit Mandelbrot gave an enhancement for the Zipf law, known as ZML, which gives a
generalization of the account of the low-rank words in corpus [16]:

g(i) =
c

(i + h)r ,

where i < 1000, r, c > 0 and if h = 0, we get the Zipf law.
If n ∈ N, h ≥ 0, r > 0 and i ∈ {1, 2, ..., n}, then the Zipf–Mandelbrot law (probability mass

function) is defined by

G(i, n, h, r) =
1/(i + h)r

Qn,h,r
.

The formula for ZME is given by

Z(Q, h, r) =
r

Qn,h,r

n

∑
i=1

log(i + h)
(i + h)r + log Qn,h,r, (2)

where Qn,h,r = ∑n
i=1

1
(i+h)r .

There are many applications of ZML which can be found in linguistics [16,17], ecological field
studies [18], and information sciences [9]. Recently, the Zipf–Mandelbrot law was applied to various
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types of f -divergences and distances, for example Kullback–Leibler divergence, Bhattacharyya distance
(via coefficient), Hellinger distance, x2-divergence, etc [19].

To complete this section, we give some notions and results from ref. [20].
Let g : G −→ R be a convex function defined on the convex set G, Tn = {1, 2, 3, ..., n}. Let s

be fixed positive integer and l be all those positive integers, such that 1 ≤ l ≤ s ≤ n. Suppose
Ms

1,Ms
2, ...,Ms

l represents any subsets of Tn, such thatMs
1
⋃Ms

2...
⋃Ms

l = Tn andMs
i
⋂Ms

j = ∅
for i 6= j, where i, j ∈ Tn, xi ∈ G, ψi > 0 with ∑n

i=1 ψi = 1, and for anyM ⊆ {1, 2, .., n}, M 6= ∅,
we represent ΨM =: ∑i∈M ψi and ΩM =: ∑i∈M ωi for positive real numbers ψi, ωi. For the convex
function g and the n-tuples x = (x1, x2, ..., xn), ψ = (ψ1, ψ2, ..., ψn), the following functional is defined:

As = maxMs
1,Ms

2,...,Ms
l

[
ΨMs

1
g( 1

ΨMs
1

∑i∈Ms
1

ψixi) + ΨMs
2
g( 1

ΨMs
2

∑i∈Ms
2

ψixi) + ... + ΨMs
l
g( 1

ΨMs
l

∑i∈Ms
l

ψixi)

]
. (3)

Particularly, for s = 2, 3, we have

A2 = max
M2

1,M2
2

[
ΨM2

1
g(

1
ΨM2

1

∑
i∈M2

1

ψixi) + ΨM2
2
g(

1
ΨM2

2

∑
i∈M2

2

ψixi)

]

A3 = max
M3

1,M3
2,M3

3

[
ΨM3

1
g(

1
ΨM3

1

∑
i∈M3

1

ψixi) + ΨM3
2
g(

1
ΨM3

2

∑
i∈M3

2

ψixi) + ΨM3
3
g(

1
ΨM3

3

∑
i∈M3

3

ψixi)

]
.

Analogously, for other particular values of s with 1 ≤ l ≤ s ≤ n, one can obtain different functionals.
The following generalized refinements of the Jensen inequality were given in refs. [20,21].

Theorem 1 ([20]). Let g :M−→ R be a convex function defined on the convex setM. If xi ∈ M and ψi > 0
for i, k ∈ Tn with ∑n

i=1 ψi = 1, then we have

n

∑
i=1

ψig(xi) ≥ Ak ≥ Ak−1 ≥ ... ≥ A3 ≥ A2 ≥ g

(
n

∑
i=1

ψixi

)
. (4)

Theorem 2 ([21]). Let g :M−→ R be a convex function defined on the convex setM, xj ∈ M, and ψj > 0
for j ∈ {1, ..., n} with ∑n

j=1 ψj = 1. Then,

g

(
n

∑
j=1

ψjxj

)
≤ min

k∈Tn

[
(1− ψk)g

(
∑n

j=1 ψjxj − ψkxk

1− ψk

)
+ ψkg(xk)

]

≤ 1
n

[ n

∑
k=1

(1− ψk)g

(
∑n

j=1 ψjxj − ψkxk

1− ψk

)
+

n

∑
k=1

ψkg(xk)

]

≤ max
k∈Tn

[
(1− ψk)g

(
∑n

j=1 ψjxj − ψkxk

1− ψk

)
+ ψkg(xk)

]
≤

n

∑
j=1

ψjg(xj).

(5)

For some other results related to the Jensen inequality and the Shannon and Zipf–Mandelbrot
entropies, see refs. [8,22–24].

Due to the great importance of the Shannon and Zipf–Mandelbrot entropies, many results are
devoted to these entropies in the literature. The main focus of this paper was to associate some
refinements of the Jensen inequality to the Shannon and Zipf–Mandelbrot entropies. In this paper,
we use the main results given in ref. [20] and obtain some estimations for these entropies. We also
discuss some particular cases of these results. At the end of the paper, we give some applications in
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linguistics. The idea of this paper can be applied for other results of the Jensen inequality to obtain
new estimations for these entropies.

2. Estimations for the Shannon Entropy

We start by giving our first main result for the Shannon entropy.

Theorem 3. Let ψi, ωi ∈ R+, where i = 1, 2, ..., n, with ∑n
i=1 ψi = 1. Then, the following inequalities hold:

−S(Ψ)−
n

∑
i=1

ψi log ωi ≥ max
Mk

1,Mk
2,...,Mk

l

{
ΨMk

1
log

(
ΨMk

1

ΩMk
1

)
+ ... + ΨMk

l
log

(
ΨMk

l

ΩMk
l

)}

≥ max
Mk

1,Mk
2,...,Mk

l−1

{
ΨMk

1
log

(
ΨMk

1

ΩMk
1

)
+ ... + ΨMk

l−1
log

(ΨMk
l−1

ΩMk
l−1

)}

≥ ... ≥ log
(

1
ΩTn

)
.

(6)

Proof. If we take g(x) = − log x, xi =
ωi
ψi

, i ∈ Tn in (4), then we obtain

n

∑
i=1

ψig(xi) = −
n

∑
i=1

ψi log
(

ωi
ψi

)
=

n

∑
i=1

ψi log ψi −
n

∑
i=1

ψi log ωi

= −S(Ψ)−
n

∑
i=1

ψi log ωi

and

Ak = max
Mk

1,Mk
2,...,Mk

l

{
ΨMk

1
log

(
ΨMk

1

ΩMk
1

)
+ ... + ΨMk

l
log

(
ΨMk

l

ΩMk
l

)}
.

Ak−1 = max
Mk

1,Mk
2,...,Mk

l−1

{
ΨMk

1
log

(
ΨMk

1

ΩMk
1

)
+ ... + ΨMk

l−1
log

(ΨMk
l−1

ΩMk
l−1

)}
...

A3 = max
M3

1,M3
2,M3

3

{
ΨM3

1
log

(
ΨM3

1

ΩM3
1

)
+ ΨM3

2
log

(
ΨM3

2

ΩM3
2

)
+ ΨM3

3
log

(
ΨM3

3

ΩM3
3

)}
.

A2 = max
M2

1,M2
2

{
ΨM2

1
log

(
ΨM2

1

ΩM2
1

)
+ ΨM2

2
log

(
ΨM2

2

ΩM2
2

)}
.

Therefore, from (4), we deduce (6).

Corollary 1. Let ψi, ωi ∈ R+, where i = 1, 2, ..., n, with ∑n
i=1 ψi = 1, then

−S(Ψ)−
n

∑
i=1

ψi log ωi ≥ max
M2

1,M2
2

{
ΨM2

1
log

(
ΨM2

1

ΩM2
1

)
+ ΨM2

2
log

(
ΨM2

2

ΩM2
2

)}
≥ log

(
1

ΩTn

)
. (7)

Proof. By taking k = 2 in (6), we obtain (7).

Corollary 2. Let ψi, ωi ∈ R+, i ∈ Tn with ∑n
i=1 ψi = 1, then

−S(Ψ)−
n

∑
i=1

ψi log ωi ≥ max
k∈Tn

{
ψk log

(
ψk
ωk

)
+ (1− ψk) log

(
1− ψk

∑n
i=1 ωi −ωk

)}
≥ log

(
1

ΩTn

)
.

(8)
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Proof. If we takeM2
1 = {k} in (7), then obviously,M2

2 = {1, 2, ..., n}\{k} and ΨM2
1
= ψk, ΨM2

2
= 1−ψk.

Hence, from (7), we deduce (8).

Remark 1. Note that Corollary 1 is, in fact, the application of ([25], Theorem 1) and Corollary 2 is the
application of ([21], Theorem 1).

In the following corollary, we discuss another particular case of Theorem 3.

Corollary 3. Let ψi, ωi ∈ R+ for i ∈ Tn with ∑n
i=1 ψi = 1, then

−S(Ψ) ≥ ΨM2
1

log

(
ΨM2

1

n

)
+ ΨM2

2
log

(
ΨM2

2

n

)
≥ 0. (9)

Proof. By taking ωi = 1 in (7), i = 1, 2, .., n, we get (9).

Remark 2. It is obvious that

max
M2

1,M2
2

{
ΨM2

1
log

(
ΨM2

1

ΩM2
1

)
+ ΨM2

2
log

(
ΨM2

2

ΩM2
2

)}

≥ max
k∈Tn

{
ψk log

(
ψk
ωk

)
+ (1− ψk) log

(
1− ψk

∑n
i=1 ωi −ωk

)}
.

3. Estimations for the Zipf–Mandelbrot Entropy

In the following main result, we obtain some general estimations for the Zipf–Mandelbrot entropy.

Theorem 4. Let n ∈ N, h ≥ 0, r > 0, ωi > 0, i ∈ Tn, then

−Z(Q, h, r)−
n

∑
i=1

log ωi
(i + h)rQn,h,r

≥ max
Mk

1,Mk
2,...,Mk

l

{
∑

i∈Mk
1

1
(i + h)rQn,h,r

log


∑

i∈Mk
1

1
(i+h)rQn,h,r

∑
i∈Mk

1

ωi

+

... + ∑
i∈Mk

l

1
(i + h)rQn,h,r

log


∑

i∈Mk
l

1
(i+h)rQn,h,r

∑
i∈Mk

l

ωi


}

≥ max
Mk

1,Mk
2,...,Mk

l−1

{
∑

i∈Mk
1

1
(i + h)rQn,h,r

log


∑

i∈Mk
1

1
(i+h)rQn,h,r

∑
i∈Mk

1

ωi

+

... + ∑
i∈Mk

l−1

1
(i + h)rQn,h,r

log


∑

i∈Mk
l−1

1
(i+h)rQn,h,r

∑
i∈Mk

l−1

ωi


}

≥ ... ≥ log
(

1
ΩTn

)
.

(10)
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Proof. If we substitute ψi with 1
(i+h)rQn,h,r

, (i ∈ Tn), we have

n

∑
i=1

ψig(xi) = −
n

∑
i=1

ψi log ωi +
n

∑
i=1

ψi log ψi

=
n

∑
i=1

1
(i + h)rQn,h,r

log
1

(i + h)rQn,h,r
−

n

∑
i=1

log ωi
(i + h)rQn,h,r

= −
n

∑
i=1

log[(i + h)rQn,h,r]

(i + h)rQn,h,r
−

n

∑
i=1

log ωi
(i + h)rQn,h,r

= −
n

∑
i=1

r log(i + h)
(i + h)rQn,h,r

−
n

∑
i=1

log Qn,h,r

(i + h)rQn,h,r
−

n

∑
i=1

log ωi
(i + h)rQn,h,r

= − r
Qn,h,r

n

∑
i=1

log(i + h)
(i + h)r −

log Qn,h,r

Qn,h,r

n

∑
i=1

1
(i + h)r −

n

∑
i=1

log ωi
(i + h)rQn,h,r

.

Then,
n

∑
i=1

ψig(xi) = −Z(Q, h, r)−
n

∑
i=1

log ωi
(i + h)rQn,h,r

,

where Qn,h,r =
n
∑

i=1

1
(i+h)r and

n
∑

i=1

1
(i+h)rQn,h,r

= 1.

Now, by applying Theorem 3 for ψi =
1

(i+h)rQn,h,r
, we obtain the required result.

Corollary 4. Let n ∈ N, h ≥ 0, r > 0, ωi > 0 for i ∈ Tn, then

−Z(Q, h, r)−
n

∑
i=1

log ωi
(i + h)rQn,h,r

≥ max
M2

1,M2
2

{
∑

i∈M2
1

1
(i + h)rQn,h,r

log


∑

i∈M2
1

1
(i+h)rQn,h,r

∑
i∈M2

1

ωi



+ ∑
i∈M2

2

1
(i + h)rQn,h,r

log


∑

i∈M2
2

1
(i+h)rQn,h,r

∑
i∈M2

2

ωi


}
≥ log

(
1

ΩTn

)
.

(11)

Proof. By taking k = 2 in (10), we obtain (11).

We can use Theorem 4 to obtain the following corollary.

Corollary 5. Let n ∈ N, h ≥ 0, r > 0, then

−Z(Q, h, r) ≥ max
M2

1,M2
2

{
∑

i∈M2
1

1
(i + h)rQn,h,r

log


∑

i∈M2
1

1
(i+h)rQn,h,r

∑
i∈M2

1

1



+ ∑
i∈M2

2

1
(i + h)rQn,h,r

log


∑

i∈M2
2

1
(i+h)rQn,h,r

∑
i∈M2

2

1


}
≥ log

(
1
n

)
.

(12)

Proof. By taking ωi = 1 in (11), i = 1, 2, .., n, we get (12).
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Corollary 6. Let n ∈ N, h ≥ 0, r > 0, then

− Z(Q, h, r)−
n

∑
i=1

log ωi
(i + h)rQn,h,r

≥ max
k∈Tn

{
1

(k + h)rQn,h,r
log
(

1
(k + h)rQn,h,rωk

)

+

(
(k + h)rQn,h,r − 1
(k + h)rQn,h,r

)
log
(
((k + h)rQn,h,r − 1)/(k + h)rQn,h,r

ΩTn −ωk

)}

≥ log
(

1
n

)
.

Proof. UsingM2
1 = {k} in (12), we obtain Corollary 6.

Remark 3. Note that Corollary 4 is in fact the application of ([25], Theorem 1), and Corollary 6 is the application
of ([21], Theorem 1).

Remark 4. By using Remark 2, we also have

max
M2

1,M2
2

{
∑

i∈M2
1

1
(i + h)rQn,h,r

log


∑

i∈M2
1

1
(i+h)rQn,h,r

∑
i∈M2

1

ωi

+ ∑
i∈M2

2

1
(i + h)rQn,h,r

log


∑

i∈M2
2

1
(i+h)rQn,h,r

∑
i∈M2

2

ωi


}

≥ max
k∈Tn

{
1

(k + h)rQn,h,r
log
(

1
(k + h)rQn,h,rωk

)

+

(
(k + h)rQn,h,r − 1
(k + h)rQn,h,r

)
log
(
((k + h)rQn,h,r − 1)/(k + h)rQn,h,r

ΩTn −ωk

)}
.

In the following result, we obtain the estimation for the Zipf–Mandelbrot entropy concerning two
different parameters.

Theorem 5. Let u, v ≥ 0, r1, r2 > 0, then

−Z(Q, u, r1) +
n

∑
i=1

log((i + v)r2 Qn,v,r2)

(i + u)r1 Qn,u,r1

≥ max
Mk

1,Mk
2,...,Mk

l

{
∑

i∈Mk
1

1
(i + u)r1 Qn,u,r1

log


∑

i∈Mk
1

1
(i+u)r1 Qn,u,r1

∑
i∈Mk

1

1
(i+v)r2 Qn,v,r2

+

... + ∑
i∈Mk

l

1
(i + u)r1 Qn,u,r1

log


∑

i∈Mk
l

1
(i+u)r1 Qn,u,r1

∑
i∈Mk

l

1
(i+v)r2 Qn,v,r2


}

≥ max
Mk

1,Mk
2,...,Mk

l−1

{
∑

i∈Mk
1

1
(i + u)r1 Qn,u,r1

log


∑

i∈Mk
1

1
(i+u)r1 Qn,u,r1

∑
i∈Mk

1

1
(i+v)r2 Qn,v,r2

+

... + ∑
i∈Mk

l−1

1
(i + u)r1 Qn,u,r1

log


∑

i∈Mk
l−1

1
(i+u)r1 Qn,u,r1

∑
i∈Mk

l−1

1
(i+v)r2 Qn,v,r2


}

≥ ... ≥ 0.

(13)
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Proof. Let ψi =
1

(i+u)r1 Qn,u,r1
, ωi =

1
(i+v)r2 Qn,v,r2

, i ∈ Tn. Then, using the proof of Theorem 4, we get

n

∑
i=1

ψi log ψi =
n

∑
i=1

1
(i + u)r1 Qn,u,r1

log
1

(i + u)r1 Qn,u,r1

= −Z(Q, u, r1),

−
n

∑
i=1

ψi log ωi =
n

∑
i=1

1
(i + u)r1 Qn,u,r1

log
1

(i + v)r2 Qn,v,r2

=
n

∑
i=1

log((i + v)r2 Qn,v,r2)

(i + u)r1 Qn,u,r1

,

n

∑
i=1

ωi =
n

∑
i=1

1
(i + v)r2 Qn,v,r2

= 1.

Therefore, using (6) for ψi =
1

(i+u)r1 Qn,u,r1
and ωi =

1
(i+v)r2 Qn,v,r2

, i ∈ Tn, we obtain (13).

Corollary 7. Let n ∈ N, u, v ≥ 0, r1, r2 > 0, then

−Z(Q, u, r1) +
n

∑
i=1

log((i + v)r2 Qn,v,r2)

(i + u)r1 Qn,u,r1

≥ max
M2

1,M2
2

{
∑

i∈M2
1

1
(i + u)r1 Qn,u,r1

log


∑

i∈M2
1

1
(i+u)r1 Qn,u,r1

∑
i∈M2

1

1
(i+v)r2 Qn,v,r2



+ ∑
i∈M2

2

1
(i + u)rQn,u,r1

log


∑

i∈M2
2

1
(i+u)r1 Qn,u,r1

∑
i∈M2

2

1
(i+v)r2 Qn,v,r2


}
≥ 0.

(14)

Proof. By taking k = 2 in (13), we obtain (14).

Corollary 8. Let u, v ≥ 0, r1, r2 > 0, then

−Z(Q, u, r1) +
n

∑
i=1

log((i + v)r2 Qn,v,r2)

(i + u)r1 Qn,u,r1

≥ max
k∈Tn

{
1

(k + u)r1 Qn,u,r1

log
(
(k + v)r2 Qn,v,r2

(k + u)r1 Qn,u,r1

)
+

(
(k + u)r1 Qn,u,r1 − 1
(k + u)r1 Qn,u,r1

)
log

(
((k + u)r1 Qn,u,r1 − 1)/(k + u)r1 Qn,u,r1

((k + v)r2 Qn,v,r2 − 1)/(k + v)r2 Qn,v,r2

)}
≥ 0.

(15)

Proof. UsingM2
1 = {k} in (14), we obtain (15).

Now we give applications of the above results in linguistics.
In ref. [26], Gelbukh and Sidorov observed the difference between the coefficients r1 and r2

in the Zipf law for the English and Russian languages. They processed 39 literature texts for each
language, chosen randomly from different genres, with the requirement that the size be greater than
10,000 running words each. They calculated the coefficients for each of the mentioned texts and as a
result, they obtained an average of r1 = 0.973863 for the English language and r2 = 0.892869 for the
Russian language.
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In the following results, we give the application of inequality (11) for the English language.

Application 1. Let n ∈ N, ωi > 0 for i ∈ Tn Then, we have

−Z(Q, 0, 0.973863)−
n

∑
i=1

log ωi
i0.973863Qn,0,0.973863

≥ max
M2

1,M2
2

{
∑

i∈M2
1

1
i0.973863Qn,0,0.973863

log


∑

i∈M2
1

1
i0.973863Qn,0,0.973863

∑
i∈M2

1

ωi



+ ∑
i∈M2

2

1
i0.973863Qn,0,0.973863

log


∑

i∈M2
2

1
i0.973863Qn,0,0.973863

∑
i∈M2

2

ωi


}
≥ log

(
1

ΩTn

)
.

(16)

Similarly, we can give an application for the Russian language.
Now we give an application for the result of the related two parameters: r1 = 0.973863 for the

English language and r2 = 0.892869 for the Russian language, which is in fact application of the
inequality (14).

Application 2. Let n ∈ N. Then, we have

−Z(Q, 0, 0.973863) +
n

∑
i=1

log(i0.892869Qn,0,0.892869)

i0.973863Qn,0,0.973863

≥ max
M2

1,M2
2

{
∑

i∈M2
1

1
i0.973863Qn,0,0.973863

log


∑

i∈M2
1

1
i0.892869Qn,0,0.892869

∑
i∈M2

1

1
i0.973863Qn,0,0.973863



+ ∑
i∈M2

2

1
i0.973863Qn,0,0.973863

log


∑

i∈M2
2

1
i0.892869Qn,0,0.892869

∑
i∈M2

2

1
i0.973863Qn,0,0.973863


}
≥ 0.

Remark 5. In a similar way, applications of the remaining results from Section 3 can be given.

Author Contributions: All authors contributed equally to the final manuscript.

Funding: The research was supported by the Natural Science Foundation of China (Grants No. 61673169,
No. 11601485, No. 11701176) and the Natural Science Foundation of the Department of Education of Zhejiang
Province (Grant No. Y201635325).

Acknowledgments: The authors express their sincere thanks to the referees for careful reading of the manuscript
and very helpful suggestions that improved the current manuscript substantially.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 623–656. [CrossRef]
2. Latif, N.; Pečarić, Ð.; Pečarić, J. Majorization, Csiszár divergence and Zipf-Mandelbrot law. J. Inequal. Appl.

2017, 2017, 197. [CrossRef] [PubMed]
3. Quastler, H. (Ed.) Essays on the Use of Information Theory in Biology; University of Illinois: Urbana, IL, USA, 1953.
4. Sherwin, W.B. Entropy and information approaches to genetic diversity and its expression: Genomic

geography. Entropy 2010, 12, 1765–1798. [CrossRef]

http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1186/s13660-017-1472-2
http://www.ncbi.nlm.nih.gov/pubmed/28904518
http://dx.doi.org/10.3390/e12071765


Entropy 2018, 20, 608 10 of 10

5. Zhou, R.-X.; Cai, R.; Tong, G.-Q. Applications of entropy in finance: A review. Entropy 2013, 15, 4909–4931.
[CrossRef]

6. Guisado, J.L.; Jiménez-Morales, F.; Guerra, J.M. Application of shannon’s entropy to classify emergent
behaviors in a simulation of laser dynamics. Math. Comput. Model. 2005, 42, 847–854. [CrossRef]

7. Wellmann, J.F.; Regenauer-Lieb, K. Uncertainties have a meaning: Information entropy as a quality measure
for 3-D geological models. Tectonophysics 2012, 526–529, 207–216. [CrossRef]
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