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Abstract: In this article, we investigated entropy generation and heat transfer analysis in a viscous
flow induced by a horizontally moving Riga plate in the presence of strong suction. The viscosity
and thermal conductivity of the fluid are taken to be temperature dependent. The frictional heating
function and non-linear radiation terms are also incorporated in the entropy generation and energy
equation. The partial differential equations which model the flow are converted into dimensionless
form by using proper transformations. Further, the dimensionless equations are reduced by imposing
the conditions of strong suction. Numerical solutions are obtained using MATLAB boundary value
solver bvp4c and used to evaluate the entropy generation number. The influences of physical
flow parameters arise in the mathematical modeling are demonstrated through various graphs.
The analysis reveals that velocity decays whereas entropy generation increases with rising values
of variable viscosity parameter. Furthermore, entropy generation decays with increasing variable
thermal conductivity parameter.

Keywords: entropy generation; heat transfer; variable transport properties; Riga plate; viscous and
magnetic dissipation; non-linear Rosseland thermal radiations

1. Introduction

In the classical MHD flow control, the boundary layer flow of an electrically conducting fluid
can be controlled by the application of an external magnetic field subjected to the condition that the
electric conductivity of fluid should be high (e.g., liquid form of semiconductors, plasma, electrolytes
and liquid metals). Due to the high electric conductivity of the fluid, the influence of applied external
magnetic field is significant even in presence of moderate strength of the magnetic field (~1 Tesla).
In addition, the application of an external electric field is not required in order to achieve an efficient
flow control. In case of weakly conducting fluids (e.g., sea water) the electric current induced by the
external magnetic field is too small and external electric field must be applied to control the flow
separation. The Lorentz force parallel to the wall has the ability to stabilize the motion inside the
boundary layer by slowing down its growth. Gailitis and Lielausis [1] proposed for the first time
an ingenious way to produce the wall-parallel Lorentz force. The flow control device developed
by Gailitis and Lielausis [1] consists of alternative permanent magnetics and electrodes of equal
width. Later on, Avilov [2] called it the Riga plate [2]. Perhaps, for the very first time, Tsinober and
Shtern [3] used the Grinberg-term in the momentum equation to analyze the boundary layer flow.
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The Grinberg-term is free from flow velocity and decays exponentially with the distance normal to the
main flow. The influence of suction/injection on classical Blasius and Sakiadis flow over a Riga plate
is investigated by Pantokratoras [4]. Magyari and Pantokratoras [5] reported the mixed convection
flow of Newtonian fluid induced by the Riga plate. Ahmed et al. [6] employed the perturbation
technique and numerical simulation to study the mixed convection flow of nanofluid past over a Riga
plate. The effects of non-linear thermal radiation on the Blasius and Sakiadis flow of nanofluids over a
Riga plate by taking the effects of Brownian diffusion and thermophoresis is studied by Ramesh and
Gireesha [7]. Pantokratoras and Magyari [8] numerically investigated the free convection flow over a
Riga plate by using the tridiagonal matrix algorithm.

The non-linear thermal radiation has major importance in the high-temperature processes.
The linear thermal radiation approximation is valid in the low-temperature processes. The effects of
non-linear Rosseland thermal radiation on the classical Sakiadis and Blasius flows are investigated by
Pantokratoras and Fang [9,10]. Recently, Afridi and Qasim [11] reported the influences of non-linear
thermal radiation on heat transfer and entropy production in a fluid flow over a horizontally moving
thin needle. Sithole et al. [12] examined the viscous dissipation and non-linear radiation impacts on the
entropy generation rate in a second grade nanofluid flow over an elastic stretching sheet. The effects
of variable viscosity and nonlinear thermal radiation on bio-convection flow by taking gyrotactic
microorganisms in the presence of Lorentz force are reported by Babu and Sandeep [13]. Very recently
Ghadikolaei et al. [14] studied the Casson fluid flow over a permeable inclined stretching surface by
incorporated the influence of magnetic field.

In the case of high-temperature processes, it is more convincing to consider the viscosity and
thermal conductivity to be temperature dependent. The influence of temperature dependent viscosity
on mixed convection flow is reported by Hossain and Munir [15]. Khader and Megahed [16]
performed the first law analysis of viscous fluid flow over a slendring stretching surface by taking
the temperature-dependent thermal conductivity and linear thermal radiation. Mureithi et al. [17]
found that the variable viscosity parameter has substantial impacts on temperature and velocity
distribution inside the boundary layer. The combined effects of variable thermal conductivity and
variable viscosity on a mixed convection flow under the impact of Lorentz force is investigated by Pal
and Mondal [18]. Their investigation reveals that temperature profile enhances with enhancing values
of variable thermal conductivity parameter. Manjunatha and Gireesha [19] studied dusty fluid flow
with variable viscosity and thermal conductivity under the influence of magnetic force.

From an industrial point of view, the analysis of heat transfer in boundary layer flows is of great
importance [20–22]. In the recent past, the heat transfer analyses in industrial processes involving
either closed or open system are confined to first law analysis. The main purpose of the first law
analysis is to find the temperature distribution inside the thermodynamic system and the rate of
heat flux at the solid boundary [23–25]. This is a well-known fact that in all real thermodynamic
processes the quantity of energy is conserved but the quality of energy reduces [26]. The reduction in
quality of energy in thermodynamic processes is measured by entropy generation. In other words,
the quality of energy decays with the enhancement of entropy generation in a process. There are
many causes of entropy generation such as fluid friction, mixing, dissipative forces, heat transfer and
unrestrained expansion etc. The aim of the second law analysis is to minimize the entropy generation
in a thermodynamic system. Bejan [27] pulled out the way to reduce the entropy generation in a
convective heat transfer problem and called it entropy generation minimization (EGM). After the
innovative work of Bejan [27], many researchers used the second law of thermodynamics to minimize
the entropy generation. Some of the recent studies on the second law analysis are referenced in [28–35].

The aim of the present study is to investigate the flow and heat transfer analysis of the dissipative
flow induced by a horizontally moving Riga plate in a quiescent fluid with variable transport properties
and non-linear Rosseland thermal radiations. The second law analysis is also performed in the presence
of viscous dissipation. The governing equations are non-dimentionalized with the help of suitable
transformations. The dimensionless equations are further simplified by using the assumption of strong
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suction. The reduced set of governing equations is solved numerically by utilizing MATLAB built-in
boundary value solver bvp4c. The variations of quantities of interests with emerging dimensionless
numbers are portrayed graphically and discussed physically in detail. To the best of author’s
knowledge, such an analysis is not reported before.

2. The Mathematical Model

An incompressible boundary layer flow over a Riga plate moving horizontally in a quiescent
electrically conducting fluid is considered. The temperature of the ambient fluid and the velocity of
Riga plate are assumed to be constant and denoted by T∗b and u∗w, respectively. The thermal conductivity
and viscosity of the fluid are assumed to be temperature dependent. Figure 1a,b respectively show
the Riga plate (also known as an electromagnetic actuator) which consists of permanent magnets
and electrodes of equal width ao and sketch of the velocity and temperature profile. In addition, the
temperature of the surface of Riga plate T∗w is supposed to be constant such that T∗w > T∗b (heated Riga
Plate). Based upon the above flow assumptions, the governing equations in the presence of non-linear
thermal radiation and viscous dissipation take the following form:
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u∗ ∂T∗
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subject to the boundary conditions:

u∗(x∗, 0) = u∗w, v∗(x∗, 0) = v∗w, T∗(x∗, 0) = T∗w, (4)

u∗(x∗, y∗ → ∞)→ 0, T∗(x∗, y∗ → ∞)→ T∗b . (5)

where < u∗, v∗ > represent velocity components in the direction of x∗ − axis and y∗ − axix.

respectively, T∗ shows fluid temperature inside the boundary layer, µ(T∗) =

(
µb

1+µo(T∗−T∗b )

)
and

k(T∗) = kb

(
1 + ε

T∗−T∗b
T∗w−T∗b

)
are temperature dependent viscosity and thermal conductivity of the fluid,

respectively. ε is a variable thermal conductivity parameter, ao represents the width of magnets and
electrodes, M∗ is the magnetization of the permanent magnets, jo indicates the applied current
density in the electrodes, σSB is the Stefan-Boltzmann constant and aR is the Rosseland mean
absorption coefficient.

Introducing the non-dimensional quantities:

x∗

l
= x,

y∗

L
= y,

u∗

u∗w
= u,

v∗

vo
= v, θ =

T∗ − T∗b
T∗w − T∗b

, (6)

l =
u∗wL2

ϑb
, L =

ao

π
, vo =

πϑb
ao

, ϑb =
µb
ρ

, Pr =
ϑbρcp

kb
, M =

a2
o jo M∗

8πu∗wρϑb
(7)
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) (Eckert number), Nr =
aRkb
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(thermal radiation parameter) (8)

into Equations (1)–(5), we have:
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u = 1, v =
v∗w
vo

= vw, θ = 1, at y = 0, (12)

u→ 0, θ → 0 as y→ ∞. (13)

By using the assumption of strong suction [6], Equations (9)–(11) can be rewritten in the following form:
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The condition v = vw at y = 0 and continuity equation gives v = vw, thus Equations (15) and (16) can
be written as:

vw
∂u
∂y

=
1

1 + δθ

∂2u
∂y2 −

δ

(1 + δθ)2
∂θ

∂y
∂u
∂y

+
1

1 + δθ

∂2u
∂y2 + Me(−y), (17)

vw
∂θ
∂y = 1

Pr

(
ε
(

∂θ
∂y

)2
+ (1 + εθ) ∂2θ

∂y2

)
+ 1

3PrNr(θr−1)
∂2

∂y2 (θ(θr − 1) + 1)4

+ Ec
1+δθ

(
∂u
∂y

)2
.

(18)

3. Entropy Generation

By assuming a viscous incompressible fluid element of a finite size such that it acts like an open
thermodynamic system and by employing the second law of thermodynamics, the volumetric rate of
entropy generation

( .
E
′′′

Gen

)
in the presence of non-linear Rosseland thermal radiation and viscous

dissipation takes the following form:

.
E
′′′
Gen =

k(T∗)
T∗2

(
∂T∗

∂y∗

)2
+
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(
∂u∗

∂y∗

)2
+ k(T∗)

16σSBT∗

3aRk(T∗)

(
∂T∗

∂y∗

)2
(19)

Using the transformations defined in Equations (6)–(8) we obtained the dimensionless form of
volumetric rate of entropy generation Ns as given below

Ns =
.
E′′′Gen( .
E′′′Gen

)
o

= (θr − 1)2

[
1 + εθ

(θ(θr − 1) + 1)2 +
4

3Nr
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∂θ

∂y

)2
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Thermal irreversibility

+
EcPr(θr − 1)

(1 + δθ)(θ(θr − 1) + 1)

(
∂u
∂y

)2
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Frictional irreversibility

(20)

here
( .

E
′′′
Gen

)
o
= kb

L2 is the characteristic entropy generation, θr =
T∗w
T∗b

denotes the heating parameter,

δ = µo
(
T∗w − T∗b

)
indicates a parameter related to variable viscosity.

4. Results and Discussion

The numerical solutions of the system of Equations (17) and (18) with the corresponding boundary
conditions (12, 13) are obtained using Matlab in-built boundary value solver bvp4c. The numerical
values of

(
∂θ
∂y

)
y=0

are tabulated in Table 1. This table shows that the numerical values obtained by using

bvp4c and shooting method are sufficiently close to each other, which validates our current numerical
procedure. The obtained numerical solutions are used to examine the behavior of entropy generation
against the various embedding physical parameters. Figure 2a shows the variations in velocity profile
for different values of the modified Hartmann number M. Here we observed that velocity of the fluid
u(y) accelerates with an increase in modified Hartmann number. This is consistent with the physics
of the problem because M > 0 implies adding flow mechanism on the velocity profile. Figure 2b
reflects the variation of temperature profile with increasing modified Hartmann number. It is revealed
that an increase occurs in the temperature profile with rising values of modified Hartmann number.
The variations in entropy generation corresponding to different values of the modified Hartmann
number is shown in Figure 2c. A reduction in entropy generation is noticed with the enhancement of a
modified Hartmann number. Whereas this behavior is reversed after a certain vertical distance from a
Riga plate. Figure 3a elaborates the effects of the mass suction parameter νw on u(y). The decrease in
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fluid velocity is observed with increasing mass suction parameter. Physically, suction pulls the fluid
towards the surface of the Riga plate and this pulling acts as a retarding force, consequently, velocity
decays. Further, the thickness of the viscous boundary layer decays with the increasing mass suction
parameter νw. The ability of mass suction parameter νw to reduce the thermal boundary layer is clearly
seen from Figure 3b. In addition, the temperature also decays and asymptotically approaches to zero
towards the edge of the temperature boundary layer. The enhancement in the entropy generation with
increasing mass suction parameter νw is shown in Figure 3c. Physically, this is because of increasing
thermal and velocity gradients with increasing mass suction parameter. Figure 4a demonstrates the
variations of temperature θ(y) against the rising values of the heating parameter θr. It is noticed
that temperature θ(y) rises with the increasing values of θr. The increasing behavior of temperature
is expected because θr increases with increasing the operating temperature difference T∗w − T∗b and
consequently the fluid temperature rises. It is noticed from Figure 4b that the increase in heating
parameter enhances the entropy generation. The heating of fluid due to increased heating parameter
causes more entropy generation. Further, the effects are significant at the surface of Riga plate and its
proximity. Figure 5a presented the influence of variable viscosity parameter δ on the velocity profile
u(y). It is found that u(y) decays with variable viscosity parameter δ. The influence of δ on entropy
generation number Ns is depicted in Figure 5b. The entropy generation increase with the rising values
of δ. This is due to the increasing velocity gradients with the increasing values of δ. The enhancement
in entropy generation is prominent at the surface and near the surface of the Riga plate. Additionally,
maximum entropy generation is observed at the surface of the Riga plate. The increasing trend of Ns is
reversed after a certain distance y. Figure 6a presents the variations in temperature θ(y) corresponding
to increasing values of Prandtl number Pr. The influence of Pr is to decrease the fluid temperature.
Physically, with growing values of Pr the thermal diffusivity reduces which is responsible for the
decay of temperature profile. Figure 6b presents the distribution of entropy generation for against the
multiple values of the Prandtl number. It is clearly seen that Ns enhances if Pr increases. Physically,
the thermal gradients increase with growing values of Pr and so the entropy generation increases.

Table 1. Comparison of the numerical values of
(

∂θ
∂y

)
y=0

for different embedding physical flow parameters.

(
∂`
∂y

)
y=0

vw M δ ε Pr Ec Nr θr Shooting bvp4c

−3.0 2.5 0.2 0.3 1.2 0.5 1.0 1.2 −0.93626 −0.93625
−4.0 −1.23309 −1.23310
−5.0 −1.51387 −1.51385
−3.0 1.0 −0.85674 −0.85672

2.0 −0.92065 −0.92065
3.0 −0.94096 −0.94097
2.5 0.0 −0.93125 −0.93125

0.5 −0.94241 −0.94242
1.0 −0.95012 −0.95010
0.3 0.0 −1.02348 −1.02350

0.5 −0.88924 −0.88925
1.0 −0.78617 −0.78616
0.3 0.7 −0.54823 −0.54825

1.2 −0.93847 −0.93847
3.0 −2.33939 −2.33938
1.2 0.0 −0.99889 −0.99890

0.3 −0.96259 −0.96257
0.6 −0.92643 −0.92645
0.5 1.0 −0.93847 −0.93845

2.0 −1.37779 −1.37780
5.0 −1.91672 −1.91671
1.0 1.1 −1.09966 −1.09967

1.2 −0.93847 −0.93846
1.3 −0.79999 −0.79999
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Figure 7a portrays the effects of variable thermal conductivity parameter ε on temperature θ(y).
It is found that the temperature θ(y) and thickness of the thermal boundary layer increase if ε increases.



Entropy 2018, 20, 615 13 of 19

This is due to the fact that thermal conductivity increases with growing values of ε which in turn
enhances the thermal energy penetration. The influence of ε on the entropy generation is shown in
Figure 7b. The ε tends to decrease the entropy generation and this is because of the decreasing thermal
gradients with rising values of ε. Impacts of thermal radiation parameter Nr on temperature θ(y) are
presented in Figure 8a. It is found that as the values of Nr increases, θ(y) decreases. Physically, for
a given value of kb and aR, an increase in Nr =

kbaR
4σSBT∗3b

yields a decrease in the ambient temperature

T∗b and this means that significant part of the fluid inside the boundary layer has low temperature

and consequently the thermal diffusivity
(

α + 16σSB
3ρcpaR

T3
)

becomes low with the thin thermal boundary
layer. The effect of Nr on distribution of entropy generation in the main flow region is depicted in
Figure 8b. It is clearly seen that Ns enhances with growing values of Nr whereas opposite trend is
observed after a certain transverse distance y. Further, the surface of the Riga plate is the strong source
of entropy generation due to the large thermal and velocity gradients. In Figure 9a temperature θ(y) is
plotted against the transversal distance y for different values of the Eckert number Ec. The increase
in θ(y) is observed with the increasing values of Ec and this is because of dissipative frictional forces
between the fluid layer. The influence of different increasing values of Ec on Ns is illustrated in
Figure 9b. It is found that an increase in the Ec leads to enhance the Ns. Physically, the dissipative
frictional forces between the fluid layer increase with increasing Eckert number and consequently
entropy generation enhances.
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Figure 9. Effects of Ec  on (a) temperature distribution and (b) entropy generation. 
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Numerical computation has been done to examine the heat transfer and entropy generation in 
boundary layer flow over a Riga plate by considering the effects of non-linear thermal radiation with 
variable transport properties. The following are the main outcomes drawn from this study: 
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variable viscosity parameter increases   while an enhancement in modified Hartmann 
number M  accelerates the fluid motion. 
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Figure 9. Effects of Ec on (a) temperature distribution and (b) entropy generation.

5. Concluding Remarks

Numerical computation has been done to examine the heat transfer and entropy generation in
boundary layer flow over a Riga plate by considering the effects of non-linear thermal radiation with
variable transport properties. The following are the main outcomes drawn from this study:

• Decay in the magnitude of velocity u(y) is found as the mass suction parameter vw and
variable viscosity parameter increases δ while an enhancement in modified Hartmann number M
accelerates the fluid motion.

• Temperature θ(y) increases with rising values of the Eckert number, heating parameter, and
variable thermal conductivity while an opposite behavior has been observed for growing values
of the mass suction parameter, Prandtl number, and radiation parameter Nr.

• The decrement in entropy generation Ns is observed with increasing values of modified Hartmann
number and variable thermal conductivity while increment in Ns is observed with rising values of
Prandtl number, radiation parameter, mass suction parameter, Eckert number, variable viscosity
parameter and heating parameter.

• Maximum entropy is generated at the surface of Riga plate.
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Nomenclature

ao with of electrodes and magnets (m)

cp specific heat at constant pressure (J/kg K)

Ec Eckert number
.
E
′′′
Gen volumetric rate of entropy generation (W/K)( .
E
′′′
Gen

)
o

characteristic volumetric rate of entropy generation (W/K)

jo current density
(

A/m2
)

k(T∗) temperature dependent thermal conductivity (W/mK)

kb thermal conductivity of fluid outside the boundary layer (W/mK)

L length unit (m)

M∗ magnetization of the magnets (Tesla)
M modified Hartmann number
Nr thermal radiation parameter
Ns entropy generation number
Pr Prandtl number
T∗ fluid temperature (K)

T∗w temperature at the surface of Riga-plate (K)

T∗b ambient temperature (K)

u∗ horizontal velocity
(
ms−1)

u dimensionless horizontal velocity
v∗ vertical component of velocity

(
ms−1)

v dimensionless vertical velocity
x∗ horizontal coordinate (m)

x dimensionless horizontal coordinate
y∗ vertical coordinate (m)

y dimensionless vertical coordinate
Greek Symbols
ε variable thermal conductivity parameter
δ variable viscosity parameter
µ(T∗) dynamic viscosity (kg/ms)
µb dynamic viscosity of ambient fluid (kg/ms)
ϑb kinematic viscosity of ambient fluid

(
m2/s

)
ρ fluid density

(
kg/m3

)
θ dimensionless temperature
θr heating parameter
Subscripts
w condition on boundary
b condition outside the boundary layer
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